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Abstract

higher than in urban areas.

effects

Background: Due to the high prevalence of diabetes risk factors in rural areas, it is important to identify whether
differences in diabetes screening rates between rural and urban areas exist. Thus, the purpose of this study is to
examine if living in a rural area, rurality, has any influence on diabetes screening across the US.

Methods: Participants from the 2011, 2013, 2015, and 2017 nationally representative Behavioral Risk Factor
Surveillance System (BRFSS) surveys who responded to a question on diabetes screening were included in the
study (n=1,889,712). Two types of marginal probabilities, average adjusted predictions (AAPs) and average marginal
effects (AMEs), were estimated at the national level using this data. AAPs and AMEs allow for the assessment of the
independent role of rurality on diabetes screening while controlling for important covariates.

Results: People who lived in urban, suburban, and rural areas all had comparable odds (Urban compared to Rural
Odds Ratio (OR): 1.01, Suburbans compared to Rural OR: 0.95, 0.94) and probabilities of diabetes screening (Urban
AAP: 7047%, Suburban AAPs: 69.31 and 69.05%, Rural AAP: 70.27%). Statistically significant differences in probability
of diabetes screening were observed between residents in suburban areas and rural residents (AMEs: — 0.96% and
—1.22%) but not between urban and rural residents (AME: 0.20%).

Conclusions: While similar levels of diabetes screening were found in urban, suburban, and rural areas, there is
arguably a need for increased diabetes screening in rural areas where the prevalence of diabetes risk factors is
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Background

As of 2015, approximately 23.1 million US adults have
type 2 diabetes and 7.2 million have the disease but are
undiagnosed [1]. The estimated yearly cost of diabetes
on the US economy in terms of healthcare expenses and
days of missed productivity is around $327 billion [2].
Type 2 diabetes is a serious health condition that can
lead to complications such as cardiovascular disease,
diabetic retinopathy, neuropathy, and chronic kidney
disease (CKD) in addition to increasing the risks of mor-
tality [3]. The distribution of type 2 diabetes is not
uniform across the US as there is a 17% higher
prevalence of diabetes in rural areas compared to urban
areas [4].
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In order to identify people with newly developed type
2 diabetes and offer them early treatment, the US Pre-
ventive Services Task Force recommends diabetes
screening for people who are overweight or obese be-
tween the ages of 40-70vyears [5]. The high prevalence
of type 2 diabetes risk factors such as being overweight/
obese (rural: 39.6%, urban: 33.4%), having high blood
pressure (rural: 38.1%, urban: 32.6%), having high chol-
esterol (rural: 42.4%, urban: 38.8%), and being physically
inactive (rural: 42.4%, urban: 38.8%) in rural areas is ex-
pected to lead to an increase in type 2 diabetes incidence
in the coming years, making it important to assess dia-
betes screening levels in these places [6—8]. Although
some work has been conducted on the levels of diabetes
screening in the US, few studies have examined the im-
pact of living in a rural area, rurality, on diabetes screen-
ing [9-13]. Existing work on levels of diabetes screening
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in rural areas has been limited by low sample sizes, con-
sideration of only a small geographic area, and an inabil-
ity to compare screening levels between rural and urban
areas [12, 13].

In this study, the impact of rurality on US diabetes
screening was examined using multiple years of data
from a nationally representative dataset [14]. The
intention of the study was to use marginal effects to iso-
late the independent role of rurality on diabetes screen-
ing while controlling for sociodemographic, clinical, and
health seeking behavioral factors. This study’s results
allowed for the identification of whether differences in
diabetes screening exist between rural and urban areas.

Methods

Study sample

We used the 2011, 2013, 2015, and 2017 Centers for
Disease Control and Prevention (CDC)‘s Behavioral
Risk Factor Surveillance System (BRFSS) surveys as
data [15-18]. The survey is an existing nationally
representative questionnaire previously published
elsewhere that collects information on health behav-
iors of the 50 states and the District of Columbia via
both landline and cellphone from Genesys, Inc.
phone lists [17, 19-22]. As BRESS surveys are sec-
ondary publically available data, consent was not re-
quired for this study [21]. Not all residents have
equal access to cellular devices so oversampling and
raking adjustments are performed in the BRESS to
ensure representation of groups such as minorities
and rural residents [14, 23]. We did not include data
from BRFSS surveys prior to 2010 due to their usage
of post-stratification weighting, which is incompat-
ible with the iterative proportional fitting of more
recent surveys. Furthermore, we did not include the
2012, 2014, and 2016 surveys because they did not
necessarily include all variables we planned to adjust
for in our analyses [15-18].

The data from the four surveys we did use were com-
bined to maximize sample size and increase our study’s
power. The study was comprised of survey participants
>18y who responded to, “Had a test for high blood sugar or
diabetes in the past three years?” (n =1,889,712) [15-18].
This question was included in section 1.1 of the 2011, 2013,
2015, and 2017 BRESS surveys [15-18]. Respondents who
answered “don’t know/not sure” or refused to answer were
excluded from the study. The exclusion of “don’t know/not
sure” responses has precedent in CDC analyses of BRFSS
data from Alaska, Montana, and North Carolina [24—26].

Covariates

We wanted to adjust for covariates that have been asso-
ciated with either differential rates of diabetes or dia-
betes screening. Sociodemographic factors influence
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access to preventative health care, so we included age,
race, sex, education, income, and marital status as covar-
iates [27-30]. Additionally, the American Diabetes Asso-
ciation (ADA) recommends that physicians screen adults
that have a BMI >25kg/m? and have one or more risk
factors such as hypertension (2140/90 mmHg) and high
cholesterol (HDL cholesterol level < 35 mg/dL, triglycer-
ide level > 250 mg/dL), so we also included clinical (BMI,
high blood pressure, high cholesterol, general health)
and health behavior (health care coverage, personal doc-
tor/health care provider) factors as covariates [30—32].

All covariates included in the study were categorized
using the 2011, 2013, 2015, and 2017 BRESS codebook
groupings for that respective variable [15-18]. Here, we
list the levels of the covariates that we adjusted for, all of
which are categorical. For the sociodemographic factors:
age (18 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 or
older), sex (Male, Female), household income (Less than
$15,000, $15,000 to <$25,000, $25,000 to <$35,000, $35,
000 to <$50,000, $50,000 or more), educational attainment
(Never attended school or only kindergarten, Elementary,
Some high school, High school graduate, Some college or
technical school, College graduate), self-reported race
(White, Black, Hispanic, Others (e.g., Asian, American In-
dian or Alaskan Native, Native Hawaiian or other Pacific
Islander, other race, multiracial)), marital status (Married,
Divorced, Widowed, Separated, Never married, A member
of an unmarried couple). For the clinical factors: general
health status (Excellent, Very good, Good, Fair, Poor),
BMI categories (Underweight (BMI< 18.50), Normal
Weight (18.50 < BMI < 25.00), Overweight (25.00 < BMI <
30.00), Obese (30.00 < BMI)), high blood pressure (“Have
you ever been told by a doctor, nurse, or other health pro-
fessional that you have high blood pressure?”) (Yes, No),
high cholesterol levels (“Have you ever been told by a doc-
tor, nurse, or other health professional that you have high
cholesterol?”) (Yes, No). Finally, for the health behavior
factors: health care coverage (Yes, No), and personal doc-
tor/health care provider (Yes, only one, More than one,
No) [15-18].

There are different ways to define/classify rurality for
research or policy purposes [33-37]. In this case, the
Metropolitan Status Codes (MSCODE) variable was the
only variable in BRESS datasets that could be used to de-
fine rurality [15-18]. Thus, the classification of rurality
in this study was based on the information on Metropol-
itan Statistical Area (MSA) which is included in the
MSCODE variable (in this context, e.g., using data that
has already been collected, this study can be considered
a post-hoc analysis) [15-18]. We define the definitions
of rural and nonrural in accordance with the MSA tax-
onomy used by the Census Bureau and other govern-
ment agencies for data analyses [35, 36]. That is, rural
residents were defined as those living outside an MSA
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(MSCODE 5) whereas non-rural residents were all other
respondents associated with the other MSCODE cat-
egories (MSCODE 1-4). We further divided the catego-
rizations of non-rural residents as follows: urban
residents were those who live in the center city of an
MSA (MSCODE 1) whereas suburban residents were
those who live outside the center city of an MSA but in-
side the county containing the center city (MSCODE 2)
or those who live inside a suburban county of an MSA
(MSCODE 3). We exclude results for residents of an
MSA with no center city (MSCODE 4), because this
MSCODE was only available for the 2012 and 2013
BRESS surveys and the number of MSCODE4 individ-
uals is small (n=2901) in comparison to other categor-
ies within the same survey [15-18].

Unadjusted screening levels

We calculated unadjusted diabetes screening levels in
order to compare them to adjusted measures of diabetes
screening. Crosstabulations were performed to generate
unadjusted diabetes screening levels in each MSCODE.
Crosstabulations were carried out in SAS 9.4 [38].

Statistical models

We developed a logistic regression model to deter-
mine the relationship between diabetes screening rates
and rurality while controlling for the sociodemo-
graphic, clinical, and health behavior factors discussed
above. Survey weights were included in the model to
account for the complex survey design and uneven
weighting of survey data. The logistic model was run
in SAS 9.4 [38]. As BRFSS data is readily available in
the SAS format, it was a matter of convenience to
run the logistic model in SAS [15-18]. We used a
SAS procedure (Proc surveylogistic) for logistic
models that included survey weights [38].

Marginal probabilities
After fitting the logistic regression model, Average Ad-
justed Predictions (AAPs) and Average Marginal Effects
(AMEs) were calculated [39, 40]. Stata 15 was used to
calculate both AAPs and AMEs as SAS does not have a
direct function for marginal probabilities like Stata does
[41]. To calculate AAPs and AMEs in Stata, data in SAS
were outputted into Stata format and proper codes were
used to make the logistic regression in Stata take into
account survey weights [41]. Next, we double checked
results of the two logistic regressions from SAS and
Stata and ensured they were the same. We then used the
margins command to generate AAPS and AMEs from
the logistic regression results in Stata [41].

We chose to calculate AAPs, a type of marginal prob-
ability, in addition to odds ratios due to their presenta-
tion in terms of absolute numerical values, which give
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the actual estimated testing probabilities and a more
practical interpretation of testing differences [39, 40].
AAPs attempt to control for confounders by considering
a hypothetical population with no variation in these fac-
tors; for example, an urban AAP is the predicted mar-
ginal probability of having been tested for high blood
sugar/diabetes in the past 3 years if all respondents
hypothetically resided in urban areas. For convenience,
we also include the differences in marginal probabilities
for diabetes testing in the past 3 years between a hypo-
thetically all suburban or urban survey population and a
hypothetically all rural one, known as average marginal
effects or AMEs [39, 40].

Results

People who responded to having had a test for high
blood sugar or diabetes in the past 3 years were predom-
inantly > 45 years (72.5%), female (58.4%), had an income
>$25,000 (59.8%), were White (76.2%), had at least a
high-school education (91.4%), reported that they felt
good to excellent about their general health (80.5%), had
healthcare coverage (90.0%), and a personal doctor
(84.3%) (Table 1). BMI was roughly evenly split between
normal weight (30.6%), overweight (33.7%), and obese
(27.3%). More than half of respondents did not have
high cholesterol (50.7%) but did have high blood pres-
sure (59.5%). Most people reported either living in the
center city of an MSA (22.1%) or not in an MSA at all
(21.7%). Unadjusted diabetes screening prevalences were
67.2% for those in the center city of an MSA (MSCODE
1), 66.6% for those outside the center city of an MSA
but inside the county containing the center Ccity
(MSCODE 2), 66.6% for those inside a suburban county
of the MSA (MSCODE 3), 64.4% for those in an MSA
that has no center city (MSCODE 4), and 64.7% for
those not in an MSA (MSCODE 5).

Age, sex, household income, educational attainment,
self-reported race, marital status, general health status,
BM], blood pressure, cholesterol levels, health care cover-
age, and personal doctor/health care provider were all as-
sociated with having had a test for high blood sugar or
diabetes in the past 3 years in national level results
(Table 2). Associations for all these covariates excluding
sex were found to be statistically significant (p value<
0.05). Increasing income and education corresponded to
increased odds of having had a test for high blood sugar
or diabetes in the past 3 years. Black and Hispanic ethni-
city were associated with higher odds of diabetes
screening, but not White ethnicity. The odds of diabetes
screening were similar among urban, suburban, and rural
residents (Urban vs. Rural OR: 1.01, 95% CI: 0.98-1.04;
Suburbans vs. Rural OR: 0.95, 0.94, 95% CI: 0.92-0.99,
0.90-0.98). Adjusted national level probabilities of dia-
betes screening were also comparable for urban, suburban,



Tran et al. BMC Public Health (2019) 19:1190 Page 4 of 10

Table 1 Sociodemographic, clinical, and health seeking behavioral factors among study participants in the 2011, 2013, 2015, and
2017 Behavioral Risk Factor Surveillance System surveys (n = 1,889,712)

Covariates Had a test for high blood sugar
or diabetes in the past 3 years
n %
Age groups
Age 18 to 24 100,689 53
Age 25 to 34 189,726 10.0
Age 35 to 44 228,777 12.1
Age 45 to 54 317,724 16.8
Age 55 to 64 420,192 222
Age 65 or older 632,604 335
Sex
Male 785,750 416
Female 1,103,678 584
Refused 284 0.02

Household income

Less than $15,000 183,236 9.7
$15,000 to < $25,000 277,192 147
$25,000 to < $35,000 179,594 95
$35,000 to < $50,000 231,180 122
$50,000 or more 718,954 38.1
Don't know/Not Sure/Missing 299,556 159
Education
Never attended school or only kindergarten 2567 0.1
Elementary 50,210 2.7
Some high school 102,724 54
High school graduate 538,144 285
Some college or technical school 515,485 273
College graduate 672,862 356
Don't know/Not Sure/Missing 7720 04
Race
White 1,440,751 76.2
Black 149,875 79
Hispanic 148,645 79
Others (e.g., Asian, American Indian or 119,579 6.3

Alaskan Native, Native Hawaiian or
other Pacific Islander, other race, multiracial)

Don't know/Not Sure/Missing 30,862 16
Marital status
Married 987477 523
Divorced 262,439 139
Widowed 246,775 131
Separated 40,139 2.1
Never married 287411 15.2
A member of an unmarried couple 53,181 28
Don't know/Not Sure/Missing 12,290 0.7

General health

Excellent 324,669 172
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Table 1 Sociodemographic, clinical, and health seeking behavioral factors among study participants in the 2011, 2013, 2015, and

2017 Behavioral Risk Factor Surveillance System surveys (n = 1,889,712) (Continued)

Covariates Had a test for high blood sugar
or diabetes in the past 3 years
n %
Very good 610,325 323
Good 586,084 31.0
Fair 257,366 136
Poor 104,880 56
Don't know/Not Sure/Missing 2836 0.2
Body mass index (BMI) categories
Underweight (BMI < 18.50) 30,199 16
Normal Weight (18.50 < BMI < 25.00) 578,862 30.6
Overweight (25.00 < BMI'<30.00) 637,026 33.7
Obese (30.00 < BMI) 516432 27.3
Don't know/Not Sure/Missing 127,193 6.7
High blood pressure
Yes 1,124,597 595
No 759,569 40.2
Don't know/Not Sure/Missing 5546 03
High cholesterol
Yes 690,184 36.5
No 958,756 50.7
Don't know/Not Sure/Missing 240,772 128
Health care coverage
Yes 1,701,229 90.0
No 181,308 9.6
Don't know/Not Sure/Missing 7175 04
Have personal doctor or health care provider
Yes, only one 1,441,957 763
More than one 151,065 8.0
No 289,610 15.3
Don't know/Not Sure/Missing 7080 04
Metropolitan Status Code
In the center city of an MSA (MSCODE 1) 417,136 22.1
(Unadjusted prevalence of high blood sugar
or diabetes testing: 67.2%)
Outside the center city of an MSA but inside 231,483 123
the county containing the center city (MSCODE 2)
(Unadjusted prevalence of high blood sugar
or diabetes testing: 66.6%)
Inside a suburban county of the MSA (MSCODE 3) 163,367 8.7
(Unadjusted prevalence of high blood
sugar or diabetes testing: 66.6%)
In an MSA that has no center city (MSCODE 4) 3901 0.2
(Unadjusted prevalence of high blood sugar
or diabetes testing: 64.4%)
Not in an MSA (MSCODE 5) 410,620 217
(Unadjusted prevalence of high blood sugar or diabetes testing: 64.7%)
Don't know/Not Sure/Missing 663,205 351

MSA Stands for metropolitan statistical area



Tran et al. BMC Public Health (2019) 19:1190 Page 6 of 10

Table 2 Results of logistic regression models on diabetes screening

Parameters Had a test for high blood sugar or diabetes in the past 3 years
Odds Ratio 95% Conf. Interval p-value
Lower Upper

Age (ref: Age 18 to 24)

Age 25 to 34 1.57 137 1.80 < 0.0001
Age 35 to 44 144 127 1.64 < 0.0001
Age 45 to 54 1.81 1.59 206 < 0.0001
Age 55 to 64 234 2.05 266 < 0.0001
Age 65 or older 240 2.1 273 <0.0001

Sex (ref: Female)
Male 1.02 0.99 1.05 0.20

Household income
(ref: Less than $15,000)

$15,000 to <$25,000 1.09 1.02 117 0.01
$25,000 to <$35,000 113 1.05 121 0.001
$35,000 to <$50,000 117 1.10 126 < 0.0001
$50,000 or more 122 1.14 130 <0.0001

Education (ref: High school graduate)

Never attended school 045 0.24 0.83 0.012

or only kindergarten

Elementary 0.77 0.70 0.85 <0.0001

Some high school 081 0.75 087 < 0.0001

Some college or technical school 1.19 1.15 1.23 <0.0001

College graduate 123 1.19 1.27 <0.0001
Race (ref: White)

Black 1.34 1.28 142 < 0.0001

Hispanic 1.28 1.16 140 < 0.0001

Others (e.g., Asian, American Indian or 1.00 0.94 1.07 0.94

Alaskan Native, Native Hawaiian or other
Pacific Islander, other race, multiracial)

Don't know/Not sure/Refused 134 1.28 142 <0.0001

General health (ref: Excellent)

Very good 1.12 1.08 117 <0.0001
Good 1.14 1.09 118 <0.0001
Fair 1.23 1.17 130 < 0.0001
Poor 1.29 1.19 140 < 0.0001
BMI (ref: Normal Weight (18.50 < BMI < 25.00))

Underweight (BMI < 18.50) 0.89 0.81 0.98 0016

Overweight (25.00 < =BMI < 30.00) 1.29 125 133 <0.0001
Obese (BMI>=30.00) 1.78 172 1.85 <0.0001

High blood pressure (ref: No)

Yes 0.71 0.69 073 < 0.0001
High cholesterol (ref: No)

Yes 1.10 1.07 113 < 0.0001
Health care coverage (ref: No)

Yes 151 142 1.60 < 0.0001

Personal doctor/health
care provider (ref: No)

Yes, only one 204 1.95 213 <0.0001
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Table 2 Results of logistic regression models on diabetes screening (Continued)

Parameters Had a test for high blood sugar or diabetes in the past 3 years
Odds Ratio 95% Conf. Interval p-value
More than one 1.86 1.75 1.97 < 0.0001
Marital status (ref: Married)
Divorced 1.00 0.96 1.05 0.879
Widowed 0.90 0.87 094 < 0.0001
Separated 1.08 0.97 1.19 0.153
Never married 091 0.87 097 0.001
A member of an unmarried couple 1.15 1.04 1.27 0.005
Metropolitan Status Code
(ref: Not in an MSA)
In the center city of an MSA 1.01 0.98 1.04 0534
Outside the center city of an MSA 095 092 0.99 0011
but inside the county containing the center city
Inside a suburban county of the MSA 094 0.90 098 0.002

Model adjusted for Age, Sex, Household income, Education, Race, General health, BMI, High blood pressure, High cholesterol, Health care coverage,
Personal doctor/health care provider, Marital status, and Metropolitan Status Code

Significant at 0.05 level (2-tailed)
MSCODE 5
MSCODE 1
MSCODE 2
MSCODE 3

and rural individuals (urban (MSCODE 1) AAP: 70.47%;
suburban areas (MSCODE 2 & MSCODE 3) AAPs: 69.31
and 69.05%, respectively; rural (MSCODE 5) AAP:
70.27%) (Table 3). Statistical differences in the adjusted
probability of diabetes screening were only observed be-
tween people living in suburban areas (MSCODE 2 &
MSCODE 3) and people in rural areas (MSCODE 5)
(AMEs: - 0.96% and - 1.22%, respectively).

Discussion

We conducted a nationally representative study using
the 2011, 2013, 2015, and 2017 BRFSS to examine the
influence of rurality on diabetes screening. Across the
US, urban, suburban, and rural residents had similar
odds and adjusted probabilities of diabetes screening.
Urban residents (MSCODE 1) had similar odds and
probability of diabetes screening compared to rural resi-
dents (MSCODE 5). There was a larger difference in
probability of diabetes screening between suburban resi-
dents (MSCODE 2 and MSCODE 3) and rural residents
than between urban and rural residents.

Previous work on the influence of rurality on diabetes
screening has tended to focus on this research question
in only a small number of study participants over a lim-
ited geographic area [12, 13]. A study of diabetes screen-
ing in 540 people in 12 rural West Virginian counties
found that 61.8% of them were at high risk for diabetes,
but did not examine what factors influence diabetes
screening in this population [13]. In a study using 2009
and 2010 BRFSS data to examine diabetes screening at
the county level in 11 largely rural Appalachian states,

study participants >65years in low economic status
counties had a 8.1% lower screening rate compared to
those from high economic status counties [12]. However,
neither of these two studies compared levels of diabetes
screening between rural and urban areas which makes it
hard to detect the existence of rural-urban disparities in
diabetes screening [12, 13]. It is difficult to say whether
the results of this study are consistent with the West
Virginian and Appalachian studies as these two studies
addressed the prevalence of diabetes in rural study par-
ticipants who had never had a diabetes diagnosis rather
than the direct influence of rurality on diabetes screen-
ing [12, 13].

The similar levels of diabetes screening seen between
rural and urban areas may be the product of (1) overall
higher levels of diabetes screening by all physicians and/or
(2) the need for rural residents to travel to urban hospitals
for diabetes prevention and treatment [12, 16, 18, 42].
With the implementation of more definitive diabetes
screening guidelines by the US Preventive Services Task
Force in 2014, the prevalence of diabetes screening has in-
creased from 46.80% in 2010 to 54.66% in 2015 and
55.02% in 2017 [16, 43]. These figures for national uptake
of diabetes screening (46.80% in 2010 to 54.66% in 2015
and 55.02% in 2017) are taken directly from the BRESS
and represent diabetes screening prevalence that has not
been adjusted for any sociodemographic, clinical, and
health seeking behavioral factors in these years while the
predicted values in Table 3 have been adjusted for the
sociodemographic, clinical, and health seeking behavioral
factors mentioned in the Methods section of this study.
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Table 3 Average adjusted predictions (AAPs) for different Metropolitan Status Codes (MSCODEs) and Average marginal effects

(AMEs) of MSCODE 1, 2, 3 vs. 5

Parameters Had a test for high blood sugar or diabetes in the past 3 years

Estimate (%) 95% Conf. Interval p-value

Lower Upper

Metropolitan Status Code Average Adjusted Predictions (AAPs)
In the center city of an MSA (MSCODE 1) — urban 7047 70.04 7091 <0.0001
Outside the center city of an MSA but inside 69.31 68.73 69.89 < 0.0001
the county containing the center city (MSCODE 2) - suburban
Inside a suburban county of the MSA (MSCODE 3) - suburban 69.05 6845 69.66 < 0.0001
Not in an MSA (MSCODE 5) - rural 7027 69.81 70.73 < 0.0001
Metropolitan Status Code Average Marginal Effects (AMEs)

(ref: Not in an MSA (MSCODE 5) - rural)
In the center city of an MSA (MSCODE 1) — urban 0.20 —-044 0.84 0.534
Outside the center city of an MSA but inside the -0.96 =171 -0.22 0.011
county containing the center city (MSCODE 2) — suburban
Inside a suburban county of the MSA (MSCODE 3) - suburban -1.22 -1.98 -046 0.002

AAPs are a type of marginal probability that attempt to control for the other sociodemographic, clinical, and health seeking behavioral factors by
considering a hypothetical respondent population with no variation in these factors calculated [39, 40]

AMEs are the differences in AAPs

Confounding from these factors may be one explanation
as to why figures for national uptake of diabetes screening
seem much lower than the predicted values in Table 3. In
addition, people who responded “Don’t know/Not Sure”
as well as “Refused” were included in the calculation of
these national figures while they were not included when
calculating the predicted values in Table 3. Another pos-
sible explanation for the differences between the figures
for national uptake of diabetes screening and the predicted
values in Table 3 was that records with missing data in
any covariates were removed in the logistic regression
models. A lack of medical facilities and physicians in rural
communities often forces rural residents to travel to urban
hospitals in order to receive medical care [18, 42, 44]. A
study of rural residents in New York found that many, es-
pecially those in counties with few medical resources, had
to travel large distances in order to receive care from a
primary physician [44]. As a result, many rural residents
end up visiting doctors at urban hospitals whose referral
rates for diabetes screening are similar for both rural and
urban residents, leading to similar levels of diabetes
screening for these two groups [44, 45]. However, as a
large number of rural residents do not have health insur-
ance or are unable to travel to urban hospitals, the under-
lying number of rural residents with diabetes risk factors
that are not receiving but need diabetes screening may be
underestimated [7, 8, 42, 44].

The main limitation of this study revolves around its
usage of self-reported BRESS survey data, allowing for
the possibility of survey responses not accurately true
national rates. However, several past BRFSS validation
studies have shown high correlation between BRESS re-
sponses and in-person measurements of clinical factors,

with R? estimates between 89 and 92% [46, 47]. Another
study using Massachusetts BRFSS response values found
that their percentage difference with “true” Massachu-
setts EHR data was less than 5% for diabetes and obesity
and 15% for hypertension [48]. It is likely that the effects
of self-reported bias with respect to accuracy are minor
to negligible, with at most minimal levels of non-differ-
ential misclassification bias. Our decision to focus solely
on diabetes screening at the national level could obscure
regional differences in diabetes screening. While a large
array of sociodemographic, clinical, and health seeking
behavioral factors was controlled for in the analyses,
some residual confounding may still remain [49]. We are
unable to control for health beliefs and literacy as well
as the behavior of healthcare providers since the BRFSS
does not contain this information. However, many co-
variates associated with diabetes and health screening
behavior that are available in the BRESS surveys were in-
cluded in the analyses and adjusted for in the study [27—
30].

We highlight some advantages of this study relative to
past research examining the influence of rurality on dia-
betes screening. By combining four editions of the
BRESS surveys, this nationwide study has a large study
population and enough statistical power to account for
several sociodemographic, clinical, and health seeking
behavioral factors that were not considered in aggregate
in previous research. There is less variance in our esti-
mates within the different MSCODEs due to the usage
of survey weights and oversampling in the study popula-
tion, and our reporting of marginal effects allows for dir-
ect comparisons of screening probabilities (especially for
factors where a reference level for odds ratio is not
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obvious). Finally, an ordinal scale that separates areas by
rurality is immediately apparent from the usage of
MSCODE.

Conclusions

This study sought to determine if there are disparities in
diabetes screening between suburban/urban and rural res-
idents across the US. While levels of diabetes screening
were similar for rural, suburban, and urban residents, the
slightly lower prevalence of diabetes screening in rural vs.
urban residents suggests a need for increased diabetes
screening in rural populations that have a higher preva-
lence of diabetes risk factors than urban populations, are
underserved, and oftentimes lack knowledge and re-
sources with respect to diabetes [7, 8, 42]. Additional dia-
betes screening efforts in rural areas will increase the
number of diabetes cases that can be detected early, im-
prove the lives of individuals who have been living with
undiagnosed diabetes via prompt treatment, and ultim-
ately reduce serious diabetes complications that can arise
if the condition is left untreated [2, 3].
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