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Abstract

Background

Repetitive Transcranial Magnetic Stimulation [rTMS] is increasingly being used to treat

Major Depressive Disorder [MDD]. Given that not all patients respond to rTMS, it would be

clinically useful to have reliable biomarkers that predict treatment response. Oxidized phos-

phatidylcholine [OxPC] and some oxylipins are important plasma biomarkers of oxidative

stress and inflammation. Not only is depression associated with oxidative stress, but rTMS

has been shown to have anti-oxidative effects.

Objectives

To investigate whether plasma oxolipidomics profiles could predict treatment response in

patients with treatment resistant MDD.

Methods

Fourty-eight patients undergoing rTMS treatment for MDD were recruited along with nine

healthy control subjects. Plasma OxPCs and oxylipins were extracted and analyzed through

high performance liquid chromatography coupled with mass spectrometry. Patients with a

Hamilton Depression Rating Scale score [Ham-D]�7 post-treatment were defined as hav-

ing entered remission.

Results

Fifty-seven OxPC and 32 oxylipin species were identified in our subjects. MDD patients who

entered remission following rTMS had significantly higher pre-rTMS levels of total and frag-

mented OxPCs compared to non-remitters and controls [one-way ANOVA, p<0.05]. How-

ever, no significant changes in OxPC levels were found as a result of rTMS, regardless of
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treatment response [p>0.05]. No differences in plasma oxylipins were found between remit-

ters and non-remitters at baseline.

Conclusion

Certain categories of OxPCs may be useful predictive biomarkers for response to rTMS

treatment in MDD. Given that elevated oxidized lipids may indicate higher levels of oxidative

stress and inflammation in the brain, patients with this phenotype of depression may be

more receptive to rTMS treatment.

Introduction

Major Depressive Disorder [MDD] is a debilitating psychiatric condition that has a lifetime

prevalence of 20.6% [1]. Over 300 million people are affected by depression and it is the lead-

ing cause of disability worldwide [2]. MDD increases the risk of developing diabetes mellitus,

heart disease and stroke, further contributing to the burden of disease [3].

The role of oxidative stress as a potential cause for MDD is beginning to gain more traction

in the research world [4]. Oxidative stress occurs when there is an imbalance between oxidant

and antioxidant processes in the body [5]. Reactive oxygen species [ROS] are one major source

of oxidative stress, produced as by-products from normal cellular respiration [6]. Excessive

ROS can react with many biological molecules, including lipids, proteins and DNA, causing

lipid peroxidation, protein cleavage and DNA mutation [6]. Brain cells are highly vulnerable

to oxidative stress because the brain is composed of at least 40% lipids, consumes 20% of total

body oxygen, and has low anti-oxidant defences [4, 7–9]. Several studies have proposed that

increased oxidative stress may be a contributing factor in the pathogenesis of MDD [10–12].

Patients with MDD have higher levels of certain oxidative stress biomarkers, including F2-iso-

prostanes and 8-OH 2-deoxyguanosine [8-OHdG] [13].

Oxidized phosphatidylcholines [OxPCs] are one of the most abundant and well known clas-

ses of the oxidized phospholipids [OxPLs] [14]. When phosphatidylcholine [an important

building block of cell membranes] is oxidized, a heterogenous pool of end-products are

formed, including fragmented and non-fragmented OxPCs [Fig 1a] [15]. Thus, OxPCs repre-

sent an important set of oxidative stress biomarkers and can cause organ damage at high levels.

While some research has been done on the relationship between depression and oxidative

stress, to our knowledge, no study has yet examined the OxPC profile in patients with MDD

[13].

Inflammation is another biological process that has been linked to the development of

depression [11]. Oxylipins are a class of highly bioactive molecules that are known to play a

role in inflammation [16]. Oxylipins are oxidation products formed from polyunsaturated

fatty acids [PUFAs] by 3 main enzymes, including cyclooxygenase [COX], lipoxygenase [LOX]

and cytochrome P450 [CYP] [Fig 1b], although some are derived non-enzymatically. While

some oxylipins are thought to be anti-inflammatory, others show pro-inflammatory character-

istics and are therefore thought to be implicated in MDD [11]. This suggests oxylipin levels

and profiles may be altered in certain patients with depression.

Repetitive Transcranial Magnetic Stimulation [rTMS] is a relatively new treatment option

that was approved by the FDA in 2008 for the treatment of MDD [17]. Response rates to rTMS

are reported to be between 45 and 60%, with remission rates ranging from 30 to 40% [18].

Why certain patients respond to rTMS, while others do not, remains largely unknown. Given
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this variable response to rTMS, as well as its expensive and time-consuming nature, it would

be clinically useful to have reliable biomarkers that predict treatment response. An ideal bio-

marker would be one that links the possible treatment mechanism of rTMS to an underlying

pathophysiology of depression. Interestingly, rTMS has been shown to reduce oxidative stress

and inflammation in the brain [19–22].

Lipidomics represents a promising approach to identify new diagnostic biomarkers in the

context of MDD. As lipids are able to cross the blood-brain barrier, products of oxidative stress

and inflammation in the brain can be measured through lipidomics analysis of blood plasma

[23]. We performed exploratory analyses to achieve three objectives. First, to determine if pre-

rTMS oxolipidomics profile [OxPCs and oxylipins] differed between MDD patients who

entered remission after rTMS and those who did not. Our second objective was to see if there

were differences in OxPC profiles before and after a course of rTMS, and if these differences

corresponded to clinical changes in depressive symptoms. Our third objective was to deter-

mine if OxPC profiles differed between subjects with MDD and non-depressed controls.

Fig 1. A] Non-enzymatic oxidation of membrane phospholipids. Free radicals may attack membrane phospholipids such as PAPC, leading

to the production of bioactive lipid molecules. Abbreviations: PAPC-OOH, PAPC hydroproxide; OxPC, oxidized phosphatidylcholine;

PEIPC, 1-palmitoyl-2-[5,6-epoxyisoprostane E2]-sn-glycero-3-phosphocoline. B] Enzymatic oxidation of membrane phospholipids. Fatty

acids are released from the membrane phospholipid by the phospholipase A2 enzyme and may undergo oxidation through three oxidation

pathways including COX, LOX, and CYT P450. Abbreviations: COX, cyclooxygenase; LOX, lipoxygenase; CTYP450, cytochrome P450;

HETE; hydroxyeicosatetraenoic acids; EET, epoxyeicosatrienoic acids.

https://doi.org/10.1371/journal.pone.0246592.g001
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Methods and materials

Patient recruitment and sample size

Fourty-eight patients undergoing rTMS treatment for MDD were recruited along with nine

control subjects. Recruitment took place from June 2015 to July 2018. Control participants,

aged 18–80, were recruited through advertising flyers posted at research institutes in Winni-

peg. Healthy controls were screened by research staff prior to participation for any current or

prior diagnosis of depression, as well as the list of exclusion criteria described for patients.

Informed consent was obtained prior to initiation of study procedures. Non-depressed con-

trols were screened and excluded if they had any active psychiatric diseases. Patients were

recruited from the pool of rTMS referrals to the Neuromodulation and Neuropsychiatry Unit

at St. Boniface Hospital. Eligible candidates were identified by the participating psychiatrist.

Eligible subjects were patients with a major depressive episode between 18–80 years old who

were not actively receiving psychotherapy or electroconvulsive therapy [ECT]. Subjects were

excluded if they had a history of a psychotic episode, neurological illness, traumatic brain

injury, active alcohol or substance abuse, seizure disorder or were pregnant. The total sample

size was 57 [including controls] for the OxPC analysis, while the sample size for oxylipin analy-

sis was 46. The study was approved by the ethics committee of both the University of Manitoba

[HS18975] and the St. Boniface Hospital [RRC/2015/1449] research ethics boards. Written

informed consent was obtained from patients prior to their inclusion in the study.

rTMS treatment

Patients referred to this clinic were screened by a psychiatric nurse for the standard exclusion

criteria for rTMS therapy: metal in the body, a family or personal history of epilepsy, brain

tumor, or any other major neurological disorder. Patients were given a full psychiatric inter-

view by the Unit psychiatrists before treatment, which included screening for disease-specific

exclusion criteria such as psychotic depression, active suicidal ideations, Persistent Depressive

Disorder with no significant remission, and previous failure to ECT and/or rTMS therapy. All

eligible candidates met Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition
[DSM-5] diagnostic criteria for MDD and did not have active substance use disorder or any

past or current primary psychotic disorders [24]. Patients scheduled to receive rTMS in this

clinic were required to keep a stable medication regimen [no changes in medication or dosage]

for four weeks before the start of rTMS and to maintain this stability for the duration of treat-

ment. The 17-item Hamilton Rating Scale for Depression [Ham-D] was administered to MDD

subjects by the treating psychiatrists within 1 week before the first session of rTMS and then

again after every 10 sessions of treatment to monitor changes in symptoms [25]. After 20 ses-

sions, patients were discontinued from treatment if they showed no change [or a worsening]

of Ham-D score from baseline. rTMS was delivered via Rapid2 magnetic stimulator [Magstim

Co., UK]. The majority of patients received either high-frequency or theta-frequency rTMS

protocol as part of their treatment, which targets the left dorsolateral pre-frontal cortex

[DLPFC] as determined by the high-resolution 3-dimensional [3D] T1-weighted MRI scans

using BrainSight navigator [Rogue Research Inc.QC]. Three patients received low-frequency

protocol rTMS which targets the right DLPFC. All protocols involved a total of 30 sessions

over 15 consecutive working days at 110% of motor-threshold. Each session in high frequency

protocol involved 50 short trains of magnetic pulses, each of which consisted of 60 pulses with

a frequency of 10 Hz [for a total of 3000 pulses in one session], with 25-second intervals

between stimulation trains. Each session in theta protocol involved 30 trains of pulses, each of

which consisted of 10 bursts at 5Hz of 3 pulses each at 50Hz [for a total of 900 pulses/session],
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with 10-second inter-train intervals. Each session in low frequency protocol involved 20 trains

of magnetic pulses, each of which consisted of 60 pulses at 1Hz [for a total of 1200 pulses/ses-

sion] with 30-second inter-train intervals. After rTMS treatment, patients were classified as

either remitters or non-remitters based on their post-treatment Ham-D score. Regardless of

baseline scores, patients were classified as entering remission if their post-treatment Ham-D

score was 7 or less, a number widely accepted within the medical and research community as

indicative of MDD remission [26].

Sample collection

Fasting blood samples [10ml] were drawn from subjects on two occasions: i] within one week

prior to rTMS treatment and ii] at the end of rTMS treatment. Blood was drawn in sodium

EDTA tubes and plasma was obtained from whole blood via centrifugation for 15 min at 2500

rpm. Plasma samples were capped and stored at −80˚C until lipid extraction was performed.

For control patients, fasting blood [10 ml] was drawn on one occasion as they did not receive

rTMS treatment.

Blood sample analysis

OxPCs from plasma were extracted by a method using 2:1 [vol/vol] chloroform:methanol

[CM] previously described by Folch et al. with modifications [27]. Briefly, 850 μL of CM con-

taining 0.01% butylated hydroxytoluene [BHT] was added to 100μL plasma, along with 100 μL

of an internal standard, 9:0 phosphatidylcholine [PC 0.1 μg/ml]. Ninety microliters of PBS was

then added to this mixture, which were then centrifuged at 4˚C for 5 min at 2500 rpm. The

lower lipid phase was extracted, while the remaining aqueous phase was re-reconstituted in

600 μL of ice cold chloroform. This process of centrifugation and lipid extraction was then

repeated twice more. The organic phase was evaporated under a nitrogen evaporator and then

re-dissolved in 100 μL of Solvent A [water-acetonitrile-formic acid [63:37:0.02; v/v/v]] prior to

immediate LC-MS analysis. For the oxylipin extraction, 200 μL of plasma was spiked with

100 μL of oxylipin internal standard and 100 μL of antioxidant cocktail [0.2 mg/ml BHT, 0.2

mg/ml EDTA, 2 mg/ml triphenylphosphine, 2 mg/ml indomethacin in a solution of 2:1:1

methanol:ethanol:H2O]. Samples were acidified to pH3 prior to centrifugation at 4˚C for 10

min. Oxylipins were extracted using Strata X SPE 60mg/3ml columns [Phenomenex, Tor-

rance, CA]. Columns were washed with 3.5 ml of 100% methanol followed by 3.5 ml of pH3

water. The sample was then added to the column and the vials were washed with 1 ml of 10%

methanol in pH3 water, re-centrifuged for 5 min, and re-applied to the columns. The columns

were washed with 2 ml of pH3 water and dried with 1 ml hexane. The oxylipins were eluted

with 1 ml methanol and the eluent was dried under nitrogen gas and re-dissolved in 100 μL of

Solvent A [water-acetonitrile-acetic acid [70:30:0.2; v/v/v]] for immediate LC-MS analysis.

High performance liquid chromatography and mass spectrometry

The separation and identification of OxPCs and oxylipins was carried out by reversed-phase

high performance liquid chromatography [HPLC]. For OxPC analysis, samples were placed

into a 4˚C sample tray and subsequently injected onto an Ascentis Express C18 HPLC column

[15 cm × 2.1 mm, 2.7 μm; Supelco Analytical, Bellefonte, Pennsylvania, USA] at 25˚C using a

Prominence HPLC system [Shimadzu Corporation, Canby, Oregon, USA]. The HPLC system

was coupled to a 4000 QTRAP1 triple quadrupole mass spectrometer system with a Turbo V

electrospray ion source from AB Sciex [Framingham, Massachusetts, USA]. For oxylipin anal-

ysis, evaporated samples were analysed by HPLC-MS/MS [API 4000, AB Sciex, Canada] as

described in Monirujjaman et al. [28] Chromatographic and mass spectral data was collected
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using Analyst1 Software 1.6 [AB Sciex]. MultiQuant1 Software 2.1 [AB Sciex] was used to

analyze the data. Ionization intensities of both OxPC and oxylipin species were based on the

presence of the internal standard added prior to extraction. Relative amounts of the oxylipin

and OxPC species were calculated by comparing the ratio of the peak area of the lipid to its

internal standard peak area and multiplying it by the amount of internal standard present.

Fig 2 represents the HPLC chromatograms displaying the relative peak intensities of two prev-

alent OxPC compounds in the MDD and control groups. Only signals having ionization inten-

sities greater than five times the baseline noise were used for quantitation. Final results are

presented as amount of OxPC or oxylipin in nanograms per μL of plasma.

Statistical analysis

All statistical analyses were performed using SPSS Software version 24 [IBM Corporation,

Armonk, NY, USA]. Significant changes were denoted when P<0.05. For demographics data,

age differences between remitters, non-remitters and controls was analyzed using an analysis

of variance [ANOVA] with Tukey post-hoc tests, while gender was assessed with a Fisher

Exact Probability Test with Freeman Halton extension. Co-morbidities and treatment type

Fig 2. Multiple Reaction Monitoring [MRM] chromatogram of 2 fragmented OxPCs, [A] POVPC and [B]

PONPC, in an MDD [black line] and control [dotted line] subject as measured by reverse phase HPLC-MS/MS.

Abbreviations: POVPC, 1-palmitoyl-2-[5’-oxo-valeroyl]-sn-glycero-3-phosphocholine; PONPC,1-palmitoyl-2-[9’-oxo-

nonanoyl]-sn-glycero-3-phosphocholine.

https://doi.org/10.1371/journal.pone.0246592.g002
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differences between remitters and non-remitters was assessed with Chi-Square analysis, while

pre and post Ham-D scores were compared with an Independent Samples T-test. An Indepen-

dent Samples T-test was used to compare OxPCs in MDD subjects and controls, as well as oxy-

lipins between remitters and non-remitters. Statistical analysis for baseline OxPC differences

between remitters, non-remitters and controls was determined using a one-way ANOVA fol-

lowed by Tukey post hoc tests. A Paired Samples T-test was used to compare pre and post-

treatment OxPCs in all MDD subjects, as well as separately in remitter and non-remitter

groups. Only 38 MDD subjects received a follow up blood draw post-rTMS treatment, thus

subjects without post-rTMS values were excluded entirely from the pre/post analysis.

Results

Demographics

Demographics and clinical information is summarized in Table 1. Post-rTMS treatment, 22

patients were classified as remitters and 26 as non-remitters. Remitters and non-remitters

were well matched in terms of gender and age. While no statistically significant differences

were found between any groups in terms of gender [p = 0.237], it should be noted that the con-

trol group did have eight females and one male. Further, age was significantly lower in control

subjects compared to both remitters [p = 0.046] and non-remitters [p = 0.009]. Remitters

tended to have lower pre-treatment [p = 0.035] and post-treatment [p = 0.000] Ham-D scores.

Remitters and non-remitters did not differ significantly in terms of co-morbidities or by treat-

ment type provided. Co-morbidities in the nine control subjects included one patient with dia-

betes and asthma, and another with minor pulmonary hypertension.

Baseline OxPC comparisons: MDD subjects vs. controls

Mass spectral analysis identified 57 distinct OxPCs in human plasma. These included a variety

of fragmented OxPCs [aldehydes and carboxylic acids] and non-fragmented OxPCs [terminal

Table 1. Demographics and clinical information of all subjects separated by remitter/non-remitter status and controls.

Controls Remitter Non-remitter

N 9 22 26

Age [years, mean±SD] 33.1 ± 10.5� 46.6 ± 13.7 50.5 ± 16.6

Gender [% Female] 88.9% 54.5% 57.7%

Co-morbidities [%]

Seizures 4.54% 0.0%

Hypertension 27.3% 30.1%

Heart attack 4.54% 3.8%

Stroke 0.0% 7.7%

Diabetes 4.54% 7.7%

Concussion 22.7% 23.1%

Treatment type [%]

High 27.2% 23.1%

Theta 63.6% 73.1%

Low 9.09% 3.8%%

Pre-treatment Ham-D [mean±SD] 16.3 ± 3.7� 18.7 ± 4.1

Post-treatment Ham-D [mean±SD] 4.0 ± 2.3� 14.0 ± 5.5

�p<0.05.

https://doi.org/10.1371/journal.pone.0246592.t001
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furans, isoprostanes and long chain products]. OxPC species were compared between all

MDD subjects and controls at baseline [Fig 3]. Non-fragmented OxPCs and long-chain prod-

ucts were found to be significantly higher in MDD subjects compared to controls [p = 0.006

and p = 0.003, respectively]. When MDD subjects were further separated into their respective

treatment response groups, several OxPCs were found to be lower in control subjects com-

pared to remitters, including total OxPCs [p = 0.007], fragmented [p = 0.011], non-fragmented

[p = 0.044], aldehydes [p = 0.011], long-chain products [p = 0.029] and PONPC [p = 0.010]

[Fig 4]. No significant differences were found between control subjects and non-remitters.

Fig 3. Baseline OxPC levels divided into total OxPCs with subgroups [A] and 5 specific OxPC compounds [B] compared between MDD subjects

[n = 38] and controls [n = 9]. Values are mean±SEM. � = p<0.05.

https://doi.org/10.1371/journal.pone.0246592.g003

Fig 4. Baseline OxPC levels divided into total OxPCs with subgroups [A] and 5 specific OxPC compounds [B] compared between MDD subjects

who entered remission after rTMS [n = 22] and control subjects [n = 9]. Values are mean+SEM. � = p<0.05.

https://doi.org/10.1371/journal.pone.0246592.g004
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Baseline OxPC comparisons: Remitters vs. non-remitters

Pre-rTMS OxPC levels were compared between remitters and non-remitters [Fig 5]. Total

OxPC was found to be significantly higher in remitters compared to non-remitters at baseline

[p = 0.009]. When further divided into OxPC sub-groups, remitters had significantly elevated

fragmented OxPCs [p = 0.013], aldehydes [p = 0.015] and carboxylic-acids [p = 0.028]. The

two specific OxPCs that were significantly higher in remitters compared to non-remitters were

PONPC [p = 0.019] and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine [PAzPC]

[p = 0.040].

Pre- to post-OxPC changes based on treatment response

MDD subjects showed no significant changes in OxPC levels after treatment with rTMS.

When MDD subjects were separated into their treatment response groups, there were no sig-

nificant changes in OxPC levels after rTMS treatment in remitters [Fig 6], nor in non-remit-

ters [Fig 7].

Baseline oxylipin comparisons: Remitters vs. non-remitters

Mass spectral analysis identified 32 distinct oxylipin species in human plasma of remitters and

non-remitters before rTMS treatment (Table 2). When comparing pre-rTMS oxylipin values,

no significant differences were found between remitters and non-remitters in any of the com-

pounds identified. Based on the lack of differences at baseline, post-rTMS values were not

analyzed.

Discussion

This is the first study to compare enzymatic and non-enzymatic oxolipidomics profile between

non-depressed control subjects and patients with MDD before and after rTMS treatment. Our

study revealed that MDD subjects had higher pre-rTMS levels of certain OxPC subgroups

when compared to non-depressed controls. As OxPCs are known to be both biomarkers and

Fig 5. Baseline OxPC levels divided into total OxPCs with subgroups [A] and 5 specific OxPC compounds [B] compared between MDD remitters

[n = 22] and non-remitters [n = 26]. Values are mean+SEM. � = p<0.05.

https://doi.org/10.1371/journal.pone.0246592.g005
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mediators of oxidative stress, our results support the growing body of evidence that oxidative

stress, and associated inflammation, may be a contributing factor to the pathophysiology of

MDD [10, 29]. For example, fragmented OxPCs are biologically active molecules that can be

recognized by the innate immune system via toll-like receptors, scavenger receptors and natu-

ral antibodies [14, 30]. Further, OxPCs can cause a variety of harmful effects on the brain and

body, including neuroinflammation, apoptosis and altered neurotransmitter metabolism [31].

A recent meta-analysis highlighted how individuals with MDD show elevated levels of oxida-

tive stress and decreased anti-oxidants in the brain post-mortem [4]. Moreover, oxidative

stress is known to have inhibitory effects on neurogenesis, and as clinical depression is associ-

ated with decreased gray-matter volume in multiple brain regions, this provides a biological

Fig 6. OxPC levels divided into total OxPCs with subgroups [A] and 5 specific OxPC compounds [B] compared between MDD remitters pre-

rTMS [n = 21] and post-rTMS [n = 21]. Values are mean+SEM.

https://doi.org/10.1371/journal.pone.0246592.g006

Fig 7. OxPC levels divided into total OxPCs with subgroups [A] and 5 specific OxPC compounds [B] compared between MDD non-remitters pre-

rTMS [n = 17] and post-rTMS [n = 17]. Values are mean+SEM.

https://doi.org/10.1371/journal.pone.0246592.g007
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mechanism for how inflammation and oxidative stress may contribute to clinical depression

[32, 33]. Additionally, chronic low-grade inflammation and pro-inflammatory cytokines can

affect many physiological domains relevant to depression, such as the induction of sickness

behavior and fatigue [34]. Further, OxPCs play a crucial role in the development of atheroscle-

rosis, and since depression and cardiovascular disease are highly co-morbid diseases, this sug-

gests the two may share common underlying pathologies [3, 16].

Importantly, the present study’s finding that when separated into their respective treatment

response groups, only MDD remitters, and not non-remitters, differed from controls, supports

the theory that only certain cases of MDD may have underlying oxidative stress and inflamma-

tion. Indeed, the literature supports that the association between inflammation, oxidative stress

and depression is not consistent among all forms of MDD. Hickman et al. found that the

Table 2. Mean values [±SEM] of all oxylipin species [ng/ul] identified in remitters [n = 21] and non-remitters [n = 25] before rTMS treatment.

Oxylipin species Pathway FA Remitter Non-remitter

11,12 DiHETrE CYP AA 0.21 ± 0.02 0.24 ± 0.02

14,15 DiHETrE CYP AA 0.26 ± 0.02 0.30 ± 0.02

19,20 DiHDoPE CYP DHA 0.11 ± 0.01 0.13 ± 0.01

5,6 DiHETrE CYP AA 0.02 ± 0.00 0.02 ± 0.01

12,13 diHODE CYP LA 1.18 ± 0.17 1.19 ± 0.19

12,13 diHOME CYP LA 22.40 ± 4.82 21.84 ± 5.00

12,13 EpODE CYP LA 0.21 ± 0.03 0.22 ± 0.04

12,13 EpOME CYP LA 3.82 ± 0.71 4.47 ± 1.27

15,16 EpODE CYP LA 1.01 ± 0.20 1.17 ± 0.30

9,10 diHOME CYP LA 26.86 ± 4.2 20.54 ± 2.9

9,10 EpOME CYP LA 1.19 ± 0.19 1.49 ± 0.36

9,10,13 triHOME LOX/CYP LA 19.11 ± 2.93 16.28 ± 2.60

9,12,13 triHOME LOX/CYP LA 25.15 ± 3.21 20.88 ± 3.51

13-HODE LOX LA 8.74 ± 1.81 7.58 ± 1.39

13-HOTrE LOX ALA 0.54 ± 0.08 0.69 ± 0.15

dihomo PGJ2 COX ADA 0.81 ± 0.18 1.65 ± 1.07

9-HODE LOX LA 3.88 ± 0.74 3.26 ± 0.57

9-HOTrE LOX ALA 0.71 ± 0.09 0.93 ± 0.20

20cooh AA CYP DHA 1.97 ± 0.33 1.98 ± 0.24

20-HDoHE CYP/NE LA 0.03 ± 0.00 0.04 ± 0.00

13-oxoODE LOX AA 0.19 ± 0.05 0.15 ± 0.02

15-oxoETE LOX LA 0.02 ± 0.00 0.03 ± 0.01

9-oxoODE LOX AA 0.34 ± 0.07 0.28 ± 0.05

11-HETE NE/COX/LOX AA 0.15 ± 0.03 0.17 ± 0.02

Tetranor 12-HETE LOX AA 0.19 ± 0.02 0.16 ± 0.03

15-HETE LOX DGLA 0.09 ± 0.04 0.07 ± 0.01

15-HETrE LOX DHA 0.26 ± 0.22 0.07 ± 0.01

16-HDoHE LOX AA 0.08 ± 0.02 0.07 ± 0.01

16-HETE CYP DHA 0.06 ± 0.04 0.03 ± 0.01

4-HDoHE LOX AA 0.08 ± 0.01 0.10 ± 0.02

5-HETE LOX AA 0.15 ± 0.03 0.13 ± 0.02

8-HETE LOX DHA 0.09 ± 0.02 0.09 ± 0.01

Abbreviations: FA = Fatty acid precursor, LOX = lipoxygenase, CYP = cytochrome p450, NE = non-enzymatically, ALA = alpha-linoleic acid, LA = linoleic acid,

DHA = docosahexaenoic acid, AA = arachidonic acid, DGLA = dihomo-γ-linolenic acid, ADA = adrenic acid.

https://doi.org/10.1371/journal.pone.0246592.t002
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inflammatory marker CRP was elevated only in patients with atypical depression. Similarly,

atypical depression showed elevated markers of inflammation and metabolic dysregulation

compared to melancholic depression [34]. Moreover, only in certain subgroups of MDD, par-

ticularly ones with elevated peripheral inflammatory markers, are depressive symptoms allevi-

ated with treatments such as non-steroidal anti-inflammatories [NSAIDS] and anti-TNF

medications [35]. While lifestyle factors such as smoking, alcohol use and BMI likely contrib-

ute to differences in inflammation and oxidative stress among depressed patients, a meta-anal-

ysis done on the relationship between oxidative stress and depression maintains that there is

an association that persists independent of these lifestyle variables [4].

The primary objective of this study was to determine if there were differences in oxolipido-

mics profile between people who entered remission after rTMS and those who did not. Our

exploratory analyses showed that remitters had significantly higher levels of OxPCs than non-

remitters before treatment. Overall, it appears that patients with MDD who have higher levels

of oxidative stress, as revealed by OxPC biomarker analysis, tend to enter remission after

rTMS more so than individuals with lower levels of oxidative stress. While a recent review did

highlight various other factors that have been associated with a positive response to rTMS,

including higher metabolic activity of the left DLPFC, improved connectivity between the

DLPFC and striatum, high anterior cingulate cortex volume, and lower baseline glutamate lev-

els, to our knowledge, no other studies have investigated oxidative stress as a predictor of

rTMS response [36].

Additionally, our OxPC results contribute to the growing body of knowledge in how rTMS

may be working to alleviate depressive symptoms. Studies using animal models have shown

that rTMS has a variety of effects on the brain, including increases in NMDA-receptor density,

brain-derived neurotrophic factor [BDNF], regional cerebral blood flow, dopamine, serotonin,

activation and migration of astrocytes, as well as decreases in brain cortisol levels and apopto-

tic markers [37, 38]. However, many studies have noted that rTMS also works to reduce oxida-

tive stress and inflammation in the brain [19–22]. In rats with oxidatively stressed brains,

rTMS increased the antioxidants glutathione [GSH], GSH-peroxidase and catalase, as well as

decreased lipid peroxidation products [19]. In patients with Parkinson’s Disease, rTMS

reduced plasma pro-inflammatory cytokines INF-y and IL-17a [20]. Importantly for the pres-

ent study, preliminary in vitro studies have shown that magnetic stimulation can have a protec-

tive effect against oxidative stress, suggesting that oxidative stress may be targeted by rTMS as

part of its therapeutic effect [19]. If individuals who enter remission have higher baseline oxi-

dative stress, perhaps their depression is, in part, attributable to elevated levels of oxidative

stress, and rTMS is functioning to reduce it. In other words, rTMS may work better in individ-

uals with high levels of oxidative stress and inflammation since it has this added biological

mechanism to function through.

In fact, several studies have hypothesized that inflammation may be one reason some indi-

viduals don’t respond to conventional antidepressant treatments. For example, Lindqvist et al.

looked at F2-isoprostanes and 8-OHdG as predictors of treatment response to SSRIs [29]. The

study found that F2-isoprostanes were higher in non-responders compared to responders.

These results are opposite to the findings of the present study, where oxidative stress was

higher in treatment responders. However, this is actually concordant with the present study’s

results, reinforcing the established evidence that rTMS may work to treat depression through

different mechanisms than classic pharmacotherapies like SSRIs [38]. This may explain why

individuals with treatment resistant depression can be helped by rTMS even after failing multi-

ple courses of antidepressants. Indeed, much research has linked inflammation, and by exten-

sion oxidative stress, to antidepressant treatment non-responsiveness [39].
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Interestingly, no differences in any oxylipins were found between remitters and non-remit-

ters. Thus, it appears the biochemical variations found to be different among these two groups

is primarily due to non-enzymatic processes, as oxylipins [unlike OxPCs] are produced enzy-

matically. Another potential reason for the lack of oxylipin differences is that patients were not

asked to fast prior to blood draws or report recent medication consumption such as non-ste-

roidal anti-inflammatories [NSAIDS]. Both of these factors can cause alterations in oxylipin

metabolism and profiles.

Irrespective of clinical response, no changes in OxPC levels were detected as a result of

rTMS treatment. There are several possible reasons for the lack of change in OxPCs post-

rTMS. OxPCs only represent one set of biomarkers for oxidative stress [14]. Thus, it is possible

rTMS may have diffuse and widespread effects on the brain that are too difficult to detect by

solely examining OxPCs. A second reason may be that brain changes in oxidative stress lipid

profiles are not transmitted to the plasma immediately after finishing treatment. Blood draws

were performed either immediately or within 24 hours of finishing rTMS treatment; thus, it is

possible that changes occurring within the brain were not detectable yet as free OxPCs in

plasma.

There are several limitations to the present study. First is the small sample size of control

subjects compared to MDD subjects. Due to this small sample size, OxPC values of healthy

controls may not be completely representative of the larger population. Further, control sub-

jects were significantly younger than MDD patients. As oxidative stress increases with age, this

is a potential confounding factor to our results [40]. Secondly, metabolic data including

BMI, smoking status and alcohol use was not recorded for any subjects. Oxidative stress and

inflammation are intimately related with these factors and would ideally be controlled for

in statistical analyses. Having said that, no significant differences were found in the co-

morbidities that were reported between remitters and non-remitters. Thirdly, many non-

remitter subjects refused follow up blood draws after rTMS treatment. This resulted in a

slightly smaller sample size when pre- and post-treatment analyses were conducted, potentially

resulting in non-statistically significant results. Lastly, almost all MDD subjects were on a vari-

ety of psychotropic medications during rTMS, which may have effects on oxidative stress

biomarkers.

Conclusions and future directions

The heterogeneity in treatment response and biochemical variations in patients with MDD, as

well as the association between rTMS and the reduction of oxidative stress, was the reason for

investigating patient oxolipidomics profile in prediction of treatment response to rTMS. Our

findings are consistent with the growing body of research that certain subgroups of MDD

exhibit elevated levels of oxidative stress and inflammation [35, 41]. Additionally, MDD

patients with higher levels of oxidative stress, as revealed by OxPC biomarker analysis, appear

to respond better to rTMS than those with lower levels of oxidative stress. Perhaps, patients

with this phenotype of depression may be more receptive to rTMS treatment. In the future,

with larger scale studies and predictive-type analyses, OxPC and lipidomics analysis may be

able to predict who will respond to rTMS through a simple blood test. Not only would this

would drastically decrease wait times for rTMS, but also would reduce healthcare costs wasted

on ineffective treatment methods. Additionally, larger scale studies with stricter fasting criteria

should be conducted to examine differences in oxylipin profiles between MDD patients, both

pre and post-rTMS, and control subjects. Conducting more research of this nature, geared

towards precision and personalized medicine, will only further improve the lives of patients

and the healthcare system at large.
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