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background: Both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) bear a great potential in regen-
erative medicine. In addition to optimized clinical grade culture conditions, efficient clinical grade cryopreservation methods for these cells are
needed. Obtaining good survival after thawing has been problematic.

methods: We used a novel, chemically defined effective xeno-free cryopreservation system for cryostorage and banking of hESCs and
iPSCs. The earlier established slow freezing protocols have, even after recent improvements, resulted in low viability and thawed cells had a
high tendency to differentiate. The medium is a completely serum and animal substance free product containing dimethylsulfoxide, anhydrous
dextrose and a polymer as cryoprotectants. The cells were directly frozen at 2708C, without a programmed freezer.

results: The number of frozen colonies versus the number of surviving colonies differed significantly for both HS293 (x2 ¼ 9.616 with
one degree of freedom and two-tailed P ¼ 0.0019) and HS306 (x2 ¼ 8.801 with one degree of freedom and two-tailed P ¼ 0.0030). After
thawing, the cells had a high viability (90–96%) without any impact on proliferation and differentiation, compared with the standard freezing
procedure where viability was much lower (49%). The frozen–thawed hESCs and iPSCs had normal karyotype and maintained properties of
pluripotent cells with corresponding morphological characteristics, and expressed pluripotency markers after 10 passages in culture. They
formed teratomas containing tissue components of the three germ layers.

conclusion: The defined freezing–thawing system described here offers an excellent simple option for banking of hESCs and iPSCs.
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Introduction
Human embryonic stem cells (hESCs) have generated much interest
due to their great potential for cell therapy and regenerative medicine
(Thomson et al., 1998; Trounson and Pera 2001; Klimanskaya et al.,
2008). In order to fully exploit the remarkable potential of hESC,
optimal cryopreservation methods of the pluripotent cells for transfer
between research centers, promotion of scientific collaborations and
facilitation of widespread usage of these cells has been lacking

(Gearhart, 1998; Pera and Trounson, 2004). The sensitivity of
hESCs to cryopreservation, in spite of clear improvements recently,
has severely limited their utility (Martin-Ibanez et al., 2008). As
hESCs are highly sensitive to cryo-injury, different cryopreservation
methods have been extensively studied recent years (Reubinoff
et al., 2001; Richards et al., 2004; Zhou et al., 2004; Ha et al.,
2005; Heng et al., 2006; Yang et al., 2006). Traditionally, cryopreser-
vation of stem cells has involved a medium containing a cryoprotec-
tant agent, 10% dimethylsulfoxide (DMSO), allowing large cell
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numbers to be frozen in one vial. Upon thawing the survival of undif-
ferentiated hESCs is poor and most cells either die or differentiate
(Reubinoff et al., 2001), thus making traditional protocols sub-
optimal. Vitrification in open straws has been effectively and widely
used (Reubinoff et al., 2001), but it is difficult to keep the liquid nitro-
gen and the cells in open straws sterile. Security straws that are
needed for clinical grade vitrification, allow cryopreservation of only
small numbers of cells per unit. Clearly, novel freezing methods are
needed for easy handling of bulk quantities of hESCs which will be
required for various clinical and research applications (Martin-Ibanez
et al., 2008).

hESCs have generally been cryopreserved as small aggregates in
culture media containing serum replacement (SR) and 10% DMSO.
Our recent results using a Rho kinase inhibitor allowed the freezing
of single cell suspensions, but better survival would still be desired
(Martin-Ibanez et al., 2008). DMSO, which has mainly been used for
hESC freezing, is a permeable cryoprotectant. Use of combinations
of cryoprotectants in hESC banking has not been reported. We
have now evaluated the use of a new chemically defined cryopreser-
vation medium and cell wash solution, which are completely free of
animal substances, STEM-CELLBANKER and CELLOTIONTM. The
freezing procedure can be conducted without dedicated instrumenta-
tion. We have now evaluated the freezing–thawing media for both
hESC and human induced pluripotent stem cells (iPSCs).

Materials and Methods

hESCs and iPSCs maintenance and culture
We used two hESC lines, HS293 and HS306, both derived in our labora-
tory (Strom et al., 2007) and one iPSC line, CHiPS-A (see below). They
were cultured and maintained on a feeder layer of human foreskin fibro-
blasts (CRL-2429; ATCC, Manassas, VA, USA) mitotically inactivated by
irradiation (40 Gy). The culture medium was knockout Dulbecco’s modi-
fied Eagle’s medium (DMEM) supplemented with: 20% knockout SR,
2 mM glutamax, 0.5% penicillin–streptomycin, 1% non-essential amino
acids (all from Gibco Invitrogen Corporation, Paisley, UK), 0.5 mM 2-
mercaptoethanol (Sigma-Aldrich Co, St Luis, USA) and 8 ng/ml basic
fibroblast growth factor (R&D Systems, Oxon, UK) (Hovatta et al.,
2003; Inzunza et al., 2005). We also cryopreserved one human iPSC
line, CHiPS-A, that we had established in collaboration with University
of Geneva (Unger et al., 2009) by transducing human skin fibroblasts
with Oct-4, Nanog, Sox2 and Lin28.

Cryopreservation and thawing
STEM-CELLBANKER contains 10% DMSO, glucose and a high polymer
described in the Japanese Pharmacopeia (JP) as a second cryoprotectant,
plus NaCl, KCl, Na2HPO4, HK2PO4, NaHCO3 as pH adjustors for main-
tenance of the cell function, all dissolved in phosphate-buffered saline
(PBS). For optimal dehydration and minimal ice crystal formation, the
medium contains both permeating and non-permeating cryoprotectants.
All compounds are of Pharmacopoeia of the United States of America,
European Pharmacopea or JP grade.

hESC colonies were harvested by mechanically removing undifferen-
tiated colonies from their feeder layer with a surgical scalpel. Cell aggre-
gates containing about 20 000 cells, equaling 10–30 colonies, were
transferred into cryo vials. When the cells had settled to the bottom
of the vial, excess medium was removed. Cold (48C) freezing medium,
500 ml, (STEM-CELLBANKERTM) was added directly into the cryo vials,

with no other supplements. The vials were either placed in a Nalgene
Cryo 18C Freezing Container ‘Mr. Frosty’ (5100-0001) (Nalge Nunc
International, Rochester, USA) containing isopropanol and immediately
stored at 2708C, or frozen directly at 2708C without using the ‘Mr
Frosty’, both procedures yielding similar results. CHiPS-A cells were
frozen as a single-cell suspension with the Rho-associated kinase
(ROCK) inhibitor, Y-27 632 as previously described (Watanabe et al.,
2007; Martin-Ibanez et al., 2008) with STEM-CELLBANKERTM instead
of SR-medium and 10% DMSO (Sigma-Aldrich Co, St Luis, USA),
which at present is the most often used slow freezing system for hESC.
A programmed freezer was not used in our cryopreservation method.
The next day, cryo vials were removed from 2708C and stored in a
liquid nitrogen tank.

To study thawed cells, culture plates were prepared 30 min prior to
thawing. Vials were removed from the liquid nitrogen tanks and quickly
placed in a 378C water bath. When only a small amount of ice remained,
the vials were sterilized with 70% ethanol; any remaining ethanol was
allowed to evaporate before the vial was opened. The cell suspension
was pipetted and placed into a 14 ml conical centrifuge tube and 8 ml of
thawing solution (CELLOTIONTM) was added. CELLOTIONTM is a
washing solution containing NaCl. The tube was centrifuged at 300g for
7 min. The supernatant was discarded and the pellet with the cells was
re-suspended with 1 ml SR culture medium that had been on a feeder
plate for at least 30 min before cell thawing. The CHiPS-A cells were
re-suspended with 1 ml SR-containing culture medium with ROCK-
inhibitor (Merck Chemicals, Ltd, Nottingham, UK) diluted 1:500, a selec-
tive ROCK inhibitor which has been described to increase survival of dis-
sociated hESCs, increase their cloning efficiency and diminish their
dissociation-induced apoptosis (Watanabe et al., 2007). Control freezing
was carried out using stem cell culture medium (DMEM/F12 1:1) sup-
plemented by SR and 10% DMSO which is the medium regularly used
for the time being.

Assessment of hESC viability after
cryopreservation
The percentage of surviving cells was counted as a ratio between live
hESCs after thawing and total number of initially frozen cells counted
using a haemocytometer chamber and the trypan blue exclusion
method. This counting was carried out in triplicate. The cell numbers
were monitored for three passages by cell counts to assess the survival
rate, and after the third passage, the cultures were considered to be
stable with normal growth and expansion (Fig. 1A). Also the percentage
of frozen–thawed hESCs was determined by colony formation after
thawing, expressed as number of colonies after thawing and total
number of initially frozen hESCs. We also used the calcein-esterase
based live–dead assay (Molecular Probes, Eugene, USA) to show the per-
centage of live cells after thawing.

The level of differentiation was determined using inverted phase con-
trast microscopy based on morphological appearance: colonies with
small cells, a large nucleus and sharp edges were regarded as undifferen-
tiated (Fig. 2A and B), whereas colonies with large cells with abundant
cytoplasm were regarded as differentiated (Fig. 2C). The morphological
appearance was further assessed by Oct-4 immunostaining (Fig. 3) as
described previously (Martin-Ibanez et al., 2008).

Immunocytochemical characterization
Immunocytochemical characterization was carried out on hESC colonies
obtained at passage 10 after thawing. The primary antibodies were specific
for Oct-4 (Chemicon, Temecula, CA, USA), Nanog, TRA-1-81 and stage-
specific embryonic antigen (SSEA)-4 (all from Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA), and were all diluted at 1:200. Human foreskin
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fibroblasts were used as negative control cells. Immunostaining was per-
formed by fixation of the cells with 4% paraformaldehyde in PBS for
20 min at room temperature followed by rinsing with PBS three times fol-
lowed by blocking with 5% fetal bovine serum for 30 min. Permeabilization
was carried out using 5% blocking buffer supplemented with 0.02% Triton
X-100. The primary antibodies were added in blocking buffer overnight at
48C. To remove any unbound antibodies, the samples were washed three
times with PBS. Binding of the primary antibodies was detected with
fluorochrome-conjugated secondary antibodies, diluted 1:200 in 5% block-
ing buffer and added to cells for 60 min at room temperature in the dark.
After three washes with PBS, the cell nuclei were counterstained with
Hoechst B2261 (Sigma-Aldrich) for 10 min.

In addition to negative control cells, hESC were also incubated without
primary antibodies. Stained cells were analyzed using an Olympus IX71
inverted microscope (Olympus Sverige AB, Solna, Sweden) and images
were acquired with Olympus DP71 camera and the Soft Imagine Cell F
version 2.6 Software (Olympus Sverige AB).

Real-time quantitative PCR
The hESC colonies obtained after freezing and thawing were studied by
analyzing the expression levels of Oct-4 and Nanog mRNA. As a house
keeping gene, glyceraldehyde-3-phosphate dehydrogenase was used as
an internal control, to normalize Oct-4 and Nanog.

In brief, total RNA from hESCs was extracted (QIAGEN, RNeasy Mini
kit) according to the manufacturers recommended protocol, and con-
verted to cDNA (Invitrogen, SuperScriptTM III First-Strand Synthesis
System for RT–PCR, Cat. No. 18 080-051), also according to the manu-
facturers recommended protocol. The cDNA was then analyzed using
SYBR gene expression assay.

The data were analyzed using MxProTM QPCR analysis software version
3.0 (STRATAGENEw). The assays were performed in triplicate. The
sequences of primers used were as follows: Oct-4 (sense,
50-GACAACAATGAAAATCTTCAGGAGA-30; antisense, 50-TTCTGG
CGCCGGTTACAGAACCA-30) and Nanog (sense, 50-AAGACAAGG
TCCCGGTCAAG-30; antisense, 50-CCTAGTGGTCTGCTGTATTAC-30).

Figure 1 Survival of stem cells after thawing. (A) Growth rates of HS293, HS306 and CHiPS-A post-thawing for the first three passages. (B) The
growth rates of both HS293 and HS306 frozen with STEM-CELLBANKER compared with cells frozen with 10% DMSO in SR medium.
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Figure 2 Morphology of hESCs HS293 and HS306 colonies. (A) Typical colonies of cell lines HS293 and HS306 in magnification �40 and �400
using phase contrast objective (Ph) showed normal morphology with typical characteristics of human embryonic stem cells (hESCs) with large nuclei
with surrounding cytoplasm, the cells being packed tightly together. (B) Colony formation of cell line HS293 and HS306 (�40 and �400 Ph) after
thawing cells which had been frozen with STEM-CELLBANKER and thawed with CELLOTION, 3 days after thawing, showing normal hESC mor-
phology. (C) Colony formation (�40 and �400 Ph) after thawing hESCs which had been frozen in 10% DMSO in serum replacement (SR)-containing
medium. Colonies are growing in clumps, with a very small outgrowth of normal hESCs by the boarders of the cell clump.
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Figure 2 Continued.

Figure 3 Immunocytochemical detection of Hoechst, OCT3/4, stage-specific embryonic antigen (SSEA)-4 and Tra-1-81. (A–D) HS293 cells frozen
using 10% DMSO in SR. (E–H) HS293 cells frozen with STEM-CELLBANKER. (I–L) HS306 cells frozen using 10% DMSO in SR. (M–P) HS306 cells
frozen with STEM-CELLBANKER.
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Karyotyping
Karyotyping of the cell lines HS293, HS306 and CHiPS-A was carried out
using the standard G-banding technique at passage 10 post-recovery. The
original passage number was for cell line HS293 passage 57, cell line HS306
passage 66 and CHiPS-A passage 16. Samples of cells were treated with
colcemid KaryoMAX (0.1 mg/ml; GIBCO) for 5 h. The medium was
removed into a centrifugation tube, and centrifuged at 50g, for 7 min. In
the meantime, the cell culture was treated with trypsin for 5 min. Super-
natants were removed after centrifugation and the trypsin-treated cells
were added to the tube and re-suspended. Pre-warmed 0.0375 M KCl
hypotonic solution was added to the tube and then incubated for
10 min. After further centrifugation, the cells were re-suspended in fixative
(3:1 methanol:acetic acid). Metaphase spreads were prepared on glass
microscope slides and G-banded by brief exposure to trypsin and
stained with 4:1 Gurŕs/Leishmanńs stain (Sigma). A minimum of 10 meta-
phases was analyzed and an additional 20 counted and scored for a total of
30 cells for each cell line.

Teratomas
The pluripotency of these two lines with STEM-CELL BANKER and the
same two cell lines in control condition using SR containing medium was
tested in vivo as described previously (Inzunza et al., 2005; Li et al.,
2008). In brief, exponentially growing cells from passage 10 were har-
vested from the culture plate using mechanical splitting. Five colonies
(103–104 hESCs) were washed twice in PBS and put in a 1.5 ml collection
tube with 80 ml SR culture media, and subsequently implanted beneath the
testicular capsule of a young (7-week-old) severe combined immunodefi-
ciency/beige mouse (C.B.-17/GbmsTac-scid-bgDF N7, M&B, Ry,
Denmark). Teratoma growth was determined by palpation every week,
and the mice were sacrificed (cervical dislocation) 8 weeks after implan-
tation. The teratoma was fixed, and sections were stained with hematox-
ylin and eosin. The presence of tissue components of the three embryonic
germ cell layers was analyzed in the stained sections (Inzunza et al., 2005).
All animal experiments were performed at the specific pathogen free
animal facility of Karolinska University Hospital in accordance with Ethics
Committee approval.

Statistics
x2 test and Student’s t-test were used for the differences between the
number of surviving colonies. A P , 0.05 was considered significant.

Results

Characterization of hESCs after
cryopreservation
The survival of the cells as determined by cell count, colony formation
and live/dead assay is shown in Table I. The proportion of surviving
hESC in the lines HS293 and HS306 were 93 and 96%, respectively,
and that of the iPSC line CHiPS-A 90% when using STEM-
CELLBANKER together with the recovery solution CELLOTION.
When we used the conventional slow freezing with the hESC
culture medium (DMEM/F12 supplemented by SR), only about 50%
of the cells survived. The ratio of numbers of frozen/thawed colonies
differed widely between the two freezing methods (Table I).

The number of surviving hESCs and colonies post-thawing was
much higher than the number originally frozen (Fig. 1B), The expla-
nation is that the colonies break during freezing–thawing, and this
results in small pieces from the original colonies surviving as
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independent colonies, which gives the higher colony formation post-
thawing. This does not seem to occur with the standard procedure
using 10% DMSO in SR medium. By counting the cells directly after
thawing before plating them onto fresh feeder cells, using eosin red,
we saw that cells originally frozen had survived the freezing procedure.
Adding a ROCK-inhibitor Y-27 632 to the freezing medium and to the
plating medium after cryopreservation did not change the survival of
the CHiPS-A cells. The morphological differences of the colonies
frozen with the different methods are shown in (Fig. 2A–C). Frozen
hESCs, using STEM-CELLBANKER, had a more typical stem cell mor-
phology than those frozen using the standard method (SR medium
supplemented with DMSO). Immunocytochemistry showed that colo-
nies obtained after cryopreservation with STEM-CELLBANKER
expressed the surface markers SSEA-4, TRA-1-81 and the nuclear
marker Nanog, as did the cells frozen using the standard protocol
(Fig. 3).

The mRNA expression of Oct-4 and Nanog of the cryopreserved
hESCs, as determined by real-time quantitative PCR, confirmed main-
tenance of the undifferentiated state of the frozen–thawed cells
(Fig. 4A and B).

The analysis of the karyotypes of the hESC lines after 10 passages
showed, for both hESC lines, normal karyotypes, male 46 XY

(HS293) and female 46 XX (HS306) (Fig. 5), and 46 XY (CHiPS-A).
The cell line CHiPS-A was also karyotyped at passage 38 and was
46 XY, indicating karyotypic stability. Both hESC lines formed terato-
mas with components of the three germ layers (Fig. 6).

The number of frozen colonies versus the number of surviving colo-
nies differed significantly for both HS293 (x2 ¼ 9.616 with one degree
of freedom and two-tailed P ¼ 0.0019) and HS306 (x2 ¼ 8.801 with
one degree of freedom and two-tailed P ¼ 0.0030).

Discussion
We have successfully applied a novel freezing and thawing medium to
cryopreserve and thaw hESCs and iPSCs. The easy use of this cryopre-
servation system enables freezing of large quantities of cells for both
research purposes and clinical long-term storage. It does not require
a specific freezing apparatus, and it is easy to handle. Even though
these media have not yet undergone the good manufacturing practice
(GMP) validations, all the components are principally GMP compati-
ble, making clinical grade achievable. Reubinoff et al. had good
success with their open pulled straw vitrification protocol, which has
been widely used for years (Reubinoff et al., 2001). We have also
used the same technique for small cell samples from early hESC
lines. However, on a larger scale, this method is too time consuming
because of the small number of cell aggregates that can be frozen in
straws. In 2008, a new bulk vitrification system was described for
the first time (Li et al., 2008). In addition to the technical difficulties,
another major problem with these vitrification methods is that they
are open systems, and for clinical grade cryostorage, sterile liquid
nitrogen would be needed, requiring a specific vacuum filtration
system. The straws can of course be stored in closed vials in the
gas phase of liquid nitrogen but this does not prevent the original
contact during the vitrification procedure. Also, handling of different
vitrification solutions, together with several incubation steps, is more
likely to have technical drawbacks with the bulk vitrification method,
rather than with this new easy and safe method that has fewer
crucial steps.

Previously, freezing stem cells with only permeating cryoprotectants
have been used. For other cell types, such as red blood cells
(Meryman 2007), embryos (Saha and Suzuki, 1997; Kuleshova et al.,
2001) and human oocytes (Liebermann et al., 2003), a combination
of both permeating and non-permeating cryoprotectants have been
widely and successfully used. We recently used polyvinylpyrrolidone
(PVP) in combination with permeating cryoprotectants in vitrification
of human ovarian tissue with good success (Keros et al., 2009).
Many polymers, such as Ficoll, polyvinyl alcohol, PVP, dextran and
hydroxyethyl starch (Franks et al., 1977; Wowk et al., 2000), have
been used for many cell types. We have now demonstrated the effi-
cacy of a freezing solution containing both non-permeating and per-
meating cryoprotectants in freezing and thawing of hESC and iPSC.
The system is a fully defined, easy-to-use and xeno-free protocol for
cryopreservation that is GMP compatible. The method resulted in sig-
nificantly higher survival rates of the cells, for both hESCs and iPSCs
than the previously reported slow freezing or vitrification systems,
which are based on permeating cryoprotectants only. With this new
freezing–thawing procedure, more than 90% of the cells survived,
maintained their pluripotency, had normal karyotype and showed a
good capacity to grow, without delays, after thawing. When compared

Figure 4 Expression of OCT-4 and Nanog with real-time quanti-
tative PCR. Error bars ¼ standard derivation. (A) Relative con-
centration OCT-4. HS293 and HS306 frozen with STEM-
CELLBANKER have an almost equal expression of OCT-4, whereas
HS293 cells frozen with 10% DMSO have an OCT-4 expression
that is twice as high as HS306 frozen with 10% DMSO. (B) Both
HS293 and HS306 with STEM-CELLBANKER have a clear Nanog
expression, which is significantly stronger in HS306. The controls
had a lower expression of Nanog.
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Figure 5 Karyotype. (A) Control line HS293 frozen with 10% DMSO in SR medium show a normal male karyotype 46 XY. (B) HS293 frozen with
STEM-CELLBANKER and thawed with CELLOTION has a normal male karyotype 46 XY. (C) HS306 frozen with 10% DMSO in SR medium has a
normal female karyotype 46 XX. (D) HS306 frozen with STEM-CELLBANKER and thawed with CELLOTION has a normal female karyotype 46 XX.

Figure 6 Histological analysis of teratoma formed after implanting hESCs into a severe combined immunodeficiency mouse. The teratomas was
fixed, and sections were stained with hematoxylin and eosin (A–C) Area of a teratoma with prominent formation of primitive renal components.
In (A), the renal component is marked with K and small cartilaginous island with C. (B and C) Higher magnifications of kidney formation. Primitive
glomeruli G are seen in (C). In (D), a low power overview illustrates a cell dense area of a teratoma containing diverse structures, among them neu-
roepithelium NE which is highlighted in (E). (F) A high power view of the small cartilage island seen in (A) with an adjoining epithelial lined lumen
compatible with a structure derived from endoderm.
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with the freezing procedure using 10% DMSO in SR medium, where
only 50% of the cells survived, this easy to use efficient freezing
system offers an excellent option for banking of human pluripotent
cell lines.
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