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Abstract
Selecting appropriate diagnostic methods that take account of the type of vaccine 
used is important when implementing a vaccination programme against highly 
pathogenic avian influenza (HPAI). If vaccination is effective, a decreased viral load 
is expected in the samples used for diagnosis, making molecular methods with 
high sensitivity the best choice. Although serological methods can be reasonably 
sensitive, they may produce results that are difficult to interpret. In addition to rou-
tine molecular monitoring, it is recommended to conduct viral isolation, genetic 
sequencing and phenotypic characterisation of any HPAI virus detected in vac-
cinated flocks to detect escape mutants early. Following emergency vaccination, 
various surveillance options based on virological testing of dead birds (‘bucket 
sampling’) at defined intervals were assessed to be effective for early detection of 
HPAIV and prove disease freedom in vaccinated populations. For ducks, virological 
or serological testing of live birds was assessed as an effective strategy. This sur-
veillance could be also applied in the peri- vaccination zone on vaccinated estab-
lishments, while maintaining passive surveillance in unvaccinated chicken layers 
and turkeys, and weekly bucket sampling in unvaccinated ducks. To demonstrate 
disease freedom with > 99% confidence and to detect HPAI virus sufficiently early 
following preventive vaccination, monthly virological testing of all dead birds up 
to 15 per flock, coupled with passive surveillance in both vaccinated and unvacci-
nated flocks, is recommended. Reducing the sampling intervals increases the sen-
sitivity of early detection up to 100%. To enable the safe movement of vaccinated 
poultry during emergency vaccination, laboratory examinations in the 72 h prior 
to the movement can be considered as a risk mitigation measure, in addition to 
clinical inspection; sampling results from existing surveillance activities carried out 
in these 72 h could be used. In this Opinion, several schemes are recommended to 
enable the safe movement of vaccinated poultry following preventive vaccination.
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SUM MARY

Background and Terms of Reference

During the past three highly pathogenic avian influenza (HPAI) epidemiological years, multiple HPAI virus subtypes have 
co- circulated in Europe, particularly in the autumn and winter months. The virus has been increasingly detected in migra-
tory waterfowl birds, resulting in an increased risk of infection in poultry. Therefore, it is necessary to explore the potential 
of the application of vaccination of poultry in addition to the already applied measures to prevent and control HPAI infec-
tions. Given this situation, the European Commission asked EFSA to:

ToR 3 – Assess suitability and effectiveness of the reinforced surveillance set out in the Delegated Regulation (EU) 
No 2023/361 and of alternative surveillance strategies to be implemented upon HPAI vaccination of poultry establish-
ments. The assessments should target, in particular, surveillance for early detection of HPAI, demonstration of freedom 
from HPAI infection, also considering WOAH standards of surveillance.
ToR 4 – Assess suitability of the restriction and risk mitigation measures set out in the Delegated Regulation (EU) No 
2023/361 and of alternatives to be applied in vaccinated establishment and zone, with the aim of preventing the spread 
of disease with the movements of vaccinated poultry and their products.

Data and Methodologies

ToR 3

Methods to assess surveillance strategies

An overview of the legal framework of the Delegated Regulation (EU) No 2023/361 was provided and alternatives were 
defined. This regulation provides rules for the implementation of surveillance during and after emergency protective 
vaccination (hereafter referred to as ‘emergency vaccination’) and preventive vaccination. The former requires labora-
tory surveillance with virological testing carried out every 2 weeks and reinforced clinical surveillance; the latter requires 
passive surveillance with weekly virological testing of a representative sample of dead birds and active surveillance with 
monthly clinical and serological/virological testing. The WOAH recommendations were also considered, which require 
all vaccinated establishments to be tested (virological and serological) to demonstrate the absence of HPAI circulation 
and the effectiveness of the vaccination programme.
Four different alternative surveillance strategies for each vaccination scenario (emergency and preventive) were consid-
ered and key attributes such as the performance indicator, sampling frequency, duration, poultry population to be sam-
pled, diagnostic methods were defined according to the objective of the surveillance, i.e. in emergency vaccination (E): 
early detection (E1), assessment of vaccination effectiveness (E2), demonstration of freedom from HPAI in a vaccinated 
establishment (E3) and demonstration of freedom from HPAI in the vaccinated zone (E4); in preventive vaccination (P): 
early detection (P1), assessment of level of immunity induced by vaccination (P2), demonstration of freedom in a vacci-
nated establishment (P3) and in the vaccinated area (P4).
Strategy E1, E3 and E4 took into account the ability to detect and remove an infected establishment before it transmits 
the infection to, on average, one or more other establishments. The between- flock reproduction number given surveil-
lance (Rs) was used as a measure of transmission and the surveillance was considered effective for early detection when 
leading to Rs < 1. Transmission parameters and case fatality for both vaccinated and unvaccinated populations (chicken 
layer, duck and turkey flocks) were previously determined in Part 1 of the Scientific Opinion on vaccination of poultry 
against HPAI; mortality at day of reporting suspicion was calculated based on daily mortality data recorded by farmers 
in the Netherlands and France. Mortality thresholds that could trigger reporting suspicion by farmers were defined 
based on available literature and the efficacy of using such thresholds for early detection was tested in this Opinion. 
By employing a deterministic compartmental SEIRD model, graphical representations were provided, illustrating the 
expected number of infectious birds over time during an outbreak and the expected daily mortality for unvaccinated 
and vaccinated flocks of chicken layers, ducks and turkeys, whereas, for the assessment, a stochastic model was used. 
It was assumed that an infected vaccinated flock would remain undetected by passive surveillance until the infectious-
ness level reaches that estimated for an unvaccinated flock and, the model considered that introduction of infection 
can take place at any moment between two adjacent sampling events. One thousand simulations of HPAI outbreaks in 
vaccinated flocks were carried out and used to quantify infectiousness of a flock given detection by passive surveillance 
only and the expected infectiousness of a flock that escapes detection by the evaluated alternative surveillance strat-
egy (this detection should take place before passive surveillance). The two values were then related to the expected 
between- flock reproduction number Rh, which was derived from the analysis of the epidemics in France, Italy and the 
Netherlands, made in Part 1 of the Scientific Opinion on vaccination of poultry against HPAI, to finally calculate the 
expected between- flock reproduction number given surveillance (Rs). Rs was defined as the reference measure to com-
pare different surveillance strategies, encompassing different sample types (live or dead birds), sizes and frequencies 
at flock level. A combination of sample size and sampling interval was considered effective only if the probability to 
escape detection reached levels lower than 0.01 for more than 95% of the outbreak simulations and Rs < 1.
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Strategies P1, P3 and P4 were assessed using scenario tree models to estimate the sensitivity of the surveillance sys-
tem to demonstrate freedom and to early detect HPAI in a preventive vaccination scenario. This analysis provides an 
estimation of the probability that the surveillance in place is capable of detecting the infection in the unit of interest, 
given a certain prior HPAIV prevalence. The tree model traces all pathways by which a single unit can be detected as 
infected by the system. It includes a number of risk nodes and probability nodes, and the ultimate outcome is the prob-
ability that the outbreak is detected (Ppos) given the sensitivity of testing at flock level (Fse).
Surveillance strategies E2 and P2 were addressed descriptively. Vaccine effectiveness, as the ability of a vaccine to 
protect from infection under field conditions, can be assessed by observation of the occurrence of HPAI outbreaks in a 
country where vaccination is implemented. Ways to assess vaccination effectiveness or determine the level of immune 
response after vaccination were proposed, specifying the data to be gathered and potential analyses for estimation.
For emergency vaccination, an assessment of the radius and of the surveillance to be done in the peri- vaccination 
zone was carried out based on data and results from a previous EFSA Opinion. The assessment of the type and duration 
of surveillance to be conducted after cessation of vaccination was based on evidence previously collected in Part 1 of 
the Scientific Opinion on vaccination of poultry against HPAI and qualitatively assessed for the current Opinion.

Diagnostic methods

The different diagnostic tests that can be used as part of HPAIV surveillance were described: classical virological meth-
ods (virus isolation), molecular virological methods (conventional RT- PCR and real- time RT- PCR (RT- qPCR)), rapid anti-
gen detection systems and serological methods (agar gel immunoprecipitation (AGID)), haemagglutination inhibition 
(HI) and ELISA technology. For each of the described methods, a qualitative assessment, according to the objective of 
the surveillance, was conducted. Serological data from experimental trials conducted on ducks, turkeys and chickens 
performed by AI- NRLs were obtained from France (ducks), Italy (turkeys), the Netherlands (chickens) and Belgium (chick-
ens). Those data were analysed with the aim to assess the HI titres in vaccinated birds according to the vaccine(s) used 
for immunisation, the HI titres in experimentally vaccinated- infected birds and the performance of the ELISA assays 
used for the detection of antibodies against the nucleoprotein (NP) in birds vaccinated with DIVA compatible vaccines 
following infection. Also, the monitoring of clinical signs and the possible use of sentinels were qualitatively assessed.

ToR  4

Risk mitigation measures

According to Delegated Regulation (EU) No 2023/361, different risk mitigation measures can be implemented following 
emergency and preventive vaccination. Following vaccination, vaccinated animals and their products are subject to 
prohibition of movement. For emergency vaccination, the competent authority may allow the movement of animals 
if these are subject to compulsory killing or if conditions for moving set out in Delegated Regulation (EU) No 2020/687 
are fulfilled. For preventive vaccination, by way of derogation, the competent authority may allow the movement of 
vaccinated animals and their products according to the conditions laid down in Delegated Regulation (EU) No 2023/361. 
EFSA assessed qualitatively those measures and identified and assessed the provision of demonstrating freedom as an 
alternative or complementary approach to guarantee a safe movement of poultry and their products.

Uncertainty analysis

The uncertainty analysis was performed following the procedure detailed in the EFSA guidance on uncertainty analysis 
in scientific assessments. The sources of uncertainty associated with the data available and the methodology used were 
listed and discussed, but their impact on the assessment was not quantified.

Assessment

ToR 3

Diagnostic methods

Sterile immunity state is the ideal outcome of an efficient vaccination campaign, but it is usually not achieved on a 
population base. However, vaccination should elevate the threshold of an individual animal to become infected and 
reduce virus excretion in amplitude and time compared to unvaccinated ones. To detect smaller amounts of virus at a 
lower prevalence, it is therefore necessary that during active surveillance of vaccinated establishments, highly sensitive 
diagnostic tests tailored to the epidemiological situation are employed.
Surveillance to detect HPAIV outbreaks or to prove freedom from disease in a vaccination zone can rely on a number of 
classical or molecular virological methods for virus detection, as well as serological methods for the detection of anti-
bodies indicating previous exposure, which can be used alone or in combination depending on the specific objective 
of the surveillance activity.
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Since vaccination may reduce the window of viral shedding and lower viral replication titres, the ability of the virological 
tests to detect viral circulation may diminish. Therefore, due to inferior sensitivity compared to molecular methods and 
the slower turnaround time, virus isolation is not recommended for screening during active surveillance in vaccinated 
flocks. It can only be considered as an alternative to molecular methods in exceptional circumstances (e.g. unavailability 
of reagents for molecular testing); it would however be essential to allow phenotypic characterisation of the virus once 
the outbreak has been confirmed by a molecular method.
Molecular techniques are generally used for HPAIV diagnosis directly from clinical specimens of birds. RT- qPCR offers 
rapid turn- around time, added cross- contamination prevention and is applicable to high throughput analysis. The out-
standing analytical sensitivity of RT- qPCR also allows pooling of clinical samples. In flocks vaccinated with live vectored 
H5 or H7 vaccines, interpretation of RT- qPCR may be compromised, since active replication of the vaccine would be taking 
place in different tissues and might return positive results to assays designed to detect the H5 or H7 specific molecular sig-
natures shared between vaccines' inserts and field viruses. To overcome this issue, specific RT- qPCRs tailored to avoid such 
interference may be required to distinguish residual vector vaccine inserts from HPAI field virus. Analysis of environmental 
samples employing the same assays could be carried out, as the effort of individual animal sampling is considerable and 
may itself provide an obstacle to vaccination, while collection of environmental samples may provide an easier handling. At 
the time of writing, however, evidence that environmental sampling could replace animal- based sampling in surveillance 
activities to guarantee early detection of HPAI outbreak at the design prevalence of 5% with 95% confidence currently fore-
seen in Delegated Regulation (EU) No 2023/361 is lacking due to a deficiency of independent systematic studies.
Next- generation sequencing (NGS) are high speed techniques that allow generation of large volumes of data and have 
many applications in research and diagnostic settings. In terms of surveillance purposes, NGS has a very high value in 
further characterisation of isolated AI viruses.
Rapid antigen detection systems are methods for the detection of viral antigen which are usually based on enzy-
matic immunoassays or immunochromatography (i.e. they use a monoclonal antibody against AIV nucleoprotein or 
other highly conserved regions of structural proteins). They produce results very rapidly and can be carried out on the 
poultry premises, but they have low sensitivity and, consequently, are prone to produce false- negative results with the 
smaller amounts of virus expected in vaccinated flocks. Therefore, they are currently not considered useful for active 
surveillance in vaccinated flocks.
The different vaccine technologies exhibit variances in their ability to stimulate preferentially humoral or cell- mediated 
immune response. The type of vaccine used for immunisation can therefore affect character and magnitude of the 
specific immune response, which in turn may affect its detectability via serological methods. At present, there are no 
scalable methods to measure cell- mediated immunity; instead, available tests are all based on antibody detection. For 
example, agar gel immunodiffusion (AGID) tests can detect the presence or absence of antibodies against any influ-
enza A viruses (since they all share antigenically similar nucleoprotein and matrix antigens) in a subtype independent 
manner. However, several reasons (e.g. restriction to certain species only, generation of qualitative results, low sen-
sitivity, virus proteins not involved in the protective immunity are targeted) limit their use for surveillance purposes. 
Thus, ELISA technology has replaced AGID as a generic serologic screening assay. Quantitative assessment of humoral 
immune response still relies on haemagglutination inhibition assays (HI). Clinical examination alone is not a reliable 
indicator in surveillance of vaccinated flocks, as it has been demonstrated that, despite the variations in protection after 
vaccination, absence of clinical signs and increase in mortality are poor indicators of viral circulation. However, in field 
conditions, a certain number of animals may show clinical signs and there may be an increase in mortality. So, these 
compromised animals deserve greater attention in surveillance investigations (i.e. bucket sampling strategies). The use 
of unvaccinated sentinels in vaccinated flocks is highly problematic, since, for correct and successful implementation, 
optimal mingling and identification of sentinels and vaccines is required, which has been proven difficult to establish in 
practice. In addition, fully susceptible sentinels may provide a door for viral entry.
Results from analysis of serological data indicate that monitoring of vaccine- induced immunity can be performed by 
HI from 3 to 7 weeks post- vaccination, if antigens antigenically close to the vaccine are used. Similarly, to assess past 
infection in immunised birds, antigens antigenically close to the field HPAI strains should be used. An increase in HI 
titres (up to 9 log2) have been observed 14 days post- infection when sera from vaccinated and PCR- confirmed infected 
animals were tested using challenge strains.
ELISA assays targeting antibodies against the nucleoprotein were evaluated in vaccine trials performed by different 
NRLs to assess their suitability for a DIVA testing. Results have showed that antibodies against the NP of HPAI become 
detectable in vaccinated and infected animals starting from 7 to 14 days post- infection in all tested species and with all 
vaccines compatible with such DIVA strategy. Diagnostic sensitivity and specificity of indirect ELISA assays have been 
found to be higher compared to those of competitive ELISA assays, and thus should be favoured if compatible with the 
species that has to be tested.

Surveillance

Surveillance results for early detection at establishment level in case of emergency vaccination (E1) are reported 
grouped by poultry species and different surveillance strategies (passive reporting, ‘mortality thresholds’ and active sur-
veillance). Different combinations of sampling type, sampling intervals and samples sizes were assessed and those leading 
to a very low probability of escaping detection, were considered effective. The surveillance strategies include sampling all 
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dead birds (up to a number of 5, 10, 15 and 20) collected within 48 h before sample submission at different sampling inter-
vals. Consequently, there is no minimum sample size: If fewer dead birds are present, all the dead birds available are tested.
For flocks ≥ 3000 chicken layers, molecular testing all dead birds up to a number of 5 every week proved to be effective 
for early detection; longer sampling intervals can be considered if higher numbers of dead birds are sampled and tested 
(up to a number of 10 every 2 weeks or 15 for a 3- week interval). For flocks < 3000 chicken layers, none of the surveil-
lance strategies assessed resulted effective. In those flocks, the level of confidence of early detection can be increased 
combining the test of all up to a number of 10 dead birds weekly, with molecular testing of live birds every 2 weeks.
For flocks of 2500 ducks, the strategy of molecular testing all dead birds up to a number of 5 every week showed to be 
effective for early detection. The strategy of virological or serological testing 60 live birds every 2 weeks would also be 
effective for early detection, together with the strategy based on ‘mortality thresholds’. In flocks of ≥ 6000 ducks, the 
strategies mentioned above would be effective, together with sampling all dead birds up to 10 every 2 weeks, or up to 
15 dead birds every 3 weeks.
For flocks of ≥ 6000 turkeys, the strategy of molecular testing all dead birds up to a number of 5, every week resulted 
effective to early detect HPAIV. Longer sampling intervals can be considered if higher numbers of dead birds are col-
lected (up to a number of 15 every 2 weeks or up to 20 for a 3- week interval). For flocks of < 6000 turkeys, the only ef-
fective surveillance strategy was based on ‘mortality thresholds’ and it should be carried out combined with molecular 
testing of live birds every 2 weeks to increase the level of confidence of early detection.
After emergency vaccination is applied and surveillance for disease freedom (E3, E4) implemented, there is a phase 
where no further outbreaks are detected. With consistently negative results at both establishment and zone level and 
a high probability of detection (> 99%) of infected flocks within an establishment, a high level of confidence of disease 
freedom would be achieved.
According to Delegated Regulation (EU) No 2023/361 surveillance in a peri- vaccination zone, during emergency pro-
tective vaccination, should be applied to detect any possible new outbreak. A previous risk assessment on control mea-
sures for Category A disease has been here used to assess the radius of the peri- vaccination zone. Based on it, a 10- km 
peri- vaccination zone radius was identified as suitable to contain the spread of the disease and avoid any jump outside 
the area with 95% confidence. In the peri- vaccination zone, the type of surveillance depends on the vaccination sta-
tus of the establishments. In preventively vaccinated farms, the surveillance strategy for early detection in emergency 
vaccination is to be applied. For non- vaccinated farms, passive surveillance for layer chickens and turkeys and weekly 
sample of available dead birds for ducks and geese applies.
Surveillance results for early detection and demonstration of freedom in preventive vaccinated populations (P1, P3, P4) 
are assessed based on simulated scenarios in the Netherlands, France and Italy. The focus is on geographical areas previously 
categorised as high- risk zones for HPAIV incursion. In these zones, coexistence of vaccinated and unvaccinated populations is 
present. The model tested active surveillance carried out in all vaccinated flocks based on monthly collection of all dead birds 
up to a number of 15, collected in the 48 h before sample submission, while passive surveillance is applied in unvaccinated 
flocks. The results indicated that the estimated probability of disease freedom (Pfree) would exceed 99% in the three evalu-
ated high- risk regions, given that all test results are negative. The model outcomes also showed that early detection surveil-
lance sensitivities (EDSe) in vaccinated flocks are higher (layer chickens and turkeys) or similar (ducks) to the EDSe of passive 
surveillance in unvaccinated flocks of the other poultry types in the regions. Scenarios with variations in sampling intervals 
(30, 15 and 7 days) and different proportions of vaccinated establishments (100%, 50% and 25%) were also explored, showing 
that EDSe increase with shorter sampling interval and decrease with smaller proportion of vaccinated establishments sam-
pled. In contrast, these changes have a limited effect on the probability of freedom of the zone (Pfree).
Surveillance can also be used to assess vaccination effectiveness (VE) (E2). Implementing vaccination at the regional 
level enables the observation of numerous vaccinated establishments, facilitating the assessment of vaccination ef-
fectiveness and its progression in time under natural exposure conditions to improve emergency preparedness. This 
approach also offers the opportunity to evaluate vaccination characteristics, such as the onset of protection after vacci-
nation and the duration of protection. The data needed to estimate VE include vaccination status of an establishment, 
date of vaccination, HPAI infection status, date of detection. Data should be collected and grouped at the smallest 
administrative area. Probabilities of infection before vaccination and at different time intervals following vaccination 
(e.g. 7, 14 and ≥ 21 days) can be then compared. During preventive vaccination, it is expected that all establishments of 
a specific poultry type have been vaccinated, so no comparison can be drawn with unvaccinated ones; nevertheless, an 
unexpected high number of outbreaks could point at vaccination failure.
Surveillance to assess the immune response induced by vaccination (P2). In the absence of virus circulation, the level 
of immunity at establishment level induced by vaccination can be measured using different serological assays aimed 
at the detection of antibodies induced by vaccination. The type of vaccine applied determines the most appropriate 
diagnostic test to monitor the immune response at flock level. The animals should be sampled at a precise time for the 
detection of a specific correlate of protection. However, the identification of a correlate of protection remains elusive. 
So, to assess the percentage of a vaccinated flock showing an ‘effective’ immune response (as an indication of ‘adequate 
protection’ and possibly of the level of herd immunity reached), a pragmatic approach was suggested. First, it should be 
defined the desired level of herd immunity. Then, a sampling approach has to be chosen, it could be the one adopted in 
the emergency vaccination plans for the control of LPAI in Italy in 2000 (currently used in France), which is based on at 
least 20 random samples per establishment. For chicken layers, ducks and turkeys, the level of immunity to be targeted 
was specified and, based on different sample sizes, it was possible to obtain different results combinations.
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After cessation of vaccination, when the last vaccine has been administered and no further vaccination plans are in place, 
a transition is expected from vaccinated flocks to unvaccinated ones at the end of each production cycle. These unvacci-
nated flocks will no longer be subject to HPAI surveillance implemented after vaccination. Due to limited knowledge on pro-
tective immunity duration and on protection threshold values, determining surveillance duration post- vaccination remains 
inconclusive. Therefore, vaccinated flocks should be under surveillance up to their replacement, with dead birds being pre-
ferred for testing. Meanwhile, passive surveillance should be applied on unvaccinated flocks present in the vaccination area.
Surveillance in vaccinated captive birds. A surveillance system should be in place to early detect and intercept the 
presence of HPAIV in vaccinated kept birds such as those in zoo, ornamental birds or birds of high value. Passive surveil-
lance is considered the only feasible option in most cases. It could be based on a frequent (e.g. weekly) observation and 
clinical examination of birds. In this setting, clinical signs can be immediately detected, coupled with a prompt analysis of 
any sick and dead birds, including, for zoo, wild birds found dead in the zoo premises. For kept ornamental birds, certain 
movements (i.e. those with a high risk of HPAIV spread such as for trade, exhibitions, shows, markets, etc.) may represent a 
risk, and testing should be carried out before it, since the premovement clinical examination alone may not be sufficient. 
For holding keeping captive birds above a certain number, the surveillance suggested for poultry might apply.

ToR 4

Risk mitigation measures

According to Delegated Regulation (EU) No 2020/687, during emergency vaccination authorisation for movement of 
animals and hatching eggs can be granted if the competent authorities deem the risk to be negligible. This risk as-
sessment relies on a comprehensive evaluation that includes results of clinical examination, laboratory examination (if 
necessary) and an official veterinary visit. As per Delegated Regulation (EU) No 2023/361, for emergency vaccination, 
the vaccinated establishments are already under surveillance, so laboratory examination is ongoing. According to EFSA 
assessment, these emergency vaccinated establishments should be under surveillance as described in Sections 3.1.2.1 
and 3.1.2.2 (Tables 10A–12B). Therefore, including the effectiveness of the combined clinical examination and surveil-
lance established in this Opinion, the risk of movement of animals and eggs is considered negligible when both are 
performed within the 72 h before the movement. If the process of movement (e.g. loading) is not completed within 72 h, 
then testing should be repeated every 48 h until it ends. Given the already ongoing surveillance, testing could coincide 
with the sampling session of the surveillance in place after emergency vaccination (i.e. no additional sampling and 
testing should be done). Note that, differently from what stated in Delegated Regulation (EU) No 2020/687, suggesting 
that laboratory examinations should be conducted only if necessary, laboratory examinations have been assessed as an 
integral component of the risk mitigation measures to be implemented in case of emergency vaccination.
For preventive vaccination, according to Delegated Regulation (EU) No 2023/361, safe movements of vaccinated birds 
and their products are guaranteed if the vaccinated animals were negative to the active and enhanced passive surveil-
lance implemented after preventive vaccination against HPAI (Table 1). In addition, the implementation of other mitiga-
tion measures further contributes to this guarantee (see Figure 7). In the current Opinion, the surveillance to be applied 
after preventive vaccination is assessed in Section 3.1.2.3 and prescribes the monthly sampling of dead birds with a num-
ber of 15 collected in a flock during 48 h before the testing to assess a zone as free from HPAIV. Therefore, in the case of 
preventive vaccination, where no outbreaks are present, the surveillance as described in Section 3.1.2.3, that is already 
in place, provides a very high certainty that the area is free from infection (see Tables 15A–17B). Accordingly, if the birds 
are negative to the clinical inspection done not earlier than 72 h before the movement and all establishments follow the 
surveillance protocol with no outbreak detection, the risk of HPAI spread via movement of such birds is considered neg-
ligible. If the establishment from where the vaccinated birds are to be moved is not under surveillance, such as in case 
where less than 100% of vaccinated establishments are subjected to testing (such as 50% or 25%), then vaccinated birds 
are clinically inspected and dead birds up to a number of 15, should be collected not earlier than 72 h before the move-
ment. Negative test results should be provided before the movement and no clinical signs should be observed.

Sources of uncertainty

The current Opinion identifies sources of uncertainty across various assessment sections, including performance of 
diagnostic tests used in the context of HPAIV surveillance, and the effectiveness of surveillance strategies at the estab-
lishment level and of surveillance strategies at the area/zone level.

Conclusions and Recommendations

ToR 3

Diagnostic methods

There are a number of different diagnostic methods available that can be used according to vaccine type, strategy 
and surveillance objective, but lack of validation and field experience in the context of vaccinated poultry populations 
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of these methods may be an issue. Serology may increase confidence of virological surveillance results but, the abil-
ity to use serological tests may be compromised when vaccination is carried out with non- DIVA compatible vaccines. 
Samples collected from the environment could be a valid, time-  and labour- saving alternative to animal samples, but 
there is currently a lack of validated protocols; research to extend and deepen knowledge here is needed. When im-
plementing a vaccination programme, it is important that the most appropriate diagnostic method for surveillance is 
selected according to vaccine type; methods with high sensitivity are recommended when expected viral levels to be 
detected are low due to vaccination. In addition to routine molecular monitoring, viral isolation, genetic sequencing 
and phenotypic characterisation of HPAIVs eventually detected in vaccinated flocks are highly recommended to detect 
putative escape mutants as early as possible.

Surveillance

For the surveillance, some important general considerations and conclusions were drawn: The surveillance strategies 
modelled included the random sampling of the dead birds up to a number of 5, 10, 15 or 20 (increasing the sample 
size above this target does not increase the probability of virus detection); if fewer dead birds are present, then all the 
available ones should be tested, given that the probability of early detecting HPAIV is higher than testing live birds; to 
achieve the highest sensitivity, birds intended for testing, are those found dead in the last 48 h; the effectiveness of the 
above- mentioned approach is maximised by repeated sampling in time; the lack of knowledge regarding the correlate 
of protection and, consequently, the duration of protective immunity in vaccinated poultry, precludes any definitive 
conclusion on the surveillance duration following the cessation of vaccination. For this reason, vaccinated flocks should 
be under surveillance upon their replacement (sampling and testing of dead birds) and passive surveillance should be 
carried out in both unvaccinated and vaccinated flocks.
For early detection at establishments in case of emergency vaccinations (E1), different options are proposed ac-
cording to poultry species. For chicken layers, a number of effective options based on molecular testing of dead an-
imals at a certain interval have been identified and should be selected according to country's specific circumstances 
and resources. For both flock sizes considered (≥ 3000 and < 3000), the surveillance strategy identified in Delegated 
Regulation (EU) No 2023/361 (virological testing of 60 live birds) was assessed as not effective, as well as the serological 
testing and the strategies based on passive reporting and ‘mortality threshold’. However, for flocks < 3000 birds, com-
bining the molecular testing of dead birds with molecular testing of live birds would increase the level of confidence of 
early detection.
For ducks, a number of options based on the molecular testing of dead birds at a certain interval have been identified 
as effective and should be selected according to country's specific circumstances and resources. Other surveillance 
strategies can also be carried out (molecular or serological testing of 60 live ducks and ‘mortality thresholds’), but they 
may present more challenges (both for welfare and logistical reasons) and their effectiveness may depend on various 
factors (availability and accuracy of information about mortality thresholds). The only strategy assessed as not effective 
for ducks is the one relying solely on passive reporting.
For flocks of ≥ 6000 turkeys, a number of effective options based on the molecular testing of dead birds at a certain 
interval have been identified and should be selected according to country's specific circumstances and resources. The 
surveillance strategy identified in Delegated Regulation (EU) No 2023/361 (virological testing of 60 live birds) was as-
sessed as not effective, as well as the serological testing and the strategies based exclusively on passive reporting and 
‘mortality thresholds’. However, for flocks < 6000 turkeys, the only valid strategy identified as effective was the one 
based on ‘mortality thresholds’ (0.21%), that should be combined with molecular testing of live birds to increase the 
level of confidence of early detection.
For the surveillance in peri- vaccination zone, it is recommended to establish a 10- km radius zone to increase the con-
fidence that the probability of jump spread is lower than 0.04. In relation to the type of surveillance, it is recommended 
to apply either early detection surveillance in vaccinated establishments and passive surveillance for layer chickens and 
turkeys and bucket sampling for ducks and geese in unvaccinated farms.
For disease freedom at establishment and zone following emergency vaccination (E3, E4), the testing schemes as 
reported above by poultry species apply, given the sampling is repeated in time.
For the surveillance to demonstrate disease freedom following preventive vaccination, in the three high- risk zones 
assessed, it is recommended to carry out monthly molecular testing of all dead birds up to a number of 15, in all vacci-
nated establishments. Passive surveillance is to be maintained in both vaccinated and unvaccinated flocks. This testing 
scheme is also applied to early detect infections following preventive vaccination, but if the aim is to increase the 
early detection surveillance sensitivities (EDSe), then it is recommended to reduce the sampling intervals. Reducing the 
proportion of vaccinated establishments to be tested showed a limited impact on the Pfree, but a negative impact on 
the EDSe. However, for each of the targeted species, a number of effective options (maintaining high level of EDSe and 
Pfree) have been identified, testing lower proportions of establishments (25% or 50%) at different sampling intervals. 
These testing schemes should be selected according to country's specific circumstances and resources.
To estimate vaccination effectiveness (E2), it is required a careful planning, sufficient human resources, follow- up of 
all flocks and a good data collection framework.
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Surveillance to assess the level of immune response induced by vaccination (P2) can be performed when virus cir-
culation is absent or expected to be low. To best detect how many birds have a measurable immune response, testing 
within a certain time window, depending on the vaccine used, is recommended. Since it is important to have accurate 
estimates of the minimum proportion of protected birds required to stop transmission, further studies quantifying R0 
values for the currently circulating HPAIV are recommended. Even if there is no established correlate of protection, an 
assessment of the prevalence of birds showing an immune response following vaccination is assumed to provide an 
indication of sufficient protection (for chickens, 20 blood samples per establishment, using appropriate diagnostic test, 
are appropriate to determine whether vaccines are correctly used in the field).

ToR 4

Restriction and risk mitigation measures

In case of emergency vaccination, HPAI outbreaks are present in the area, and vaccinated establishments are already 
under the surveillance applied after emergency vaccination (i.e. laboratory examination is already ongoing). In addition 
to ensuring negligible risk as set out in Delegated Regulation (EU) No 2020/687, the laboratory examination to demon-
strate freedom from HPAI, conducted according to Sections 3.1.2.1 and 3.1.2.2, is considered as part of the risk mitiga-
tion measures to be implemented in addition to the clinical inspection in the 72 h before the movement. Negative test 
results should be provided before the movement and no clinical signs should be observed. Testing to guarantee safe 
movement of the birds could coincide with the sampling session of the surveillance in place (i.e. no additional birds/
samples to be tested).
In case of preventive vaccination, where no outbreaks are present, vaccinated establishments are already under the 
surveillance applied after preventive vaccination. To guarantee safe movement of vaccinated poultry or the day- old 
chickens and hatching eggs deriving from such poultry, negative surveillance test results, conducted according to 
Section 3.1.2.3, should be provided, and no clinical signs should be observed before the movement. If the vaccinated 
establishment is not under surveillance, such as in case where less than 100% of them are subjected to testing, then, in 
addition to the absence of clinical signs, also negative test results should be provided before the movement.
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1 | INTRO DUC TIO N

1.1 | Background and Terms of Reference as provided by the requestor

The background and the Terms of Reference (ToR) as provided by the requestor are reported in Section 1.1 of Part 1 of the 
Scientific Opinion on Vaccination of poultry against highly pathogenic avian influenza (HPAI) (EFSA AHAW Panel, 2023). 
This Scientific Opinion focuses on ToR 3 and ToR 4, which are reported in Appendix A.

1.2 | Interpretation of the Terms of Reference

The interpretation of ToRs 3 and 4 is reported in Sections 1.2.3 and 1.2.4 of Part 1 of the Scientific Opinion on Vaccination 
of poultry against highly pathogenic avian influenza (EFSA AHAW Panel, 2023).

2 | DATA AN D M ETH O DO LOG IES

The methodological approach adopted to address the ToRs 3 and 4 is described in the protocol reported in Appendix A of 
part 1 of the Scientific Opinion on Vaccination of poultry against HPAI (EFSA AHAW Panel, 2023). This protocol was devel-
oped upfront of the initiation of the risk assessment. In this section, a more detailed description of the specific data and 
methodology used for ToRs 3 and 4 is provided. A mapping of ToRs 3 and 4 as received from the European Commission and 
how they were addressed in the current Opinion is presented in Appendix A.

2.1 | ToR 3 – Surveillance in the vaccinated zone and/or vaccinated establishments

ToR 3 entails the assessment of different surveillance strategies (or surveillance approaches as mentioned in Table A1 APRIO 
elements for the assessment question and subquestions) to be implemented on poultry establishments vaccinated against 
HPAI. Vaccination scenarios include emergency protective and preventive vaccination and have been presented in Part 1 
of the Scientific Opinion on Vaccination of poultry against HPAI (EFSA AHAW Panel, 2023). The surveillance assessed in this 
Opinion is the reinforced surveillance laid down in Delegated Regulation (EU) No 2023/3611 (see Section 2.1.1); those de-
scribed in the WOAH surveillance requirements (see Section 2.1.2); and alternative surveillance strategies as suggested by 
the EFSA Working Group (see Section 2.1.3).

Particularly, the current assessment was targeted at the surveillance objectives indicated in ToR 3 and in Delegated 
Regulation (EU) No 2023/361, namely:

1. Early detection of HPAIV infection in vaccinated establishments (ToRs 3.1, 3.2, Delegated Regulation (EU) No 2023/361 
Article 9 and Part 5.2.b).

2. Demonstration of freedom from infection with HPAIV in vaccinated establishments and/or the vaccinated zone in order 
to guarantee movement of vaccinated and non- vaccinated animals and animal products within and from the vaccina-
tion zone during and after cessation of vaccination (ToR 3.1, 3.2); freedom from HPAIV in a vaccinated zone should be 
also demonstrated considering specifically the WOAH standards of surveillance (i.e. in all vaccinated establishments as 
provided in Chapter 10.4, Article 10.4.28) and possible alternatives to that (ToR 3.3).

3. Assessment of vaccination effectiveness (Delegated Regulation (EU) No 2023/361 Article 9).

The suitability and effectiveness of these surveillance strategies were assessed using mathematical models (see 
Sections 2.1.5 and 3.1.2) and the suitable diagnostic methods to be used according to each objective were described 
(Section 2.1.4) and assessed (Section 3.1.1). As stated in Opinion Part 1, backyard poultry were not considered due to data 
limitations. Also, previous studies in the Netherlands and France have shown that captive birds and backyard holdings 
likely played a limited role in disease spread (Bavinck et al., 2009; Souvestre et al., 2019).

2.1.1 | Surveillance as per Regulation (EU) 2023/361 during/after vaccination

To define surveillance strategies for the assessment, the Working Group initially provided an overview of the legal frame-
work. In doing so, they considered Delegated Regulation (EU) No 2023/361, which sets rules for reinforced surveillance in 
the vaccination zones established as detailed in Art. 9 and in Annex XIII Part 2, Part 4 and Part 5.

 1Commission Delegated Regulation (EU) No 2023/361 of 28 November 2022 supplementing Regulation (EU) 2016/429 of the European Parliament and the Council as 
regards rules for the use of certain veterinary medicinal products for the purpose of prevention and control of certain listed diseases. OJ L 52, 20.2.2023, pp. 1–42.
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2.1.1.1 | Rules for implementation of surveillance during/after emergency protective vaccination

According to Article 9, Delegated Regulation (EU) No 2023/361, when applying emergency protective vaccination, rein-
forced clinical and laboratory surveillance should be implemented in both the vaccination and peri- vaccination zones es-
tablished. The objectives of such surveillance will be to assess vaccination effectiveness in the vaccination zone, and to 
detect any possible new outbreaks in the vaccination and peri- vaccination zones. According to Part 2, in all the vacci-
nated establishments, virological testing should be implemented every 2 weeks, and the sampling has to enable the detec-
tion of a minimum within- flock prevalence of HPAIV infection of 5% with a confidence level of 95% (Table 1). These measures 
should remain in place during the whole recovery period following emergency protective vaccination (as per Part 4). The 
recovery period lasts 28 days where vaccination is carried out in a zone that does not overlap with restricted zones due to 
HPAI outbreaks; where the vaccination zone overlaps with HPAI restricted zones, the recovery period ends when the 
 restricted zones are lifted, if the date of lifting is later than 28 days after the last vaccine inoculation.2 After the end of the 
recovery period, the rules for implementation of surveillance during/after preventive vaccination apply as long as an estab-
lishment keeps vaccinated birds.

Sampling methods of animals for laboratory examination are outlined in Annex I of Delegated Regulation (EU) No 
2020/6873 and include the following requirements:

• Animals should be chosen randomly in a number large enough to detect the disease if present;
• Samples should be collected at random in each epidemiological unit of the establishment;
• Disease profile and level of exposure risk should be taken into account;
• Minimum number of animals to sample will depend on expected prevalence, level of confidence and performance of 

tests used.

The diagnostic methods chosen should aim at maximising surveillance sensitivity and may include using laboratory ex-
aminations to assess previous exposure to the disease.

2.1.1.2 | Rules for implementation of surveillance during/after preventive vaccination

For preventive vaccination, both enhanced passive and active surveillance should be implemented to early detect occur-
rence of infection with HPAI. Enhanced passive surveillance foresees weekly virological testing of a representative sam-
ple of dead birds collected within 1 week; according to the Diagnostic Manual for Avian Influenza (2006/437/EC),4 it is 
recommended to pool sampling of dead birds (with a maximum of 20) over the week equally subdivided from each flock5 
of the establishment6: up to five carcasses/samples of birds deceased on the day of sampling should be collected by flock. 
Active surveillance should be carried out, by monthly clinical examination (clinical examination of poultry, check of produc-
tion records, check of health records of each epidemiological unit7), and by monthly collection of representative samples 
from live birds for laboratory surveillance by virological and serological testing to enable detection of a minimum within- 
flock prevalence of HPAIV infection of 5% with 95% confidence level (Table 1). These measures will remain in place as long 
as the establishments keep vaccinated animals.

Requirements for sampling of animals for laboratory examinations and the diagnostic methods for surveillance for preven-
tive vaccination against HPAIV in poultry are the same as in emergency vaccination and are summarised in Section 2.1.1.1.

 2According to Annex XIII, Part 4, Delegated Regulation (EU) No 2023/361.

 3Commission Delegated Regulation (EU) No 2020/687 of 17 December 2019 supplementing Regulation (EU) 2016/429 of the European Parliament and the Council, as 
regards rules for the prevention and control of certain listed diseases. OJ L 174, 3.6.2020, pp. 64–139.

 4https:// eur- lex. europa. eu/ legal- conte nt/ EN/ TXT/ PDF/? uri= CELEX: 32006 D0437 & from= EN.

 5‘Flock’ means all poultry or captive birds of the same health status kept on the same premises or in the same enclosure and constituting a single epidemiological unit; in 
housed poultry includes all birds sharing the same airspace, Delegated Regulation (EU) No 2020/689.

 6‘Establishment’ means any premises, structure, or, in the case of open- air farming, any environment or place, where animals or germinal products are kept, on a 
temporary or permanent basis, Regulation (EU) No 2016/429 on transmissible animal diseases (‘Animal Health Law’ – AHL).

 7‘Epidemiological unit’ means a group of animals with the same likelihood of exposure to a disease agent, Regulation (EU) No 2016/429 on transmissible animal diseases 
(‘Animal Health Law’ – AHL).

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32006D0437&from=EN
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2.1.2 | Surveillance as per WOAH

To define surveillance strategies for the assessment, the Working Group also considered the WOAH recommendations for 
surveillance systems, in particular Chapters 1.4 and 10.4 of the Terrestrial Animal Code on Animal Health Surveillance and 
on surveillance for HPAI, respectively (WOAH, online- a).

Considering the diversity of situations regarding HPAI in the world, the WOAH approach is to provide generic recom-
mendations on the approach and parameters to be considered when designing and implementing a surveillance system 
for early detection and for demonstration of freedom from infection with HPAIV; those principles are also necessary to 
support vaccination programmes. The WOAH does not have a standard operating procedure for official recognition of a 
country's status for HPAI, but Members Countries have the possibility to submit self- declaration of freedom from disease, 
under its sole responsibility and according to the conditions listed in Article 10.4.2 (Chapter 10.4) of the Terrestrial Code 
(WOAH, online- a). Self- declaration should include details of the surveillance system in place to sustain the health status. 
For areas that need to recover their freedom status following infection, the absence of infection should be demonstrated 
by the surveillance programme for a minimum period of 28 days starting after cleaning and disinfection of the last affected 
establishment if a stamping out policy is implemented. If the stamping out policy is not implemented, the absence of in-
fection in poultry during a period of 12 months should be demonstrated by the surveillance programme.

In zones where vaccination is carried out, surveillance for demonstration of freedom from HPAI requires that all vac-
cinated flocks are tested to prove the absence of viral circulation, with a frequency that is proportional to the risk in that 
zone. Evidence of the effectiveness of the vaccination programme is also part of the requirements for the surveillance 
programme.

2.1.3 | Surveillance strategies and key attributes

To effectively define and compare surveillance strategies for the assessment, the following key attributes were considered:

• Objective of surveillance: (i) The early detection of HPAIV infection in a vaccinated establishment and in the vaccina-
tion/peri- vaccination zone; (ii) substantiating freedom from disease in an establishment/area in order to grant deroga-
tion to movements to animals and animal products; (iii) assessing vaccination effectiveness.

• Type of surveillance can be either defined as ‘active’ or ‘passive’ (Hoinville et al., 2013). Passive surveillance means report-
ing of suspect cases raised by increased mortality, other signs of serious disease or significantly reduced production rates. 
The health authorities are notified by veterinarians or farmers at their discretion. It is more likely to be useful for diseases 
that are characterised by typical clinical signs and for which subclinical infection is rare (Doherr & Audigé, 2001). Active 
surveillance is the detection of the disease through activities instigated following a plan. These activities can be carried out 
randomly or non- randomly and they can be based on clinical, serological or virological detection of disease or infection.

• Performance indicator describes concrete and measurable information serving as a measurable benchmark for assess-
ing the effectiveness of a surveillance activity concerning the objective, i.e. for early detection that would be the time 
from virus introduction until detection of the disease, for freedom from disease that would be the confidence of (non) 
detecting the disease if it was present at a specified level.

T A B L E  1  Surveillance activities according to Delegated Regulation (EU) No 2023/361 during/after implementing vaccination against HPAIV in 
poultry.

Type of 
vaccination

Surveillance

Surveillance 
category Testing procedure Frequency

Minimum detectable 
prevalence/type of 
information collected Duration

Emergency 
protective

Reinforced 
laboratory

Virological 2 weeks 5% prevalence with 95% 
confidence levela

According to the 
duration of the 
recovery period

Reinforced clinical – – – – 

Preventive Enhanced passive Virological Weekly Representative sample of dead 
birds

As long as there are 
vaccinated birds in 
the establishmentActive Clinical examination 30 days Clinical examination 

of poultry, check of 
production records, check 
of health records of each 
epidemiological unit

Serological or 
virological

30 days 5% prevalence with 95% 
confidence level 
(representative sample)a

aTo detect HPAIV with 5% design prevalence with 95% confidence level, a sample size of 60 randomly selected live birds is required to be tested.
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• Sampling frequency: It characterises the surveillance activities i.e. how often samples are collected., being the sam-
pling or collection of data carried out on a continuous basis (data are gathered continuously), on a regular basis (data are 
gathered at defined time intervals), or ad hoc (undertaken occasionally, when the need arises).

• Duration and period of surveillance refer to the period of time and the period of the year (e.g. season), in which the 
surveillance activities are carried out in order to meet the objective of the strategy.

• Poultry population to be sampled is the animal population from which the samples are collected; it refers both to the 
vaccinated establishments and the birds within each establishment and/or each flock within the establishment, con-
sidering species and production type, and immunity status dynamics, and the criteria for its selection (census, random, 
targeted, based on the risk, etc.).

• Design prevalence also known as the minimum detectable prevalence or target prevalence, it is defined as a threshold 
prevalence value associated with a statistical risk of error, at the animal or herd level, to test the hypothesis that disease 
is present in a population of interest and it is used to determine the needed sample size. It is the hypothetical proportion 
of animals/herds that are infected given the disease was present and it is used for evaluating the sensitivity of the sur-
veillance systems. The error represents the probability of not detecting the disease among the sampled animals/herds if 
it was present at the minimum value set by the design prevalence.

• Diagnostic methods: It refers to the most suitable method with appropriate diagnostic tools to diagnose rapidly and 
accurately the disease or to detect the virus circulation in a population where evidence of those conditions (i.e. clinical 
signs and virus shedding) is modulated by the effectiveness of vaccination implemented and the field strain circulation. 
An overview of the benefits and limitations of diagnostic methods for HPAI is extensively provided in Section 3.1.1.

• Epidemiological unit: It refers to the establishment (any premises where animals are kept in a temporary or permanent 
basis); an establishment can comprise one or more flocks and if one flock is infected then the whole establishment is 
considered infected; for the number of birds to be sampled within an establishment, it always refers to the flock (all 
poultry of the same health status kept in the same enclosure (house/barn)).

• Sampling unit: flock(s) within the establishment

All those characteristics are described in Table 2 for both situations of emergency protective vaccination and preventive 
vaccination.

2.1.3.1 | Surveillance strategies

Table 2 provides an overview of the attributes associated with the different surveillance strategies considered in the as-
sessment. The strategies encompass those specified in Delegated Regulation (EU) No 2023/361 as well as alternative sur-
veillance strategies proposed by the Working Group and are separated by emergency protective (E) and preventive (P) 
vaccination scenarios. These alternative strategies explore variations in the sampled population, including differences in 
sample number (reduced vs. increased) or bird categories (dead vs. live), in sampling frequency (reduced vs. increased) 
and diagnostic methods while keeping the surveillance's objectives as they are in Delegated Regulation (EU) No 2023/361 
and WOAH standard, with exception of objective in strategy P2 (assessment of level of immune response to vaccination) 
that was proposed by the Working Group (WG). The strategies are compared based on a performance indicator, which 
depends on the objective of the surveillance. An explanation of how each performance indicator is estimated is provided 
in Sections 2.1.5.1 and 2.1.5.2. For the surveillance set out in Delegated Regulation (EU) No 2023/361, for emergency vacci-
nation, as the aim is to detect 5% prevalence and the animals to be sampled, according to Regulation as reported in Annex 
XIII part 2, should be chosen randomly in a number large enough, it is here interpreted as the sampling of live birds with a 
number of 60.
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T A B L E  2  Attributes of the different surveillance strategies considered in the assessment described by emergency protective (E) and preventive vaccination (P) scenarios.

Surveillance 
strategy

Emergency protective vaccination scenario – Surveillance within the vaccination zone Preventive vaccination scenario – Surveillance within vaccination zone

Strategy E1 Strategy E2 Strategy E3 Strategy E4 Strategy P1 Strategy P2 Strategy P3 Strategy P4

Objective of 
surveillance

HPAIV early 
detection (to be 
implemented 
also in the 
peri- vaccination 
zone)

Assessment of 
vaccination 
effectiveness

Demonstrating freedom 
from HPAIV in 
the vaccinated 
establishment 
(to authorise the 
movement of 
birds from that 
establishment)

Demonstrating 
freedom from 
HPAIV in the 
vaccinated zone

Early detection in 
case of HPAIV 
introduction

Assessment of level 
of immune 
response 
induced by 
vaccination

Demonstrating 
freedom from 
HPAIV in the 
vaccinated 
establishment 
(to authorise the 
movement of 
birds from that 
establishment)

Demonstrating 
freedom from 
HPAIV in the 
vaccinated area 
(considering 
that also non- 
vaccinated 
establishments 
might be 
present)

Performance 
indicator

Between- flock 
reproduction 
number (Rh), 
i.e. the average 
number of farms 
infected by one 
infected farm 
in its infectious 
period. The 
surveillance was 
considered to 
be effective for 
early detection 
if it contributed 
to Rh < 1

Vaccination 
effectiveness, 
estimated as 1 
minus a measure 
of relative 
risk (RR) such 
as: incidence 
or rates of 
infection, 
prevalence ratio 
(attack rates, 
cumulative 
incidence), the 
odds ratio (OR) 
or the hazard 
ratio (HR)

Probability of freedom
Conditions required: no 

virus- positive samples

Probability of 
freedom 
within and 
between- flock/
establishment

Required: no virus- 
positive flocks

Surveillance 
sensitivity 
for early 
detection in 
the vaccinated 
population

% of animals 
showing 
immune 
response 
following 
vaccination

Confidence of 
freedom

Confidence of 
freedom

Establishments 
to be 
sampled

Regulation (EU) 
2023/361: all 
vaccinated 
establishments

Alternative: 
Since this is 
emergency 
surveillance, 
no alternative 
strategy at 
this level is 
considered

Regulation (EU) 
2023/361: all 
farms in the 
vaccination and 
peri- vaccination 
zones

Regulation (EU) 2023/361: 
all vaccinated 
establishments

Alternative: since 
this is emergency 
surveillance, no 
alternative strategy at 
this level is considered

Regulation (EU) 
2023/361: all 
vaccinated 
establishments

Regulation (EU) 
2023/361: all 
vaccinated 
establishments

Alternative: a 
sample of 
vaccinated 
establishments

All vaccinated 
establishments 
that completed 
the vaccination 
scheme

Regulation (EU) 
2023/361: all 
vaccinated 
establishments

Regulation (EU) 
2023/361: all 
vaccinated 
establishments

Alternative: a 
sample of 
vaccinated 
establishments

(Continues)
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Surveillance 
strategy

Emergency protective vaccination scenario – Surveillance within the vaccination zone Preventive vaccination scenario – Surveillance within vaccination zone

Strategy E1 Strategy E2 Strategy E3 Strategy E4 Strategy P1 Strategy P2 Strategy P3 Strategy P4

Birds to be 
sampled

Regulation (EU) 
2023/361: a 
representative 
sample of 
live birds to 
detect a design 
prevalence of 
5% with 95% 
CLa

Alternative: 
assessing 
different sample 
sizes based on 
sampling dead 
or live birds 
(see details in 
Section 3.1.2.1)

NR Regulation (EU) 2023/361: 
a representative 
sample of live birds 
to detect a design 
prevalence of 5% with 
95% CLa

Alternative: assessing 
different sample 
sizes based on 
sampling dead or live 
birds (see details in 
Section 3.1.2.2)

Regulation (EU) 
2023/361: a 
representative 
sample of 
live birds to 
detect a design 
prevalence of 5% 
with 95% CLa

Alternative: assessing 
different sample 
sizes based on 
sampling dead 
or live birds 
(see details in 
Section 3.1.2.2)

Regulation (EU) 
2023/361: 
representative 
sample of dead 
birds and a 
representative 
sample of 
live birds to 
detect design 
prevalence of 
5% with 95% 
CLa

Alternative: 
Assessing 
different 
sample sizes 
of dead or live 
birds to enable 
both high 
within flock 
sensitivity for 
early detection 
and high level 
of confidence 
in disease 
freedom (see 
details in 
Section 3.1.2.3)

≥ 20 randomly 
selected 
birds per 
establishment 
(to estimate the 
percentage of 
birds developing 
an immune 
response above 
predefined-  
thresholds)

Regulation (EU) 
2023/361: 
representative 
sample of dead 
birds and a 
representative 
sample of 
live birds to 
detect design 
prevalence of 
5% with 95% CLa

Alternative: 
Assessing 
different sample 
sizes of dead 
or live birds to 
enable both 
high within flock 
sensitivity for 
early detection 
and high level 
of confidence in 
disease freedom 
(see details in 
Section 3.1.2.3)

Regulation (EU) 
2023/361: 
representative 
sample of dead 
birds and a 
representative 
sample of 
live birds to 
detect design 
prevalence of 
5% with 95% CLa

Alternative: 
Assessing 
different sample 
sizes of dead 
or live birds to 
enable both 
high within flock 
sensitivity for 
early detection 
and high level 
of confidence in 
disease freedom 
(see details in 
Section 3.1.2.3)

T A B L E  2  (Continued)



   | 17 of 70HPAI VACCINATION IN POULTRY – PART 2

Surveillance 
strategy

Emergency protective vaccination scenario – Surveillance within the vaccination zone Preventive vaccination scenario – Surveillance within vaccination zone

Strategy E1 Strategy E2 Strategy E3 Strategy E4 Strategy P1 Strategy P2 Strategy P3 Strategy P4

Diagnostic 
methods

Regulation (EU) 
2023/361: 
clinical 
examination 
and virological 
testing in live 
birds

Alternative: 
molecular 
virological 
testing on live 
or dead birds 
(i.e. real time RT- 
PCR targeting 
M gene for 
screening. H5/
H7 subtyping 
by real- time 
RT- PCR or 
sequencing 
methods); 
Virus isolation 
followed by H5/
H7 subtyping 
by classical 
or molecular 
virological 
methods

Regulation (EU) 
2023/361: clinical 
examination 
and virological 
testing in live 
birds

Alternative: any 
virological 
method 
suitable for the 
detection and 
identification of 
HPAI infection 
in vaccinated 
farms

Regulation (EU) 2023/361: 
clinical examination 
and virological testing 
in live birds

Alternative: molecular 
virological testing 
on live or dead birds 
(i.e. real time RT- PCR 
targeting M gene 
for screening. H5/H7 
subtyping by real- time 
RT- PCR or sequencing 
methods); Virus 
isolation followed by 
H5/H7 subtyping by 
classical or molecular 
virological methods

Regulation (EU) 
2023/361: clinical 
examination 
and virological 
testing in live 
birds

Alternative: a 
combination 
of molecular 
virological 
(i.e. real time 
RT- PCRs) and 
serological tests 
such as NP- based 
ELISAs (if DIVA 
compatible 
vaccines are 
used). For NP- 
ELISA- positive 
and PCR- 
negative birds, 
HI with selected 
HPAI and LPAI 
antigens; 
real- time 
RT- qPCRs only 
(if inactivated 
vaccines are 
used or when the 
epidemiological 
situation makes 
impractical the 
use of serological 
tests)

Regulation (EU) 
2023/361: 
clinical 
examination 
and virological 
testing of dead 
or live birds 
and serological 
testing in live 
birds

Alternative: 
molecular 
virological 
testing by 
real- time RT- 
PCR targeting 
M gene for 
screening, 
confirmation 
of subtype 
and pathotype 
on positive 
samples at 
screening; 
Virus isolation 
followed by H5/
H7 subtyping 
by classical 
or molecular 
virological 
methods

Alternative: 
serological 
testing in live 
birds (e.g. H5- HI 
or H5- ELISA); 
molecular 
virological if an 
RT- qPCR tailored 
to the specific 
vaccine product 
is available

Regulation (EU) 
2023/361: 
clinical 
examination 
and virological 
testing of dead 
or live birds 
and serological 
testing in live 
birds

Alternative: 
molecular 
virological 
testing in live or 
dead birds (i.e. 
real time RT- 
PCR targeting 
M gene for 
screening, 
confirmation 
of subtype and 
pathotype on 
positive samples 
at screening);

Virus isolation 
followed by H5/
H7 subtyping 
by classical 
or molecular 
virological 
methods

Regulation (EU) 
2023/361: clinical 
examination 
and virological 
testing of dead 
or live birds 
and serological 
testing in live 
birds

Alternative: a 
combination 
of molecular 
virological 
(i.e. real time 
RT- PCRs) and 
serological tests 
such as NP- 
based ELISAs (if 
DIVA compatible 
vaccines are 
used). For NP- 
ELISA- positive 
and PCR- 
negative birds, 
HI with selected 
HPAI and LPAI 
antigens; 
real- time 
RT- qPCRs only 
(if inactivated 
vaccines 
are used or 
when the 
epidemiological 
situation makes 
impractical 
the use of 
serological tests)

T A B L E  2  (Continued)

(Continues)
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Surveillance 
strategy

Emergency protective vaccination scenario – Surveillance within the vaccination zone Preventive vaccination scenario – Surveillance within vaccination zone

Strategy E1 Strategy E2 Strategy E3 Strategy E4 Strategy P1 Strategy P2 Strategy P3 Strategy P4

Sampling 
frequency

Regulation (EU) 
2023/361: every 
14 days

Alternative tested: 
7, 14, 21 or 
30 days

Regulation (EU) 
2023/361: every 
14 days

Alternative tested: 7, 
14, 21 or 30 days

Regulation (EU) 2023/361: 
every 14 days

Alternative tested: Use of 
cumulative evidence 
from repeated 
sampling

Regulation (EU) 
2023/361: 14 days

Alternative tested: 
Use of cumulative 
evidence 
from repeated 
sampling

Regulation (EU) 
2023/361: 
weekly 
virological 
testing of 
dead birds and 
monthly clinical 
examination 
and testing 
of live birds 
(virological or 
serological)

Alternative tested: 
sampling 
frequency of 
7, 14, 21 and 
30 days

To be done once 
(from 2 to 
4 weeks after 
completion of 
immunisation 
of after 7 weeks 
for vectored 
vaccines 
administered at 
1 day of age)

Regulation (EU) 
2023/361: 
weekly 
virological 
testing of 
dead birds and 
monthly clinical 
examination 
and testing 
of live birds 
(virological or 
serological)

Alternative tested: 
sampling 
frequency of 
7, 14, 21 and 
30 days

Regulation (EU) 
2023/361: 
weekly 
virological 
testing of 
dead birds and 
monthly clinical 
examination and 
testing of live 
birds (virological 
or serological)

Alternative tested: 
sampling 
frequency of 
7, 14, 21 and 
30 days

Duration and 
period of 
surveillance

Regulation (EU) 
2023/361: for 
the duration of 
the recovery 
period, after 
the surveillance 
for preventive 
vaccination 
applies

Alternative: for 
the duration of 
the recovery 
period, after 
the surveillance 
for preventive 
vaccination 
applies (i.e. 
as long as 
vaccinated 
animals in the 
establishment 
have protective 
immunity)

Regulation (EU) 2023/361: 
for the duration of the 
recovery period, after 
the surveillance for 
preventive vaccination 
applies

Alternative: for the 
duration of the 
recovery period, after 
the surveillance for 
preventive vaccination 
applies (i.e. as long as 
vaccinated animals in 
the establishment have 
protective immunity)

Regulation (EU) 
2023/361: for 
the duration of 
the recovery 
period, after 
the surveillance 
for preventive 
vaccination 
applies

Alternative: For 
the duration of 
the recovery 
period, after 
the surveillance 
for preventive 
vaccination 
applies (i.e. 
as long as 
vaccinated 
animals in the 
establishment 
have protective 
immunity)

Regulation (EU) 
2023/361: as 
long as there 
are vaccinated 
animals in the 
establishments

Alternatives: 
as long as 
vaccinated 
animals in the 
establishment 
have protective 
immunity 
(after that they 
should be 
under normal 
surveillance for 
non- vaccinated 
flocks)

As long as 
vaccination is 
performed

Regulation (EU) 
2023/361: as 
long as there 
are vaccinated 
animals in the 
establishments

Alternatives: as long 
as vaccinated 
animals in the 
establishment 
have protective 
immunity (after 
that they should 
be under normal 
surveillance for 
non- vaccinated 
flocks)

Regulation (EU) 
2023/361: as 
long as there 
are vaccinated 
animals in the 
establishments

Alternatives: as long 
as vaccinated 
animals in the 
establishment 
have detectable 
protective 
immunity (after 
that they should 
be under normal 
surveillance for 
non- vaccinated 
flocks)

Abbreviation: NR, not relevant.
aAs the animals to be sampled, according to Delegated Regulation (EU) No 2023/361 in Annex XIII part 2, should be chosen randomly in a number large enough to detect 5% prevalence, it is here interpreted as the sampling of live birds with a number 
of 60; CL means confidence level.

T A B L E  2  (Continued)
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2.1.4 | Diagnostic methods

Vaccination against HPAI in poultry requires the appropriate tailoring not only of surveillance strategies but also of the 
matching diagnostic methods to be applied in AI- vaccinated flocks to robustly verify or rule out the presence of AI virus 
circulation in such establishments. The effect of vaccination on clinical signs, on magnitude and duration of viral shedding 
following field virus exposure and on the serological profile of AI- vaccinated birds requires careful selection of the most 
appropriate assays according to the vaccination protocol implemented and the objective of surveillance as described in 
Table 2. In this Opinion, a description of the following different diagnostic tests that can be used as part of HPAIV sur-
veillance is reported: classical virological methods (virus isolation), molecular virological methods (conventional RT- PCR 
and real- time RT- PCR (RT- qPCR)), rapid antigen detection systems and serological methods (agar gel immunoprecipitation 
(AGID), haemagglutination inhibition (HI) and ELISA technology). An updated list of diagnostic protocols for AIV detection 
and typing is maintained by the EURL and is available at the EURL website (EURL, online).

For each of the described methods, the WG conducted a qualitative assessment, according to the objective of the sur-
veillance, whose results are reported in Section 3.1.1.

Serological data from experimental trials conducted in laboratory on ducks, turkeys and chickens performed by AI- NRLs 
were obtained from France (ducks), Italy (turkeys), the Netherlands (chicken layers) and Belgium (chicken layers). Those data 
were analysed with the aim to assess:

• Expected hemagglutination inhibition (HI) titres in vaccinated birds according to the vaccine(s) used for immunisation. 
Such values can be used to evaluate if immunisation has been obtained in the field.

• HI titres in experimentally vaccinated challenged birds. Irrespective of the severity of the clinical presentation and the 
magnitude of shedding, vaccinated infected birds, are expected to seroconvert following exposure to field virus. The 
magnitude of seroconversion is, however, strongly dependent on the effective replication of the virus in the host.

• Performances like sensitivity (Se) and specificity (Sp) of the ELISA assays used for the detection of antibodies against the 
nucleoprotein (NP) in birds vaccinated with DIVA compatible vaccines following infection.

Also, the monitoring of clinical signs and the possible use of sentinels are included in the assessment in Sections 3.1.1.5 
and 3.1.1.6, respectively.

2.1.5 | Methods to assess surveillance strategies

To assess the effectiveness of the surveillance strategies in poultry after vaccination as described in Table 2, different meth-
ods were used at the animal and flock level (e.g. within establishment and between establishments). These methods were 
applied independently or combined, depending on whether the surveillance was conducted during emergency protective 
or preventive vaccination. Note that surveillance in captive birds was qualitatively assessed in Section 4.2.5.

2.1.5.1 | Methodology to assess surveillance for early detection (E1) and demonstration of freedom (E3, E4) following 
emergency vaccination

Early detection is here defined as the identification of infection with HPAIV in order to remove an infected poultry estab-
lishment before it transmits the infection on average to one or more establishments. Considering that a poultry establish-
ment may consist of one or more flocks, in this Scientific Opinion, an establishment was considered infected if HPAIV was 
detected in one of its flocks and the flock was the sampling unit. We used the between- flock reproduction number (Rh) as a 
measure of transmission, and the surveillance was considered to be effective whenever it contributed to keeping Rh below 
1 (meaning the epidemic would fade out) as performance indicator. The attributes that define surveillance effectiveness 
are the sample size at flock level, frequency of sampling, type of sample and diagnostic test sensitivity. For this assessment, 
we followed a methodology based on the approach previously described by Gonzales et al. (2014).

Transmission dynamics of HPAIV

To identify the critical surveillance parameters such as prevalence of infectious animals, the infectiousness of a flock at the 
time of detection and the expected efficacy of the surveillance strategy at the establishment level, it is key to understand 
the infection dynamics in vaccinated flocks where the protection conferred by the vaccine may not be sufficient to stop 
the disease transmission (Rh > 1).

Transmission parameters for unvaccinated and vaccinated chicken layer, duck and turkey flocks are summarised in 
Table 3. These data were collected as part of the systematic literature review (SLR) performed in Part 1 of the Scientific 
Opinion on vaccination of poultry against HPAI (EFSA AHAW Panel, 2023). There, it was assumed that in a vaccinated poul-
try population, 70% of the flocks were fully protected (R < 1) 3 weeks after vaccination, while 30% were partially protected 
(R > 1). Virus introduction into fully protected farms will result in infection of one or a few birds (minor outbreaks) and the 
probability of detecting such incursions is extremely low given that the number of infected birds is very small and that 
they will not show clear signs of infection. The probability of identifying them in a serological or virological survey (random 
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sample) are also extremely low given the very low number of infected/seroconverted birds relative to the sample size. In 
addition, such minor outbreaks do not pose a risk as the few infected birds will completely recover (no carriership of any 
kind) and the probability that they will infect birds on other farms is negligible due to lack of contact. Consequently, sur-
veillance is here focused on detecting major HPAIV outbreaks in the vaccinated flocks given that the 30% of the vaccinated 
ones will be only partially protected; it is also assumed that the surveillance in unvaccinated flocks will not change and it 
will be based on detection of signs of infection via passive surveillance.

Parameters for within- flock transmission such as the transmission rate, latent and infectious periods were derived from 
transmission experiments performed in the Netherlands (Germeraad et al., 2023), France (Grasland et al., 2023) or identified 
during the previous Opinion (Ssematimba et al., 2019; Tatár- Kis et al., 2019) (Table 3).

Case fatality which is the mortality attributed to HPAI was derived from the results of SLR reported in Table 2 in Opinion 
Part 1 (EFSA AHAW Panel, 2023). The case fatality, in the reviewed experiments, was calculated as the number of dead birds 
due to HPAI over the total number of infected birds. Values for daily mortality not attributed to HPAI (‘baseline mortality 
rate’) were obtained from Gonzales and Elbers (2018), Elbers and Gonzales (2021) and Gonzales et al. (2023). These authors 
analysed daily mortality, during the production cycle, in a sample of not- infected flocks. During an outbreak of HPAI, the 
daily mortality will consist of uninfected and HPAIV- infected dead birds (Table 3). This information was used to assess the 
efficacy of testing dead birds. Of note, based on the SRL performed for the SO Part 1 (EFSA AHAW Panel, 2023), case fatality 
lower than 20% was associated with vaccines effective to stop sustained transmission (no outbreaks would take place in 
these flocks).

Mortality on the day of reporting suspicion parameter (Table 3) was calculated based on the daily mortalities recorded 
at the time of reporting suspicions of HPAI by farmers in the Netherlands and France (Unpublished data). This parameter 
was used as a performance indicator of passive surveillance and as reference for comparison of the infectiousness of a flock 
up to the time of detection when using enhanced passive surveillance or active surveillance.

Mortality thresholds for reporting suspicion (Table 3) were defined based on the studies by Gonzales and Elbers (2018), 
Elbers and Gonzales (2021) and Gonzales et al. (2023). They established mortality levels that could trigger farmers to report 
suspicions of HPAI. Whenever the observed mortality exceeds this predefined percentage, farmers are assumed to report 
their suspicions. Although these thresholds were defined using data from unvaccinated flocks., we assessed the efficacy of 
using such thresholds for early detection of vaccinated flock.

For illustration purposes, graphical representations showing the expected number of infectious birds over time during 
an outbreak and the expected daily mortality for unvaccinated and vaccinated flocks are shown for chicken layers, ducks 
and turkeys in Figures 1–3, respectively. These figures have been built using a deterministic (frequency dependent) com-
partmental SEIRD model (S = Susceptible, E = exposed, I = infectious, R = recovered, D = dead) (Keeling & Rohani,  2008), 
which includes normal mortality affecting all compartments and case fatality affecting the I compartment only (Hobbelen 
et al., 2020). Dynamics were built using the parameters reported in Table 3: the transmission rate, the rate at which birds 

T A B L E  3  Within- flock transmission parameters for unvaccinated and vaccinated partially protected bird flocks (i.e. 30% of the vaccinated flocks 
where R > 1).

Parameter

Chicken layers Ducks Turkeys

Unvaccinateda Vaccinateda Unvaccinatedb,c Vaccinatedc Unvaccinatedd,e Vaccinatedf

Transmission rate (day−1) 1.13 0.47 4.02|10.8 1 3.2 0.64

Latent period (days) 1 1 1|1 1 1

Infectious periodsurvive 
(days)

3.2 6.8 7|8.1 2.7 – 4

Infectious perioddie (days) 3.2 4.5 4.9|– – 4 4

Case fatality (range) 0.95–1 0.2–1 0–0.8 0–0.1 0.9–1 0.37–0.62

Daily mortality not 
attributed to HPAI 
(baseline mortality rate)

0.0002 0.0004 0.0007 0.0007

Mortality at day of 
reporting suspicion. 
Mean (range)

1.66 (0.25–5.27)% 1.8 (0.46–15.34)% 1.50%

Proposing reporting 
thresholds

0.08 (indoor layers)–0.13 
(outdoor)%

0.17% 0.21%g 0.21%g

aGermeraad et al. (2023).
bTatár- Kis et al. (2019). The value at the left of ‘|’ come from this reference.
cGrasland et al. (2023). Values for vaccinated are the upper confidence limits of the parameter estimates. Mean estimates resulted in R values lower than 1. These values 
are for mule ducks. These values are those provided at the right of ‘|’.
dSsematimba et al. (2019).
eReference laboratory EURL.
fThese values are assumed since no data on transmission parameters in vaccinated flocks could be found.
gNo literature was found, hence we assumed a value three times higher than the ‘normal’ daily mortality as a potential threshold for evaluation.
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of compartment E become I (1/latent period) and the rate at which I birds either die or recover (1/infectious period). Note 
that for the assessment, a stochastic model was employed to offer a more detailed understanding of virus transmission 
dynamics (see below).

F I G U R E  1  Infection dynamics (deterministic modelling) of HPAI H5N1 in unvaccinated (left panels) (reproduction number = 3.6) or vaccinated 
(right panels) (partially protected, vaccine does not fully stop sustained transmission, R = 2.6) chicken layers. Dd, daily mortality; I, Infectious 
birds; R = recovered- seroconverting birds. The two lower panels provide a zoomed in view of the upper panel, facilitating the visualisation of the 
reported suspicion mortality level (dashed line) and how this level (1.66%, Table 3) intersects the infection dynamics curves. Case fatalities assumed 
were 0.95 (95%) and 0.4 (40%) for unvaccinated and vaccinated flocks, respectively. The two lower panels provide a zoomed- in view of the upper 
panel, facilitating the visualisation of the reported suspicion mortality level (dashed line) and how this level (1.66%, Table 3) intersects the infection 
dynamics curves. Case fatalities assumed were 0.95 (95%) and 0.4 (40%) for unvaccinated and vaccinated flocks, respectively.
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F I G U R E  2  Infection dynamics (deterministic modelling) of HPAI H5N1 in unvaccinated (left panels) (reproduction number = 24) or vaccinated 
(right panels) (partially protected, vaccine does not stop sustained transmission, R = 2.7) ducks. Dd, daily mortality; I, Infectious birds; R, recovered- 
seroconverting birds. The two lower panels provide a zoomed- in view of the upper panel, facilitating the visualisation of the reported suspicion 
mortality level (dashed line) and how this level (1.8%, see Table 3) intersects the infection dynamics curves. Case fatalities assumed were 0.4 (40%) and 
0.05 (5%) for unvaccinated and vaccinated flocks, respectively.

F I G U R E  3  Infection dynamics (deterministic modelling) of HPAI H5N1 in unvaccinated (left panels) (reproduction number = 12.8) or vaccinated 
(right panels) (partially protected, vaccine does not stop sustained transmission, R = 2.6) turkeys. Dd, daily mortality; I, Infectious birds; R, recovered- 
seroconverting birds. The two lower panels provide a zoomed- in view of the upper panel, facilitating the visualisation of the reported suspicion 
mortality level (dashed line) and how this level (1.5%, see Table 3) intersects the infection dynamics curves. Case fatalities assumed were 0.95 (95%) 
and 0.4 (40%) for unvaccinated and vaccinated flocks, respectively.
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Of note are the differences in the duration of the epidemic, the number of infectious birds (I) in time and the observed 
daily mortality when comparing unvaccinated and partially protected establishments in Figures 1–3. Also, note the differ-
ences between the three poultry species assessed and the impact of vaccination on reducing case fatality and therefore 
the proportion of daily dead birds in these vaccinated flocks. For example, the very low case fatality assumed in vaccinated 
ducks leads to low proportions of daily dead birds. However, a consistent increase in daily mortality (above the ‘baseline 
mortality’) can still be observed later than the day 11 of the epidemic. In simple numbers, if a flock consisted of 6000 ducks, 
at day 12 there would be around five dead ducks with at least two out of those five being dead due to HPAIV infection.

Definition of infectiousness of a flock and between- flock transmission

Reporting and control of HPAI is compulsory in the EU, and HPAI outbreaks in unvaccinated flocks are generally detected by 
passive surveillance before the outbreaks reach their completion (no infectious or susceptible birds left in the flock) (Figures 1–
3). We assumed that a flock is infectious (i.e. the establishment is therefore infected) and can infect other establishments from 
the time the flock becomes infected and the first infected birds become infectious (generally 1 day post infection) until the 
daily mortality rate within the flock reaches the observed average mortality rates of the reported and confirmed outbreaks. 
At this stage, it is assumed that the flock would be detected and removed (Table 3). We defined infectiousness by function 
A(t), and assumed that infectiousness is dependent on the prevalence of infectious (shedding virus) birds in time, so that the 
higher this prevalence the higher the infectiousness. Therefore, A(t) was estimated as (Gonzales et al., 2014):

where I(�) is the prevalence of infectious birds at time t and the expected overall infectiousness was obtained by integrating 
over t from the time of introduction of infection (t = 0) to the time of detection by passive surveillance (t = ps). This overall 
infectiousness multiplied by a constant c, which contains information on the between- flock contact rate and the probability of 
transmission, defines the expected between- flock reproduction number Rh:

Because the transmission dynamics in vaccinated flocks are different from the one in unvaccinated flocks and mortality 
levels are likely to be lower, thereby compromising detection by passive surveillance, we did not estimate infectiousness 
for vaccinated flocks, and we assumed instead that an infected vaccinated flock would remain undetected by passive 
surveillance until it reaches a level of infectiousness similar to the one we estimated for an unvaccinated flock. In other 
words, we used the estimated A(ps) for unvaccinated flocks as a reference to assess the efficacy of implementing active or 
enhanced passive surveillance (see below).

Active or enhanced passive surveillance and its effect on transmission

Even when surveillance is performed on a regular basis, there remains a probability that an infected flock escapes de-
tection. This can occur, for example, when the prevalence of infected birds at the time of sampling is still lower than the 
predefined design prevalence. In such cases, there is a potential risk of transmission to flocks in other establishments. The 
probability of escaping detection (Pesc) at time t  is defined as

where p(�) is the prevalence of infected birds, which depending on the sampled population could be dead birds, infectious live 
birds or recovered- seroconverting live birds. Se is the diagnostic test sensitivity expressed in values between 0 and 1 (e.g. qPCR 
for swab samples from dead or infectious live chickens or ELISA for serum samples to detect seroconverting live birds) and n is the 
number of birds sampled (sample size). Finally, Δ is the sampling interval (in days) and refers to the repeated sampling performed 
on a flock at a determined time interval with the probability of escaping detection at time � with p(�) being conditional on the 
probability of having escaped detection at an earlier sampling time with p(� − 1) within the sampling interval. A key parameter de-
termining the probability of escaping detection is the prevalence of infected birds at the time of sampling p(t). However, in reality, 
it is not known when a flock could become infected. Therefore, this model considers that the introduction of infection takes place 
at a random moment between two adjacent sampling events. Following this consideration, the expected prevalence of infected 
birds can be calculated by averaging the prevalence of infected birds at the moment of sampling p(�) over all possible introduction 
moments within Δ (Gonzales et al., 2012; Graat et al., 2001). In this analysis, we assumed perfect specificity, which means that any 
positive result, particularly if detection is based on a serological test, would need to be followed up to confirm or exclude infection.

Next, we estimated the expected infectiousness of a flock that escapes detection (As(t)). This infectiousness is a function 
of the fraction of infectious birds escaping detection at time (t) of sampling as

(1)A(t) = ∫
t

0

I(�)d� ,

(2)Rh = cA(ps).

(3)Pesc(t) =

�=t
∏

�=0

exp

(

−
p(�)nSe

Δ

)

,

(4)As(t) = ∫
t

0

I(�)Pesc(�)d� .
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The expected infectiousness of a flock that escaped detection was then obtained by integrating over t ∈ [0, ps]. If sur-
veillance is effective, we expect As(ps) to be lower than A(ps) and this reduction in infectiousness would result in a propor-
tional reduction in Rh, hence similar to Equation (2), the expected between- flock reproduction number given surveillance 
(Rs) (Gonzales et al., 2012) can be calculated as

From Equation (2), we obtained c = Rh
A(ps)

 and by substituting c into Equation (5) we got:

When Rs < 1 a flock would be detected on average before it transmits infection to another flock in one or more other 
establishments (‘early detection’). Under this requirement, large epidemics would not be expected, due to early detection 
and removal.

A key parameter to consider in the model is Rh. We have only estimated Rh for unvaccinated poultry populations in some 
European countries (EFSA AHAW Panel, 2023) and there are no specific estimates of Rh in populations where there is a com-
bination of vaccinated- protected poultry flocks, vaccinated- partially protected flocks and unvaccinated flocks. Because of 
that, we had to assume a hypothetical value. In poultry- dense populations like those included in the Opinion Part 1, one 
could expect that Rh exceeds 1, but is lower than the Rh estimated in unvaccinated populations.

Model implementation

Using the parameters reported in Table 3, a stochastic compartmental SEIRD model (Hobbelen et al., 2020) was built using 
the library SimInf (Widgren et al., 2019) in the statistical software R (R Core Team, 2018). We refer the reader to Widgren 
et al. (2019) for a detailed overview of stochastic compartmental models within this package. A total of 1000 simulations of 
HPAI outbreaks (for each poultry species) in vaccinated flocks were performed. Building on these simulations, the above- 
mentioned surveillance model was implemented to quantify A(t) and As(t). These values were then related to a hypotheti-
cal Rh to calculate Rs as the reference measure to compare different surveillance strategies, encompassing different sample 
types, sizes and frequencies at the flock level. The methodological steps were as follows:

– We selected outbreak simulations in which a significant number of infected birds (I) occurred, i.e. those with a peak of I 
exceeding five birds (regardless of the assessed flock size). We considered these outbreaks ‘major outbreaks’.

– For each of these major outbreaks, we estimated A(t) and As(t). The latter depends on the surveillance strategy assessed.
– Surveillance strategies assessed were a combination of the type of sample, the sample size, sampling frequency and the 

diagnostic test used.
– Different sampling strategies were considered, involving the random selection of birds and sample sizes. Specifically, all 

dead birds up to a number of 5, 10 and 15 or more dead birds were randomly sampled and tested. If there were fewer 
dead birds than the required sample size (e.g. 5) on a given day (or a combination of 2 days), all available dead birds are 
sampled and tested. Note that in the model one additional day was assumed between this sampling/testing day and 
the diagnostic results. In addition, scenarios where live birds are randomly selected for sampling were also assessed. We 
assessed a sample size of 60 birds (as suggested in the EU Regulation), but also tested lower (n = 30) or higher sample 
sizes (n = 90 or 120). Note that sampling of birds refers to sampling birds in a flock, considering that an establishment can 
have more than one flock, this sample sizes would have to be taken for each flock within the establishment.

– Each considered sample size was assessed in combination with different sampling intervals: every 7, 14 and 30 days as 
recommended in the EU Regulation. In addition, we assessed longer sampling intervals. A combination of sample size 
and sampling interval was considered suitable only if the probability to escape detection reached levels lower than 0.01 
(Figure 4) for more than 95% of the outbreak simulations. This means that at least 99% of outbreaks are detected in ≥ 95% 
of the simulations, given that surveillance strategy.

– To assess the effectiveness of surveillance for early detection, we defined the following hypothetical Rh values (see 
model description) in unvaccinated flocks ranging from 1.4 to 1.8, which are the mean Rh estimates obtained, from the 
transmission kernel analyses done for the Opinion Part 1 using data from epidemics in France, Italy and the Netherlands 
(EFSA AHAW Panel, 2023).

– We then derived the following performance indicators:

◦ Reduction of infectiousness As(t) and Rs, given detection.
◦ Median time from introduction to detection of an outbreak, which was derived as the time when the probability of 

escape at the farm level was 0.5 (Figure 4).
◦ In addition, the prevalence of infectious and recovered (seroconverting) birds at the time of detection was also 

reported.

(5)Rs = cAs(ps).

(6)Rs =
As(ps)

A(ps)
Rh.
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2.1.5.2 | Methodology to assess surveillance for early detection (P1) and demonstration of freedom (P3, P4) following 
preventive vaccination

Scenario tree models were used to estimate the sensitivity (Se) of the surveillance systems to demonstrate freedom from 
disease and to provide inputs for assessing early detection of HPAI, the latest only in a preventive vaccination scenario. 
A scenario tree model is a structured approach to describe the process of disease detection of a surveillance system or a 
component of that. A surveillance system component is a surveillance activity that, in itself, can contribute evidence to dis-
ease freedom; it has the capacity to detect disease if/when it occurs. This includes both general and targeted surveillance 
activities; both active and passive. A scenario tree graphically traces all pathways by which a single unit can be detected 
as infected by the system; it defines the conditional probabilities associated with each step in the pathway and it is use-
ful for calculating surveillance components' sensitivity and the sensitivity of the surveillance system as a whole (Martin, 
Cameron, Barfod, et al., 2007; Martin, Cameron, & Greiner, 2007). This analysis provides an estimation of the probability 
that the surveillance would be able to detect an infection or a disease in the unit of interest (an animal, a sample, a pooled 
sample, a group of animals, a region), given that the condition is present in the population at a level specified by the design 
prevalence. Surveillance component sensitivity (CSe, see Glossary) is the average probability that a surveillance system 
component will return a positive surveillance outcome, given that the disease is present in the population at a level equal 
to or greater than the specified design prevalence.

The logical and practical structure of the surveillance strategy applied can be outlined by a scenario tree, in which the 
process of disease detection is quantitatively described by including all factors affecting the probability that a surveillance 
unit will be infected and all those affecting the probability that will be detected. In each branch of the tree, which usually 
identifies a surveillance component, proportions and probabilities are assigned to a node, one for each stage of the diag-
nostic process. We can identify different types of nodes: category nodes, which define groups into which units or group of 
units fall, risk nodes (the population into subsets with different risks of being infected at the design prevalence), infection 
nodes (infection status of a unit), detection nodes (any event, action or test which contributes to an infected unit's detec-
tion in the surveillance process). An example of the scenario tree model used for this assessment is provided in Figure 5. 
This tree illustrates the category of the population which is vaccinated and represents the target of surveillance (which is 
the focus of the assessment), commercial chicken layers in this example. The tree includes multiple risk nodes. The first risk 
node is associated with the relative risk (RR) of virus incursion in the zone, which describes the probability of virus incursion 
in a given geographical area relative to the probability of the same event in the other geographical areas (RRLow, RRMod, 
RRHigh). The proportion of poultry present in this incursion zone is also attributed to this risk node (Prpoultry). The second 
risk node refers to the RR of virus incursion in poultry, which describes the probability of virus incursion in a given poultry 
type, relative to the probability of the same event in the other poultry types (RRLayers&breeders, RRBroilers, RRTurkeys, 
RRDucks). The proportion of poultry type being present in this incursion zone is attributed to this risk node (Prlayers, 
Prbroilers, Prturkeys, Prducks). The tree also includes probability nodes, that are the probability that a vaccinated estab-
lishment is protected (Pvp) and the probability that sustained transmission is established following incursion (Pinf). Pinf was 
calculated based on a design prevalence of 0.01 multiplied by the probability of having major outbreaks (for simplicity, in 

F I G U R E  4  Probability of an infected vaccinated flock (one outbreak simulation is shown) escaping detection given three surveillance strategies 
based on sampling five dead birds at an interval of 7 days (black line), 14 days (red line) and 30 days (blue line). In this flock the probability of escaping 
detection when sampling at intervals of 14 and 30 days does not decrease below the required level of detection 0.01 (≥ 99% of probability of 
detection). This requirement could be reached by increasing the number of birds sampled. The x- axis is the time in days from the start of outbreak in 
the flock.



26 of 70 |   HPAI VACCINATION IN POULTRY – PART 2

unvaccinated flocks, this probability is assumed to be 1 and for vaccinated flocks this probability is 1 − 1/Rv, where Rv is the 
within- flock transmission parameter).

As ultimate outcome of the tree there is the probability that an outbreak is detected (Ppos) given the Se of testing at flock 
level (Fse). Note that one or multiple flocks could be present within an establishment, and that the detection of one infected 
flock is enough to consider the whole establishment infected (see Table 4 for an explanation of these elements).

The risk nodes contain information on the proportion of the population within each node and the RR attributed 
to that. The RR describes the probability of virus incursion in one group relative to the probability of the same event 
in the other group. These two are combined into adjusted RR (AR for the zone: ARLow, ARMod, ARHigh; AR for poultry: 
ARLayers&breeders, ARBroilers, ARTurkeys, ARDucks), which ensures that the average design prevalence is constant across 
the population (for more details, see Martin, Cameron, & Greiner, 2007).

The probability of detection of a truly infected flock/establishment (outbreak) was given by:

For unvaccinated flocks, Pvp = 0. The testing strategy at the establishment (flock) level and corresponding FSe is derived 
from the early detection model described in the previous section. Then, the sensitivity of a surveillance component (CSe ), 
which represents the probability that at least one infected flock (establishment) is detected and thus refers to a specific 
part of the overall surveillance system, was given by:

With i identifying each specific component of the system and n being the number of establishments sampled within the 
component. If all farms are sampled, then the exact method to calculate CSe was used as described by Martin, Cameron, 
Barfod, et al. (2007) and Martin, Cameron, and Greiner (2007). Note that, if an establishment has more than one flock, each 
flock needs to be sampled following the defined surveillance strategy. One infected flock is sufficient to consider the whole 
establishment infected. The WOAH standards state that all vaccinated establishments need to be sampled. Hence, n in our 
reference surveillance scenario includes the total number of vaccinated establishments within the target surveillance area/
zone. Additionally, we assessed scenarios based on random sampling of a representative number of establishments.

(7)ppos = ARzone × ARpt ×
(

1 − Pvp
)

× Pinf × FSe.

(8)CSei = 1 −
(

1−Ppos
)n
.

F I G U R E  5  Illustrative diagram of a scenario tree model describing the surveillance process applied to the poultry population vaccinated. For 
this illustration, chicken layers represent the target for preventive vaccination in a given country and the unit where surveillance is applied is the 
establishment. A similar scenario can be derived for any other poultry sector/species targeted for vaccination (e.g. ducks in France or turkeys in Italy) 
and at other unit level (e.g. flock, zone). FSe, sensitivity of testing at establishment level; Lay, layers; PInf, probability of infection; Pr, proportion; PVP, 
probability that a vaccinated establishment is protected; RR, relative risk.
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Then, to assess the early detection surveillance sensitivity of each SSC (EDSei), that is the probability that the surveillance 
activity is able to correctly detect, among the poultry establishments, the epidemiological unit(s) affected by a new incur-
sion within a specific time frame, we followed the method proposed by Cameron et al. (2020):

where Cpi corresponds to the proportion of the population, in component i, targeted for surveillance, with Cti being the tempo-
ral coverage, indicating the conditional probability that an establishment will be tested within a predefined time frame, e.g. the 
time corresponding to median time from introduction to detection of an outbreak by passive surveillance divided by the given 
sampling interval. Time frame values for unvaccinated species and vaccinated species were extracted from results provided in 
Tables 15A–17B. CSei corresponds to the sensitivity of the surveillance component i (Equation. 8).

After the EDSe for each surveillance component had been calculated, the total surveillance system sensitivity 
(TotalSe, see Glossary) could be summarised as:

With i being the number of component's EDSe.

(9)EDSei = Cpi × Cti × CSei ,

(10)TotalSe = 1 −
∏

i

(

1 − EDSei
)

.

T A B L E  4  Parameter values included in the model and the source from which these values were obtained.

Parameter Description Values Reference

Relative Risk of virus 
incursion in the 
geographical zone

The relative risk of virus incursion in the zone 
describes the probability of virus incursion 
in one given geographical area, relative to 
the probability of the same event in other 
geographical areas (RRLow, RRMod, RRHigh). 
These relative risks were estimated by 
analysing data of primary introductions of 
HPAI in poultry in the Netherlands and were 
used for modelling surveillance in France and 
Italy as well

Mean (95% CI)a

RRLow = 1 (reference)
RRModerate = 2.98 (1.80–4.78)
RRHigh = 6.62 (4.40–9.90)

This Opinion. Estimates 
were derived from data 
in Gonzales et al. (2023)

Relative risk of virus 
incursion in poultry 
species

The relative risk of virus incursion in poultry 
describes the probability of virus incursion 
in one given poultry species, relative to 
the probability of the same event in the 
other poultry species (RRLayers&Breeders, 
RRbroilers, Rrturkeys, Rrducks). The relative 
risks estimated for the Netherlands were 
used for modelling surveillance in France and 
Italy as well

Mean (95% CI)a

RRLayers&breeders = 1 
(reference)

RRBroilers = 0.3 (0.1–0.7)
RRTurkeys = 2.8 (1.1–6.5)
RRDucks = 3.7 (1.8–7.6)

This Opinion. Estimates 
were derived from data 
in Gonzales et al. (2022)

Proportion of poultry 
population (Pr)

The proportion of specific poultry type 
establishments (e.g. turkeys) within the area/
zone targeted for surveillance

Country specific Opinion Part 1 (EFSA AHAW 
Panel, 2023)

Probability protected (Pv) The proportion of establishments (flocks within 
the establishments) effectively protected 
following vaccination

0.7 (0.5–0.8)a Opinion Part 1 (EFSA AHAW 
Panel, 2023)

Probability of infection 
(Pinf)

This is the probability of having a major 
outbreak following virus incursion adjusted 
by the hypothetical design prevalence. 
Pinf = DP × (1 – 1/Rv), where Rv is the 
within- flock transmission parameter. For 
unvaccinated flocks, the probability of a 
major outbreaks is assumed to be 1

Rv valuesa for
Chickens: 2.1 (1.03–4.0)
Ducks: 2.7 (1.3–4.0)
Turkeys: 2.6 (1.3–4.0)
Design Prevalence (DP) = 0.01

Germeraad et al. (2023) 
Grasland et al. (2023). 
Table 3

Se sampling at flock level 
(FSe)

Combination of sample size and sampling 
interval derived using the methodology for 
early detection described in Section 2.1.5.1

Se valuesa [Median (lower – 
higher)]b when sampling 
15 birds every 30 days 
were:

Chickens: 97 (92–99)
Ducks: 96 (89–98)
Turkeys 96 (87–97)

This Opinion

aFor all these parameters, a pert distribution was used in the stochastic simulations.
bThese values are the percentage of outbreak simulation detected (Sensitivity) for probabilities of escaping early detection of < 0.05 (median). Lower and higher values 
used for the stochastic simulations around this parameter (using a pert distribution) were derived by using the escaping probabilities < 0.01 (lower value) and < 0.1 (upper 
value).
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Finally, the probability that the population is free from HPAI (Pfree), given that surveillance did not detect any infected 
establishment and assuming perfect specificity, as stated in the previous section, was based on Martin, Cameron, Barfod, 
et al. (2007) and Martin, Cameron, and Greiner (2007) and given by:

where priorInf is the prior probability that the poultry population at the establishment level would be infected (hypothetical prior 
prevalence in the population, see Glossary). To determine this prior probability, we used the hypothetical design prevalence of 
1% times the risk (probability) for infection during the autumn–winter months relative to that in the spring–summer months. This 
relative risk was considered to be 5 (Gonzales et al., unpublished data). Consequently, priorInf was assumed to be 5%.

In Equation (11), we used either EDSe or TotalSe depending on the vaccination status of poultry establishments for which the 
probability of freedom was estimated. We used EDSe if we focused on the vaccinated establishment and TotalSe if we focused 
on all the establishments (vaccinated and unvaccinated) subjected to surveillance in all five components of the scenario tree.

2.1.5.3 | Methodology to assess vaccination effectiveness and level of immune response induced by vaccination 
(surveillance strategies E2, P2)

The surveillance strategies to assess vaccination effectiveness and the level of immunity response, E2 and P2, respectively, 
were addressed descriptively and the assessment performed is reported in Sections 3.1.2.4 and 3.1.2.5.

Vaccine effectiveness (VE) (E2) was considered as the ability of a vaccine to protect animals from a disease or an infec-
tion under field conditions. It differs from vaccine efficacy, which is measured under controlled conditions in laboratory 
settings typically through challenge experiments. The effectiveness of vaccination in real scenarios is likely to vary across 
countries and vaccination campaigns and can be assessed by observing the occurrence of HPAI outbreaks in a country 
where vaccination is implemented.

VE can be estimated as 1 minus a measure of RR in the vaccinated population compared with the unvaccinated popu-
lation. These RR measures depending on the type of data collected and method of analysis could be for example: the RR, 
based on incidence or rates of infection, prevalence ratio (attack rates, cumulative incidence), the odds ratio (OR) or the 
hazard ratio (HR).

Level of immune response induced by vaccination (P2). Given the lack of knowledge on identifying a correlate of 
protection, e.g. a given HI titre, which can be used to monitor the level of immunity reached within a flock (EFSA AHAW 
Panel, 2023), possible pragmatic approaches to estimate the level of immune response induced by vaccination were given 
and general considerations, e.g. on when to apply the sampling, were discussed.

2.2 | ToR 4 – Risk mitigation measures

In ToR 4, the assessment focused on risk mitigation measures to be implemented in vaccinated poultry aiming at prevent-
ing the spread of HPAIV by moving poultry and their products following emergency and preventive vaccination. Firstly, the 
measures laid down in the Delegated Regulation (EU) No 2023/361 and in the general and specific conditions of Delegated 
Regulation (EU) No 2020/6878 for derogation were assessed (ToR 4.2). To enhance clarity, in Figures 6 and 7, these risk miti-
gation measures provided in the current legislation are described as two distinct groups: testing measures and other meas-
ures. It is important to highlight that these two categories of measures are not alternatives, but they complement each 
other. Secondly, alternative risk mitigation measures were defined by the Working Group, for both emergency and preven-
tive vaccination scenarios, as requested in ToR 4.2.

2.2.1 | Risk mitigation measures as per delegated regulation (EU) No 2023/361 after vaccination

Delegated Regulation (EU) No 2023/361 envisage different risk mitigation measures to be implemented following vaccina-
tion in poultry, captive birds and wild birds.

According to Part 3 in Delegated Regulation (EU) No 2023/361, when implementing emergency protective vaccina-
tion, vaccinated animals and their products will be subject to the prohibition of movements within and outside the vacci-
nation zone. The competent authority may allow the movement of animals if they are subject to compulsory killing or if 
their movement has been authorised. Movements of vaccinated poultry/captive birds/their product can be authorised if all 
the conditions for moving them from protection and surveillance zones provided in Delegated Regulation (EU) No 
2020/6879 (Article 28, 29, 30, 31(1), 33, 34 and 37) are fulfilled (Figure 6). At the end of the recovery period (i.e. 28 after com-
pletion of emergency protective vaccination or when lifting the restricted zones), all the measures for granting a 

(11)Pfree =
1 − priorInf

1 − priorInf × EDSe
,

 8As per Articles 28, 29, 30, 31 (1), 33, 34 and 37.
 9As per Articles 28, 29, 30, 31 (1), 33, 34 and 37.
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derogation for moving that are provided for preventive vaccination applies (Figure 7), including the reinforced surveillance 
to be implemented for preventive vaccination (see Table 1).

According to Points 3 to 4 of Part 5 in Delegated Regulation (EU) No 2023/361, when implementing preventive vacci-
nation, the movement of animals and their products from the establishment of vaccination is prohibited. The competent 
authority may allow the movement of animals and their products if they are not included in the list of animals and products 
subject to the prohibition of movements or if they comply with relevant conditions and their movement has been autho-
rised. The conditions for granting a derogation for movement are described in Figure 7.
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F I G U R E  6  Provisions as in Delegated Regulation (EU) No 2020/687 to grant authorisation for movement of poultry/captive birds/their product within and from emergency vaccinated zones.
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F I G U R E  7  Provisions as in Delegated Regulation (EU) No 2023/361 to grant authorisation for movement of poultry/captive birds/their product within and from preventive vaccinated zones.
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2.2.2 | Definition of risk mitigation measures scenarios

In addition to the mitigation measures described in Section 2.2.1, the Working Group identified and assessed the provision 
of demonstrating freedom from HPAIV as an alternative approach to enable safety movement of poultry and their prod-
ucts within and outside vaccinated zones and from a vaccinated establishment. The methodology used to demonstrate 
freedom from HPAIV was the scenario tree model as it is described in Section 2.1.5.2.

2.3 | Uncertainty analysis

The uncertainty analysis was performed following the procedure detailed in the EFSA guidance on uncertainty analysis 
in scientific assessments (EFSA Scientific Committee, 2018). The sources of uncertainty associated with the data available 
and methodology used are listed and discussed in Section 3.3, but their impact on the assessment was not quantified. 
For the assessment of the effectiveness of the surveillance strategies at the establishment level (except ‘passive reporting’ 
and ‘mortality threshold’), the percentage of simulated outbreaks in which the desired detection probability threshold 
(> 99%) was achieved was used as a proxy for the certainty regarding the effectiveness of a particular surveillance strategy, 
so that only strategies in which > 95% certainty was achieved were considered effective. In the case of surveillance strate-
gies based on ‘passive reporting’ and ‘mortality threshold’, the certainty on their effectiveness was quantified using the 
97.5% confidence intervals for the between- flock transmission (Rs) obtained using the transmission models, so that these 
strategies were considered effective for HPAIV early detection if the 95% upper confidence limit was below 1 (i.e. their use 
stopped sustained between- flock transmission).

3 | ASSESSM E NT

3.1 | ToR 3: Surveillance

3.1.1 | Diagnostic methods

Ideally, efficient vaccination results in sterile immunity, i.e. the vaccinated animals can no longer become infected upon 
virus exposure and therefore can neither fall ill nor replicate and excrete the virus. In reality, this state is usually not achieved 
on a population base. Thus, individual infections in a vaccinated flock that also lead to virus excretion by vaccinated animals 
cannot be fully excluded. However, the threshold to become infected should be higher and subsequent virus excretion 
should be significantly lower in amplitude and shorter in time than that of the unvaccinated animals. As a result, smaller 
amounts of virus at a lower prevalence compared with unvaccinated exposed flocks are available for detection. In order to 
detect these, the methods with the highest sensitivity should be used in the active surveillance of vaccinated flocks. When 
assessing various diagnostic methods in this respect, their analytical and diagnostic sensitivity and specificity must be 
considered along with other factors which can modify their performance characteristics: sample matrices (increased risk 
of the presence of PCR inhibitors in certain matrices e.g. faeces), enrichment effects (e.g. through skilful selection of target 
subjects – dead/diseased animals have a higher probability of being virus- positive) or dilution effects (pooling of samples). 
Vaccinated animals falling sick or dying due to HPAIV infection in vaccinated flocks, in contrast, in most cases are expected 
to produce amplitudes of virus similar to unvaccinated birds.

3.1.1.1 | Virological methods

Surveillance activities can rely on virological examination of samples collected in vaccinated flocks to obtain timely infor-
mation about the active circulation of field viruses inside the flock. Vaccination can narrow the window of viral shedding 
of birds and lower viral replication titres; thus, the ability of virological tests to detect active viral circulation in flocks may 
diminish. Before molecular methods became widely available in veterinary laboratories, detection of AIV from clinical sam-
ples was performed by inoculation of embryonated specific pathogen free (SPF) chicken eggs (ECE). However, nowadays, 
inoculation of ECE is generally used only on PCR- positive samples as a confirmatory assay or to obtain viral isolates for 
phenotypic characterisation, since several factors can negatively affect viral isolation success and therefore the sensitivity 
of the method.

Virus isolation 

The preferred method of growing influenza A viruses is by the inoculation of SPF ECE, or specific antibody- negative (SAN) 
eggs. The use of ECE in some EU Member States may be considered an animal experiment that is subject to authorisation 
by an ethics committee. Clarified supernatant preparations of clinical samples are inoculated in the chorioallantoic sac of 
three to five embryonated SPF or SAN ECE of 9–11 days of incubation. The eggs are then incubated at 37°C for 2–5 days and, if 
deemed necessary, a second passage can be performed. The chances of virus replication are determined by the infectivity 
retained in the sample. This, in turn, is influenced by characteristics of the sample and the way in which it is transported 
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and stored to preserve the infectivity of the virus. Virus isolation is not recommended for screening during vaccination- 
assisted surveillance due to the long duration of the test (embryos are monitored up to 5 days following inoculation by 
candling and a second passage of again up to 5 days may be necessary to prove the absence of replicating virus). In 
addition, the high number of samples to test generates high costs for the SPF eggs and binds staff for a considerable 
time. In the surveillance activities to be implemented in vaccination zones, considering these limitations, the use of virus 
isolation can only be considered as an alternative to molecular methods in exceptional circumstances limited in time (e.g. 
lack of reagents for molecular biology methods). However, following outbreak confirmation in vaccinated populations, it 
would be important to attempt viral isolation to allow further phenotypic characterisation that requires the availability of 
the live HPAI virus.

3.1.1.2 | Molecular methods

Conventional RT- PCR and Real- time RT- PCR (RT- qPCR) 

Molecular techniques are now used preferentially for the diagnosis of HPAIV infection directly from clinical specimens 
of birds. The current definition of HPAIV according to the Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 
Chapter 3.3.4 – Avian influenza (including infection with high pathogenicity avian influenza viruses) (WOAH, online- b), 
includes the molecular identification of virulence factors in the endoproteolytic cleavage site of the haemagglutinin 
(HA) protein of AIV of subtypes H5 and H7 and therefore enables the use of molecular techniques in the diagnosis of 
HPAI. Although conventional RT- PCR techniques could result in faster detection and subtype identification (at least of 
H5 and H7) at lower costs compared with virus isolation, and also provide a PCR amplicon product ready for nucleotide 
sequencing to define the pathotype, real- time amplification techniques have largely replaced conventional RT- PCR 
techniques. Real- time quantitative RT- PCR (RT- qPCR) offers increased turn- around time, added cross contamination 
prevention and is generally applicable to high- throughput analyses at all steps of the diagnostic algorithm, i.e. generic 
IAV detection, subtype specification and pathotype characterisation. Thus, these types of tests are now routinely used to 
process samples collected during surveillance activities in the EU. Clinical samples positive in tests specific for H5 or H7 
must be further investigated for the identification of molecular signatures typical of HPAI or LPAI viruses. Due to its superior 
analytical sensitivity, pooling clinical samples is possible with RT- qPCR which further reduces costs. Pool size represents 
an important measure to reduce costs and allows the processing of larger numbers of samples, if carefully applied. Yet, 
pooling intrinsically decreases the analytical sensitivity of detection as samples are diluted. When pooling 5–10 samples 
this effect is usually negligible (Fereidouni et al., 2012; Ladman et al., 2012) but, nevertheless, arithmetically may lead to 
false- negative results for single samples with viral loads close to the limit of detection. Guidelines based on laboratory 
evidence on pooling recommendations in different species are available on the EURL website (EURL, online). Laboratories 
processing samples in pools should validate their internal procedures aiming to maximise efficiency without significantly 
affecting diagnostic sensitivity of the methods.

For screening purposes, generic M gene targeting RT- qPCR methods (e.g. SOP VIR018 available on the EURL website 
(EURL, online)) are preferred due to higher diagnostic sensitivity (99%–100%) and specificity (99%–100%) compared with 
other targets. Such methods can be used on clinical samples collected from live or dead birds for early detection or mon-
itoring freedom from infection in vaccinated or unvaccinated poultry flocks. If vaccination reduces virus shedding effec-
tively, the probability of any PCR to detect a positive sample will decrease. Also, the interpretation of subtype- specific 
RT- qPCRs in flocks vaccinated with modified live/vectored H5 or H7 vaccines could be affected: Organs/injection sites 
where active replication of the vaccine is taking place (e.g. spleen) would yield positive results to such assays even in the 
absence of field virus. Further investigations on recommended diagnostic methods to be applied in animals vaccinated 
with live vectored vaccines are currently ongoing at EURL. Specific RT- qPCRs tailored to the vector vaccine used may be 
required to distinguish residual vector vaccine inserts from HPAI field virus. The residual genetic material in birds vacci-
nated with inactivated vaccines is not to be expected unless injection sites are sampled and examined. Data available from 
vaccination trials performed in the EU against recent strains belonging to 2.3.4.4b clade indicate that samples collected 
from the respiratory tract, such as oropharyngeal/tracheal swabs, should be favoured in surveillance activities over cloacal 
swabs. The use of only oral swabs would be justified by higher and longer shedding compared with the ones observed 
in cloacal swabs obtained from chickens and turkeys. This would help save resources, labour and time for sampling in ac-
tive surveillance programmes according to Delegated Regulation (EU) No 2023/361. Any positive result in clinical samples 
should be interpreted as potential indication of an AI infection and prompt immediate identification of the respective 
AIV sub-  and pathotype by appropriate methods and time for sampling in active surveillance programmes according to 
Delegated Regulation (EU) No 2023/361.

The same assays used for surveillance in animals could also be applied to analyse sample matrices different from clinical 
specimens such as environmental samples collected for surveillance purposes or for verification of cleansing efficacy (e.g. 
swabs from surfaces, drinking water, air samples, etc.). Delegated Regulation (EU) No 2023/361 imposes the condition to 
use exclusively clinical sample material in vaccination surveillance programmes. However, the extent of sampling and in-
vestigating is considerable and might itself form an obstacle to the implementation of vaccination. Thus, the use of further 
informative matrices of the environment in poultry holdings could be a measure to mitigate those obstacles. Appropriate 
systematic validation studies of these matrixes and appropriate exogenous inhibition controls for environmental samples 
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are still missing. Also, based on farm infrastructure and poultry species, the usefulness of different environmental samples 
can vary considerably (Grasland et al., 2023).

Molecular methods can also be used for monitoring vaccination coverage in birds vaccinated with live vectored vac-
cines. For example, vector replication and therefore expression of the immunising antigen can be monitored by qPCR 
assays specifically designed to detect vaccine- specific genomic sections. For HVT, vector replication, and therefore vaccine 
uptake, can also be assessed in non- invasive samples such as feather pulp. However, the intermittent presence of vector- 
associated genomic material in these types of samples is a major limitation for the accurate estimation of vaccination cov-
erage in vaccinated poultry flocks (Cortes et al., 2011).

Next- generation sequencing (NGS) technologies 

Novel DNA sequencing techniques, commonly referred to as ‘next- generation’ sequencing (NGS), are characterised by high 
speed and throughput allowing the production of an enormous volume of data with many applications in research and 
diagnostic settings. Several commercially available high- throughput sequencing platforms exist that vary by way of their 
sequencing principle, sequencing speed, expense and read length. The amount of total nucleic acids belonging to viral 
particles in clinical samples is often too low for sequencing and may require amplifying of viral nucleic acid using targeted or 
non- targeted approaches. The aim of these sequencing approaches is to (i) sequence all eight IAV gene segments, (ii) verify 
the IAV H gene subtype as reported by existing RT- PCR assays, (iii) determine the IAV N subtype and (iv) generate sequence 
data for analysis of the IAV hemagglutinin cleavage site, for pathotype assessment. In optimal scenarios and using real- time 
devices, this information can be obtained in less than 24 h, which is in many cases a longer turn- around time than RT- qPCR- 
based approaches. NGS technologies do not see a wide application for surveillance purposes mainly because of costs and 
time for analysis, while they are of high value in the further characterisation of detected AI viruses. Analysis of sequencing 
data can provide valuable information to monitor viral evolution and possible sources of introduction. Moreover, several 
studies have identified genetic markers associated with specific phenotypic behaviours that can be identified and used 
to infer the properties of the virus. In the context of HPAI vaccination, monitoring of viral genetic characteristics under 
the selective pressure exerted by immunity towards HPAI in vaccinated flocks allows the detection of mutant viruses and 
informs on the need for vaccine updates and the risks to public health.

Other amplification techniques 

Several alternative amplification strategies have been developed and published including loop- mediated isothermal 
amplification (LAMP), strand displacement amplification (SDA) or Crispr amplification techniques. Some applications have 
been linked to point- of- care testing also. However, validation data for use in vaccinated poultry populations are scarce, 
and commercial products are not readily available at this moment. The potential of these methods has not been yet fully 
explored.

3.1.1.3 | Rapid antigen detection systems

Commercially available generic antigen detection kits are mostly based on enzymatic immunoassays or on immunochro-
matography (lateral flow devices) and generally use a monoclonal antibody against the nucleoprotein or other highly 
conserved regions of the structural proteins of AIVs. Some of these tests have been designed for the detection of influenza 
A viruses in poultry and should be able to detect any influenza A virus independent of its subtype. The main advantage 
of these tests is the rapid confirmation of the presence of an influenza A virus in a few (< 20) minutes. They do not require 
special laboratory equipment and therefore can be used directly on poultry premises without the need of highly trained 
personnel. However, they suffer from a substantial lack of sensitivity compared with RT- qPCR, which can produce false- 
negative results. Given the intended and expected reduction of viral replication in exposed vaccinated birds and the re-
ported lack of sensitivity, it is highly unlikely that such tests would be useful for active surveillance purposes in vaccinated 
flocks. However, birds that succumb to HPAIV infection in infected vaccinated flocks might still produce sufficient virus 
loads to be detected by rapid antigen assays (i.e. bucket sampling). Nevertheless, at the current stage, there is not enough 
information on the diagnostic sensitivity of these tests in field conditions to recommend their use in surveillance activities 
aimed at the identification of outbreaks or for pre- movement virological testing of vaccinated flocks. For similar reasons, 
any positive result obtained with such assays must be further investigated by validated methods characterised by higher 
specificity to confirm the results.

3.1.1.4 | Serological methods

Upon infection with HPAIV in birds, antibodies are mounted by the animals as part of the immunological response. The 
antibodies produced are generally directed towards all the viral proteins expressed although variabilities exist in terms of 
the relative quantities of antibodies produced. Neutralising antibodies, particularly those directed towards HA, are able 
to abrogate the infectivity of the virus. Different vaccine technologies vary in their ability to stimulate preferentially a 
humoral or cell- mediated immune response. For example, adjuvanted whole virus inactivated vaccines generally induce 
high levels of antibodies but with a poor stimulation of the cell- mediated immune response arm. On the opposite side, 
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replication- competent vectored vaccines are generally capable of more robust stimulation of cell- mediated immunity but 
might be slow to induce higher levels of circulating antibodies. The type of vaccine applied in a population can therefore 
affect the character and magnitude of the specific immune response, which in turn may affect its detectability by serologi-
cal methods. Most of the available tests used for routine diagnostics aim at the detection of antibodies, while, at the time 
of writing, there are no scalable methods to assess cell- mediated immunity.

Assessment of immunity might be useful for different purposes:

1. Screening for vaccine coverage is done to assess the percentage of poultry that has mounted a measurable immune 
response upon vaccination. Depending on the diagnostic antigen used, the testing could be further stratified to 
extend the questioning to the protective efficacy of the mounted immune response against specific viruses that 
are in current circulation. However, defining thresholds of protection on basis of antibody titres has proven difficult 
(see Opinion Part 1).

2. Retrospective indirect screening for virus incursions into vaccinated flocks. Here, serological assays are part of the active 
surveillance in flocks that have received DIVA vaccination. The general drawback compared with the virological method-
ology is the delay in time until antibodies are mounted (usually 7–14 days post infection).

Agar gel immunoprecipitation (AGID) 

All influenza A viruses share antigenically similar nucleoproteins and matrix antigens. For this reason, AGID tests are able 
to detect the presence or absence of antibodies against any influenza A virus in a subtype- independent manner. Although 
AGID is relatively cheap and suitable for settings with limited resources, it is increasingly being replaced by species- 
independent ELISA, which can provide greater sensitivity and shorter turn- around times. Limitations of this method 
include the restriction of its use to species which develop precipitating antibodies following infection (i.e. not suitable for 
use in Anseriformes). Moreover, the result of AGID is qualitative only, and targets virus proteins not involved in mounting 
protective immunity. For all the above reasons, AGID would be of limited value for surveillance purposes in vaccinated 
flocks.

Haemagglutination inhibition (HI) 

The HI test is used to identify AIV subtype- specific antibodies such as H5 and H7 or other H subtypes. HI antibodies are 
a surrogate of neutralising antibodies and therefore often are highly strain- specific. Variability within the same subtype 
can be extensive, so there is a considerable risk of obtaining false- negative results in case a mismatched antigen is used. 
Therefore, to ensure high diagnostic sensitivity, it is always necessary to use the most appropriate antigen for each purpose. 
For example, to evaluate vaccination coverage, it should be fine to use the vaccine antigen or antigens antigenically very 
similar to the vaccine strain. However, in order to assess protection efficacy against the circulating field virus, an HI test 
must be carried out with this antigen or with a closely related one. HI titres may be regarded as being positive if there 
is inhibition at a serum dilution of 1:16 or more against four haemagglutinating units (HAU) of antigen, according to 
international standards.

Comparing different vaccine challenge studies (Mo et al., 2023), the target values for antibody titres to the challenge 
virus were identified: a value of ≥ 1:16 should be evaluated as a minimum titre that may be sufficient for survival and reduc-
tion of virus excretion of exposed poultry. In a field setting with physiological stress or immunosuppressive factors, survival 
and virus excretion may be accelerated and therefore the minimum positive titre in relation to protective efficacy should 
not be overinterpreted; it does not necessarily imply, e.g. that immunised birds with that titre will be protected against 
challenge or that birds with lower titres will be susceptible to challenge.

When compared with inactivated vaccines, HVT- vectored vaccines may be protective even if these threshold titres are 
not reached. This might be due to cellular immunity preferentially induced by vectored vaccines. Similarly, RNA vaccines 
are also known to elicit protective immunity through dendritic cell activation followed by stimulation of primary and mem-
ory T- cell responses and may induce protection even if HI titres remain below 1:16. Since a full evaluation of both arms of 
immunity, i.e. B-  and T- cell- derived, is not possible at present, it is in any case recommended to use an antigen most closely 
related to the circulating virus in order to depict meaningful titres in vaccinated groups for an approximate evaluation of 
the supposed protective immunity in a vaccinated flock.

Onset of detectable immunity, that can be used to assess vaccination coverage in vaccinated poultry populations, is 
expected between 2 and 4 weeks following vaccination, in most cases. In birds (i.e. turkeys and chickens) vaccinated with 
HVT- vectored vaccines only, at 1 day of age, the development of a sufficient amount of antibodies to be detected by cur-
rently available serological tests could be delayed (i.e. 6–8 weeks following vaccination).

When longitudinal sero- surveillance is carried out using HI techniques, a 2–3 log2 increase or more in HI titres, in the 
absence of a new vaccine booster, could be considered a sign of introduction of a field AIV with the same HA subtype as the 
vaccine in a vaccinated holding after reaching the plateau phase, and should prompt additional virological investigations 
aimed at the detection and typing of the AIV responsible of the incursion. However, under field conditions, the use of such 
thresholds require stable and homogenous antibody levels at flock size for a sufficient period of time and sampling inter-
vals need to be short enough to avoid that natural waning of immunity would mask a HPAIV incursion. HI tests therefore 
should be mainly used to assess vaccine coverage and not for routine surveillance activities in vaccinated flocks. However, 
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in monitoring flocks to assess freedom from HPAI (E4 and P4 in Table 2), HI tests using a test antigen derived from circulat-
ing HPAIV is preferred and yields a more accurate interpretation of sera that tested positive in NP- ELISA method.

ELISA technology 

Commercial ELISA kits have replaced AGID assays as a more sensitive and versatile alternative for the detection of influenza 
A group reactive antibodies in sera. Kits with an indirect and competitive/blocking format have been developed and 
validated and are routinely used in poultry surveillance activities. Indirect ELISA kits, where the primary antigen- specific 
antibody is recognised by a secondary conjugated antibody, requires validation in multiple species as the nature of the 
secondary antibody limits their use to the determined species. Competitive formats instead, allow their use in a species- 
independent manner. Similar to AGID, most of assays use the nucleoprotein as a target antigen. These assays are qualified 
for use in flocks vaccinated with DIVA vaccines with NP as a negative marker.

Alternatively, subtype- specific H5 or H7 kits are available, but these kits must be carefully validated to ensure that they 
identify with sufficiently high sensitivity and specificity the specific seroconversion caused by the circulating strain.

Specific kits for H5 or H7, as well as the generic anti- NP kits if whole inactivated vaccines are used, can also be used for 
the evaluation of vaccine coverage. In general, the assays are used to produce a qualitative result. Although equations are 
offered with some assays to define a titre- like result, these should be used with caution; usually, examination of sera by HI 
cannot be replaced if specific answers on protection efficacy are sought.

ELISAs aimed at the detection of antibodies against different proteins (e.g. NA, NS1, etc.) have been developed as alter-
natives, although currently there are no commercially available products with a validation dossier.

The following Table 5 presents an overview of some summarised characteristics of diagnostic methods currently avail-
able for surveillance purposes.
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T A B L E  5  Overview of some characteristics of diagnostic methods currently available for surveillance purposes.

Diagnostic test Target Follow- up Sensitivity Specificity

Time window 
for detection 
(days 
post- infection) Surveillance purposes

Time to 
resultsa

Susceptibility 
to viral 
mutations 
affecting the 
method

Labour 
intensity Costs

Positive result 
interpretation

Genome detection

Conventional 
RT- PCR

H5/H7 Sequencing of the 
PCR product for 
confirmation 
and HP/LP 
differentiation

++ +++ From 2 to 5–7 Confirmation of clinical 
cases; population 
freedom from 
infection

4–6 h + ++ + Presence of the 
targeted 
genetic material 
of H5/H7

RT- qPCR M gene End point +++ +++ from 1–2 to 7–10 Confirmation of clinical 
cases; population 
freedom from 
infection; individual 
animal freedom from 
infection before 
movement

3 h + + ++ Presence of the 
targeted 
genetic material 
of AIV

HA cleavage 
site

End point ++ +++ from 1–2 to 7–10 Confirmation of viral 
pathotypeb

3 h +++ + ++ Presence of the 
targeted 
genetic material 
of HPAI/LPAI

H5/H7 End point +++ +++ from 1–2 to 7–10 Confirmation of HA 
subtype

3 h ++ + + Presence of the 
targeted 
genetic material 
of H5/H7

NA (1–9) End point +++ +++ from 1–2 to 7–10 Confirmation of NA 
subtype

3 h ++ + ++ Presence of the 
targeted 
genetic material 
of NA(X)

Vaccine vector 
(e.g. 
HVT- H5)

End point + +++ Since day 21–28 
post- 
vaccination

Vaccination coverage 3 h + + ++ Presence of the 
targeted vector- 
specific genetic 
material

Antigen detection

Antigen- ELISA NP End point + ++ 3–6 Confirmation of clinical 
cases

< 1 h + + +++ AIV

Lateral flow 
devices

NP End point + ++ 3–6 Confirmation of clinical 
cases

< 1 h + (+) ++ AIV

(Continues)
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Diagnostic test Target Follow- up Sensitivity Specificity

Time window 
for detection 
(days 
post- infection) Surveillance purposes

Time to 
resultsa

Susceptibility 
to viral 
mutations 
affecting the 
method

Labour 
intensity Costs

Positive result 
interpretation

Detection of infectious virus

Embryonated 
chicken 
eggs

Whole virus Typing by HI or 
RT- qPCR

+ +++ 2–8 Confirmation of clinical 
cases

2–14 days − +++ ++ Infectious virus 
presence

Cell cultures Whole virus Typing by HI or 
RT- qPCR

+ +++ 2–6 Confirmation of clinical 
cases

2–10 days − ++ + Infectious virus 
presence

Antibody detection

ELISA NP Typing by HI +++ ++ > 7–10 days to 
3 months

Immune status in 
individual animals or 
populations;

Prevalence of infection – 
DIVA surveillance

3 h (+) + ++ Presence of 
antibodies 
against the NP 
of AIVs

ELISA H5/H7 End point ++ +++ > 10–14 days to 
3 months

Immune status in 
individual animals 
or populations 
post- vaccination 
(Vaccination 
coverage)

3 h + + ++ Presence of 
antibodies 
against the 
HA of H5/
H7 (including 
vaccine- derived 
immunity)

AGIDc Whole virus Typing by HI + ++ > 14 days to 
3 months

Immune status in 
individual animals or 
populations

2 days (+) ++ + Presence of 
antibodies 
against AIVs

HI HA Titration ++ +++ > 14 days to 
3 months

Immune status in 
individual animals 
or populations post- 
vaccination (vaccine 
coverage) using 
vaccine homologous 
antigen; detection of 
field HPAIv exposure 
using field antigen

4 h + +++ + Presence of 
antibodies 
against the 
HA of AIVs 
(subtype- 
specific)

V- NT (HA)d Titration +++ +++ > 14 days to 
3 months

Immune status in 
individual animals

3 days + +++ ++ H5/H7

Abbreviation: I, Scaling equivalents; +++, high; ++, moderate; +, low; (+), very low.
aMeant as time from the arrival of the sample in the lab to the availability of the results (i.e. time for sampling and transport are not included).
bUse of RT- qPCR for pathotype identification should be used when epidemiological scenario is well known (e.g. circulation of 2.3.4.4b).
cGalliform poultry only.
dMost of neutralising epitopes of the AIV are located on the HA protein. Antibodies against the NA protein can also have neutralising ability.

T A B L E  5  (Continued)
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Serological data from challenge experiments in vaccinated chickens, turkeys and ducks

Haemagglutination inhibition (HI)

Homologous HI titres represent values obtained with an antigen which is identical to the vaccine strain or which has a 
very short antigenic distance to the vaccine antigen (see Section 2.1.3.2 in Opinion Part 1 for estimation of the antigenic 
distance). Heterologous HI titres represent values obtained with any other test antigen with a larger antigenic distance. For 
the purpose of the analysis presented below if different antigens were tested by laboratories to analyse the same set of 
sera only the best performing one has been considered.

Chicken layers vaccinated with recombinant vectored vaccines showed robust immune response 42 days after vaccina-
tion at 1 day of age with mean homologous HI titres around 6–7 log2 before exposure to challenge virus and when tested 
against an antigen antigenically similar to the H5 HA expressed by the vector (Table 6). When tested with the heterologous 
challenge virus, sera of vaccinated animals show little reactivity with the majority of titres being < 4 log2 (Table 6). Sera ob-
tained from vaccinated birds after challenge showed increased heterologous HI titres against the challenge virus antigen, 
while lower increase in HI titres was evident against the vaccine virus antigen (Table 6). Similar results have been obtained 
with nucleic acid- based vaccines (i.e. RNA and DNA- based vaccines) in birds vaccinated at 1 day or 2 weeks of age, although 
variable prechallenge HI titres have been observed which could compromise sensitivity of surveillance activities aimed at 
the evaluation of level of immune response in vaccinated flocks (Table 6).

In vaccinated turkeys, immune responses clearly detectable by HI are reached at approximately 7 weeks of age irre-
spective of the different immunisation schemes and vaccines used. Higher HI titres can be obtained using antigens ho-
mologous to the vaccines used, and therefore should be preferred for assessing immunisation of birds (Table 7). Wide 
variability in immune response elicited has been observed, with higher antibody titres obtained in groups immunised with 
vaccination schemes that included an heterologous vaccine as boost (Table 7). Seroconversion (evaluated as the Delta- Log 
of HI titres in sera collected before or after challenge in vaccinated and infected birds) measured with the challenge anti-
gen (field 2.3.4.4b strain) is generally a more reliable indicator of past infection with Delta values ranging from 5 to 7 log2 
compared to antigen homologous to the vaccine (Table 7).

Ducks vaccinated (at 10 and 28 days) with a subunit vaccine showed higher HI titres compared to ducks vaccinated (at 
1 and 28 days) with an RNA- based vaccine in sera collected before challenge (i.e. 49 and 42 days, respectively) when tested 
with an antigen homologous to the vaccines (Table 8). Seroconversion (evaluated as the HI Delta- Log) was more evident in 
samples collected from convalescent birds, using the challenge strain as the antigen in HI assays (Table 8).
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T A B L E  6  Antibody titres in chicken layers vaccinated (pre- challenge), and vaccinated and challenged (post- challenge) based on HI test with homologous and heterologous 
antigens.

HI titres

Vaccine administered

ExactVac – Vaxliant ENABLE adjuvant (14, 28)a RESPONS AI H5 (1, 28)a Vectormune AI (1)a

(median and 95% CI)b (median and 95% CI)b (median and 95% CI)c

Homologous Heterologous Homologous Heterologous Homologous Heterologous

‘pre- challenge’ 6.00 (2.72;10.55)d

3.00 (2.17;4.00)e
6.00 (6.00–7.00)d 6.00 (2.22;6.77)d 3.00 (0.00;3.77)d 7.75 (6.24;9.26)h 0.00 (0.00;1)h

‘delta log post- challenge’ 0.00 (−4.27;5.50)f

6.50 (2.17;7.82)g
0.00 (−1.00;2.55)f 0.00 (−1.75;4.10)f 1.5 (−0.77;3.00)f 0.50 (−1.26;2.26)i 2.00 (0.00;7.52)i

HI titres

HVT- IBD- AIV- H5 haemagglutinin ‘COBRA’ (1)a Nobilis Influenza H5N2 (8)a ExactVac – Vaxliant ENABLE adjuvant (14)a

(median and 95% CI)c (median and 95% CI)c (median and 95% CI)c

Homologous Heterologous Homologous Heterologous Homologous Heterologous

‘pre- challenge’ 6.00 (1.19;9.55)h 0.00 (0.00;2.52)h 0.00 (0;1)h 0h 4.75 (0.0;7.5)h 0h

‘delta log post- challenge’ 0.25 (−0.5;7.1)i 2.00 (−0.26;6.76)i 6.00 (0.00;10.4)i 5.75 (0.00;10.91)i −0.25 (−2.36;4.00)i 5.50 (0.00;7.85)i

aAge in days at time of vaccination.
bData source: Belgium – NRL for AI.
cData source: The Netherlands – NRL for AI.
d,eDays at testing: d = 41 days, e = 174 days.
f,gDelta- Log between HI titres in sera collected before (41 or 174 days of age) and after (56 or 189 days of age) the challenge in vaccinated animals f = 56–41 days, g = 189–174 days. Challenge performed at 42 or 175 days of age.
hDays at testing: 42 days.
iDelta- Log between HI titres in sera collected before (42 days of age) and after (77 days of age) the challenge in vaccinated animals. Challenge performed at 56 days of age.
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T A B L E  7  Antibody titres in turkeys vaccinated (pre- challenge), and vaccinated and challenged (post- challenge) based on HI test with homologous and heterologous antigens.

HI titres

Vaccine(s) administered

Volvac B.E.S.T. AI+ND (1,28)a Vectormune AI (1)a
HVT- IBD- AIV- H5 haemagglutinin 
‘COBRA’ (1)a ExactVac – Vaxliant ENABLE adjuvant (1)a

Vectormune AI (1)a + ExactVac – Vaxliant 
ENABLE adjuvant (28)a

(median and 95% CI) (median and 95% CI) (median and 95% CI)

ExactVac – Vaxliant ENABLE adjuvant (28)a

(median and 95% CI)(median and 95% CI)

Homologous Heterologous Homologous Heterologous Homologous Heterologous Homologous Heterologous Homologous Heterologous

‘pre- challenges’ 5.00 (3.17;7.00)b

4.50 (3.00;6.82)c
1.00 (1.00;2.00)b,c 4.50 (3.17;6.82)c 2.00 (1.00;3.82)c na 3.00 (1.17;4.00)c 1.50 (1.00;5.47)b

2.00 (1.00;5.47)c
1.00 (1.00;4.30)b

1.00 (1.00;3.47)c
3.50 (2.00;4.00)b 
5.00 (3.00;5.00)c

1.00 (1.00;1.82)b

1.50 (1.00;2.82)c

‘delta log 
post- challenges’

5.00 (5.00;5.95)d

6.00 (5.05;6.00)e
5.00 (4.05;7.85)d,e 3.00 (3.00;5.00)d 5.00 (2.3;6.0)e na 8.00 (7.00;9.65)e 5.50 (4.07;6.92)d

5.00 (4.05;5.95)e
5.00 (−)d

5.50 (5.02;5.97)e
4.50 (3.00;7.65)d

3.50 (1.17;6.65)e
5.50 (1.35;8.82)d

5.00 (1.35;7.82)e

HI titres

Vectormune AI (1)a + Volvac B.E.S.T. 
AI + ND (28)a

HVT- IBD- AIV- H5 haemagglutinin 
‘COBRA’ (1)a + Volvac B.E.S.T. 
AI + ND (36)a

HVT- IBD- AIV- H5 haemagglutinin 
‘COBRA’ (1)a + ExactVac – Vaxliant 
ENABLE adjuvant (36)a Vectormune AI (1)a + Vaxigen Flu H5N8 (36)a

HVT- IBD- AIV- H5 haemagglutinin 
‘COBRA’ (1)a + Vaxigen Flu H5N8 (36)a

(median and 95% CI) (median and 95% CI) (median and 95% CI) (median and 95% CI) (median and 95% CI)

Homologous Heterologous Homologous Heterologous Homologous Heterologous Homologous Heterologous Homologous Heterologous

‘pre- challenges’ 7.00 (5.35;8.82)b

7.00 (5.17;8.82)c
1.50 (1.00;3.00)b

2.00 (1.00;3.82)c
8.00 (7.17;10.65)c 4.00 (2.17;5.00)b

5.00 (4.00;6.82)c
na 2.00 (2.00;3.82)b

3.00 (2.00;4.00)c
4.00 (3.00;5.00)b

6.00 (4.35;7.00)c
2.00 (−)b

6.00 (4.35;7.00)c
5.50 (4.00;6.00)c 2.50 (2.00;4.82)b

5.00 (4.00;6.00)c

‘delta log post- 
challenges’

3.00 (2.00;4.82)d

3.00 (3.00;4.00)e
7.00 (3.52;7.00)d

6.00 (3.35;7.00)e
2.00 (1.17;4.00)e 5.50 (4.17;7.65)d

3.50 (3.00;6.00)e
na 7.00 (5.15;7.85)d

6.00 (5.00;7.00)e
4.50 (4.00;6.00)d

3.00 (2.00;3.00)e
6.00 (4.35;7.00)d

4.50 (3.17–6.82)e
4.00 (3.00;5.82)e 6.00 (4.17;7.82)d

4.00 (3.00;5.82)e

Data source: Italy – EURL for AI.
aAge in days at time of vaccination.
b,cDays at testing: b = 43 days, c = 50 days.
d,eDelta- Log between HI titres of sera collected before (42 or 50 days of age) and after (64 days of age) the challenge in vaccinated animals d = 64–43 days, e = 64–50 days. For all groups, challenge was performed at 50 days of age.
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ELISA

NP- based ELISA in either an indirect or competitive format will be of importance in surveillance activities aimed at the de-
tection of past AI- infection in flocks vaccinated with DIVA compatible vaccines. Regardless of the species tested, an indirect 
ELISA assay showed higher Se and Sp when compared to a competitive ELISA assay. Antibodies against the NP were elicited 
by HPAI replication in 100% of the infected birds, 14 days after infection in chickens and turkeys and 10 days after infection 
in mule ducks (Table 9). Earlier time points after exposure to the virus have been assessed for turkeys and ducks (Table 9), 
but showed lower Se and Sp values.

Competitive NP- ELISA assays evaluated under experimental conditions showed lower Se and Sp values than indirect 
ELISAs at all tested time points following infection in both chickens and ducks (Table 9). No values for turkeys were available 
for this type of ELISA at the time of writing.

T A B L E  8  Antibody titres in ducks vaccinated (pre- challenge), and vaccinated and challenged (post- challenge) based on 
HI test with homologous and heterologous antigens. Groups vaccinated with Duck H5- SRV vaccine® were challenged at 
46 or 75 days of age. Groups vaccinated with Volvac B.E.S.T. AI+ND were challenged at 53 or 81 days of age.

HI titres

Vaccine administered

Duck H5- SRV vaccine® (1, 28)a Volvac B.E.S.T. AI + ND (10, 28)a

(median and 95% CI) (median and 95% CI)

Homologous Heterologous Homologous Heterologous

‘pre- challenge’ 1.00 (−)b,c 1.00 (1.00;2.77)b

1.00 (−)c
7.00 (5.00;7.00)d

5.00 (1.52;5.00)e
1.00 (−)d,e

‘delta log post- challenge’ 4.00 (3;5)f

6.0 (3.45;7.00)g
5.00 (2.22;6.00)f

6.5 (4.45;7.00)g
1.50 (0.22;3.77)h

5.00 (4.00;8.47)i
3.50 (2.22;4.77)h

4.00 (3.00;4.82)i

Data source: France - NRL for AI.
aAge in days at time of vaccination.
b,c,d,eDays at testing: b = 42 days, c = 71 days, d = 49 days, e = 77 days.
f,g,h,iDelta- Log between HI titres of sera collected before (42, 49, 71 or 75 days of age) and after (60, 67, 89, 95 days of age) the challenge in vaccinated animals 
f = 60–42 days, g = 89–71 days, h = 67–49 days, i = 95–77 days. Groups vaccinated with Duck H5- SRV vaccine® were challenged at 46 or 75 days of age. Groups vaccinated 
with Volvac B.E.S.T. AI+ND were challenged at 53 or 75 days of age.

T A B L E  9  Sensitivity (Se) and specificity (Sp) of the indirect and competitive NP-ELISA at 4, 7, 10, 14 and 21 days post 
infection (DPI) in chicken layers, turkeys, ducks and mule ducks vaccinated with a DIVA compatible vaccine.

DPI

Poultry species

Chicken layers Turkeys Ducks Mule ducks

Indirect NP- 
ELISA (exact 
95% CI)

Competitive 
NP- ELISA (exact 
95% CI)

Indirect NP- 
ELISA (exact 
95% CI)

Competitive 
NP- ELISA 
(exact 95% 
CI)

Indirect 
NP- ELISA 
(exact 
95% CI)

Competitive 
NP- ELISA (exact 
95% CI)

Indirect NP- ELISA 
(exact 95% CI)

Competitive 
NP- ELISA 
(exact  
95% CI)

4 na na na na na Se = 10% 
(0.25%–44.5%)

Sp = 100%
(71%–100%)

Se = 28.95% 
(15.42%–45.9%)

Sp = 100% 
(90.7%–100%)

na

7 na na Se = 60% 
(41%–77%)

Sp = 100% 
(63%–100%)

na na Se = 60% 
(26.2%–87.8%)

Sp = 100%
(71%–100%)

Se = 97.36% 
(86.2%–99.9%)

Sp = 100% 
(90.7%–100%)

na

10 na na na na na Se = 70% 
(34.7%–93.3%)

Sp = 100% 
(71%–100%)

Se = 100% 
(90.5%–100%)

Sp = 100% 
(90.7%–100%)

na

14 Se = 100% 
(59%–100%)a

Sp = 92.3%
(64%–99.8%)a

Se = 75%
(53.2%–90.2%)a

Sp = 79.5%
(64.7%–90.2%)a

Se = 100%
(88%–100%)
Sp = 100%
(63%–100%)

na na Se = 70% 
(34.7%–93.3%)

Sp = 100% 
(71%–100%)

Se = 100% 
(90.5%–100%)

Sp = 100% 
(90.7%–100%)

na

21 na Se = 85%
(62.10%–96.7%)b

Sp = 100%
(88.43%–100%)b

na na na na na na

Data source: NRL for AI in Belgium, France, Italy, the Netherlands.
Abbreviation: na, not available.
aData from Belgium.
bData from the Netherlands.
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3.1.1.5 | Monitoring of clinical signs and production parameters

The absence of mortality and/or overt clinical disease is the basic effect of HPAI vaccination, although variations in vaccine 
efficacy/effectiveness and the characteristics of the circulating viruses may cause different degrees of clinical protection 
(Table 3). As shown in the previous Opinion, absence of clinical signs and an increase in mortality in vaccinated flocks are 
poor indicators of the absence of viral circulation (EFSA AHAW Panel,  2023). Similarly, more refined parameters, which 
have been proven effective as indicators of ongoing disease in unvaccinated poultry flocks, such as reduced weight gain, 
reduced consumption of water or feed, drop in egg production, etc. bear a low predictive value of HPAIV incursions in vac-
cinated flocks. Clinical examination is therefore not a reliable indicator in surveillance activities aimed at early identification 
of HPAIV incursions in vaccinated flocks both in emergency and in preventive vaccination scenarios.

However, it must be considered that under realistic field conditions, as it has been extensively demonstrated, a certain 
percentage of vaccinated animals may fail to reach expected protective immunity levels. This might be due to a plethora 
of factors including vaccination failures or problems associated with the individual vaccinated bird such as the presence of 
immunosuppressive agents, nutritional diseases, genetic characteristics, etc. Therefore, there may be a certain percentage 
of birds in vaccinated flocks, which would show clinical signs of the disease and there may be even an increase in mortality 
associated with the HPAIV infection (Huynh et al., 2019; Tarigan et al., 2018). These ‘fallen’ animals deserve special atten-
tion in further surveillance investigations with the use of sensitive laboratory diagnostic methods (i.e. ‘bucket sampling’). 
Similarly, if an escape- mutant arises or is introduced from outside this would be expected to spread despite vaccination, 
and clinical signs and increased mortality are the sequelae.

In peri- vaccination zones or in unvaccinated flocks within a vaccination zone, passive ‘syndrome’ surveillance based on 
clinical signs and production parameters would still represent a valuable method for the early detection of HPAI outbreaks.

3.1.1.6 | Use of unvaccinated sentinel birds

The use of unvaccinated sentinels in vaccinated flocks to determine if flocks have been exposed to infections has been a 
common strategy of disease detection (Bouma et al., 2008). In theory, sentinels could provide a sensitive measure of expo-
sure to infection with HPAIV of a vaccinated flock, since the birds are completely susceptible to infection and would show 
clinical signs and mortality typical of HPAI. Sentinels can then be routinely tested for HPAIV infection with appropriate se-
rological or virological methods (Suarez, 2005). However, several practical problems have been found to hamper the use of 
sentinels in the surveillance strategy in HPAI- vaccinated flocks and areas, and therefore, the sentinel bird approach has been 
abandoned in countries with long- standing vaccination experience such as Indonesia and Hongkong (Harder et al., 2023):

1. Without good compliance of farmers and a proper management system, the presence of unvaccinated sentinel 
birds in the flock may in fact function as the ‘gap in the door of protection’ since if exposed to the virus they 
can get infected and spread HPAIV in the flock and to other farms.

2. It is logistically challenging to identify sentinel animals in large flocks if sentinels are of the same species (conspecific) as 
the vaccinated part of the flock. Conspecific sentinels would enable an appropriate diffusion in the vaccinated flock. If 
they are from a different species (e.g. sentinel chickens in a duck flock) problems arise with compatibility of the different 
species leading to a separation of sentinels and vaccinees rather than observing them mixing in the flock.

3. In certain species, lateral transmission of replication- competent live- vectored HPAI vaccines would eventually immunise 
unvaccinated sentinels (e.g. turkeys vaccinated with a live HVT- vectored vaccine).

In addition, where LPAI viruses are circulating in the vaccination area, infection in sentinels will compromise the inter-
pretation of virological and serological monitoring results.

The current scenarios evaluated as part of this Scientific Opinion therefore do not envisage the use of sentinels due to 
the above- mentioned problems and due to the increased risk of flock infection associated with the use of fully susceptible 
unvaccinated sentinels.

3.1.1.7 | Use of environmental samples for surveillance

The current sampling schemes laid down in Delegated Regulation (EU) No 2023/361 Annex XIII require surveillance of vac-
cinated flocks to exclude a prevalence of HPAIV infection in the flock of 5% with 95% confidence. This amounts to at least 
60 samples for the average commercial holding when oropharyngeal and cloacal are taken as prescribed. Such samples are 
to be obtained every 2 weeks (emergency protective vaccination) or every 4 weeks (preventive vaccination) until the last 
vaccinated bird leaves the holding. In practice, several problems arise with these prescriptions:

– Catching the birds repeatedly troubles the flock and may create animal welfare problems.
– In weighty, long- lived poultry such as fattening turkeys or geese parents the catching and restraining of animals up to 

20 kg body weight requires several stable hands and means a heavy physical workload.
– Obtaining the samples by an official veterinarian will be costly and time and human resources are often limited.
– Transporting of 60 samples per round to a laboratory requires a cool chain and appropriate logistics.
– RNA extraction and RT- qPCR analysis of samples is costly, even if pools of up to 10 samples could be formed.
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Therefore, alternative sampling schemes and sample matrices are sought that would contribute to reducing workload 
during sampling, reduce costs for analysis and reduces stress and strains for the individual animals. However, such alter-
natives must have been validated to prove similar efficacy (i.e. detecting a design prevalence of 5/95) like the 60- swab 
scheme.

Recent investigations of environmental samples from AIV infected flocks have documented that several matrices are 
promising with respect to detection of viral genomes by RT- qPCR. In particular, water and biofilm samples from drinkers in 
turkey flocks (Muñoz- Aguayo et al., 2019), dust samples from walls and air samples (Filaire et al., 2022) have been analysed. 
Data showed that virus detection in such environmental samples was as sensitive as in conventional swab samples from 
animals. However, these investigations were all carried out in unvaccinated infected flocks. Systematic validation should 
clarify whether these promising data can be transposed to vaccinated flocks, since HPAI virus excretion in infected vacci-
nated animals is shortened in time and reduced in load. This may reduce virus loads in environmental sample matrices to 
a stronger extent than in infected non- vaccinated herds.

3.1.2 | Surveillance in vaccinated populations

Building upon the context of the previous Opinion (ToRs 1 and 2) we focused here on evaluating the effectiveness of sur-
veillance in the three productive poultry groups targeted for vaccination, namely chicken layers (the Netherlands), ducks 
(France) and turkeys (Italy), according to the surveillance strategies as indicated in Table 2.

3.1.2.1 | Surveillance for early detection at the establishment level for emergency vaccination (strategy E1)

In the context of surveillance for early detection, Rh < 1 was chosen as indicating effectiveness. The reason was that it takes 
time to vaccinate flocks, so in the initial stages of an epidemic, despite the start of vaccination, Rh remains above 1 for a 
certain time lag and between- farm transmission may occur as shown in the previous Opinion (EFSA AHAW Panel, 2023). 
Surveillance is key to detecting infected flocks and the removal of those will contribute together with vaccination to reduce 
the number of susceptible animals/establishments and consequently to bring faster Rh below 1. Because of the methodol-
ogy used in this assessment Rh is replaced by Rs, but the interpretation of Rs is equivalent to Rh.

The results of the assessment on surveillance strategies for early detection of HPAIV for emergency vaccination are 
shown in Tables 10A–12B, grouped by poultry species (chicken layers, ducks and turkeys) and for different surveillance 
strategies: passive reporting (i.e. the level of mortality at which farmers tend to report their suspicions calculated based on 
mortality data and reported suspicion dates, see Table 3), mortality thresholds (i.e. inferred level of mortality beyond which 
farmers have to report their suspicions) based on the studies by Gonzales and Elbers (2018), Elbers and Gonzales (2021) and 
Gonzales et al. (2023) (see Table 3), and active surveillance based on sampling dead or live birds to be tested by qPCR, or 
live birds to be tested by serology.

Different combinations of sampling intervals and samples sizes are presented as results; only those surveillance strate-
gies whose combination of sampling interval and sample sizes resulted in a probability to escape detection below 0.01 at 
the flock level for more than 95% of the simulated within- flock outbreaks are considered effective to early detect HPAIV. 
The reason is that undetected outbreaks led to an underestimation of Rh and of the time between introduction and detec-
tion. Note that surveillance strategies for testing dead birds included randomly sampling all up to a number of 5, 10 and 15 
dead birds. If fewer dead birds were available than these required sample sizes, all available dead birds were tested, which 
is why a minimum sample size was not provided.

Surveillance in chicken layers

Table 10A reports results for flocks of 20,000 chicken layers. However, the model outcomes remained consistent for flock 
sizes of 6000 and 60,000 birds; simulations for these flock sizes produced similar results as those presented in Table 10A. 
The results reported (Table 10A) indicate that sampling live birds for PCR testing or serology did not result in detecting 99% 
of the outbreaks in ≥ 95% of the simulations. Therefore, the strategy of ‘sampling live birds (n = 60)’ every 14 days as recom-
mended by the EU Regulation, when emergency vaccination is applied (scenario E1) would not be effective for early detec-
tion. The proposed strategy of weekly sampling all dead birds up to a number of five achieved early detection at a median 
(95% confidence intervals (CI)) time of 20 (14–31) days post- introduction and a reduction of Rs to 0.13 (95% CI: 0.10–0.16). The 
median (95% CI) number of dead birds likely to be found at the time of sampling and detection of an infected flock was 6 
(4–10). With longer sampling intervals, such as every 14 or 21 days, all dead birds up to a number of 10 or 15, respectively, 
need to be sampled to enable that > 99% of the outbreaks would be detected in 95% of the simulations, with median times 
of detection of 21 and 22 days post- introduction, respectively. The median number of dead birds likely to be found at the 
time of sampling and detection of an infected flock would be 8 (4–12) and 8 (6–14), respectively. Additionally, transmission 
would remain limited (Rs < 1). Consequently, testing dead birds is more effective for early detection than testing live birds 
and also fewer resources are needed. Furthermore, longer sampling intervals compared with the weekly sampling can be 
considered if more dead birds are collected (up to a number of 15 for a 3- week interval) (Table 10A).

The strategies based on ‘passive reporting’ or on ‘mortality thresholds’ would not be effective for early detection, with 
median detection days of 31 (25–43) and 28 (22–41), respectively, and Rh/s > 1.



   | 45 of 70HPAI VACCINATION IN POULTRY – PART 2

The results were different when a flock size of 2500 birds was used to represent small flocks. For these flocks, none of the 
strategies evaluated were effective, since the requirement to detect 99% of the outbreaks in 95% of the simulations was 
not met (Table 10B); in these flock size, sampling all birds found dead up to a number of 10 birds weekly gave detection of 
99% of the outbreaks in 90% of the simulations. For flocks ≥ 3000 and < 6000 weekly sampling of all up to a number of 10 
or 15 dead birds resulted in an effective early detection in ≥ 95% of the simulations (Data not shown).

T A B L E  1 0 A  Efficacy of different combination of sampling types, sample size, sampling frequency and diagnostic test for early detection 
(defined as reduction of Rs < 1) of vaccinated- infected flocks, strategy E1. These simulations were done for a flock of 20,000a chicken layers and 
assuming a case fatality equal to 0.2, a qPCR Se = 0.99 and a Serology (ELISA) Se = 0.9. Results are reported only for effective surveillance strategies, i.e. 
where the proportion of outbreak simulations with the probabilities of escaping detection below 1% is above 95%; otherwise, these are left empty.

Sample type 
(diagnostic test)

Sample 
size

Sampling 
interval 
(days)

Percentage 
of outbreak 
simulations 
with the 
probabilities 
of escaping 
detection 
below 1%b

Detection 
time as 
days post 
introduction 
(median 
(2.5–97.5 CI))

Prevalence (%) 
infectious birds 
(median (2.5–97.5 
CI))

Prevalence 
(%) recovered 
birds (median 
(2.5–97.5 CI))

Rh/Rs 
(reproduction 
number)
(median 
(2.5–97.5 CI))

Passive reporting 
(reference)

31 (25–43) 3.93 (3.44–4.5) 2.16 (1.86–2.46) 1.4

Mortality 
threshold 
(0.13%)

28 (22–39) 2.35 (2.01–2.75) 1.26 (1.06–1.49) 1.09 (1.04–1.1)

Dead birds (qPCR) ≤ 5 7 99% 20 (14–31) 0.34 (0.25–0.43) 0.18 (0.11–0.24) 0.13 (0.1–0.16)

14 90%

21 51%

30 0%

≤ 10 7 99% 18 (13–30) 0.26 (0.19–0.34) 0.14 (0.08–0.19) 0.1 (0.08–0.13)

14 98% 21 (15–33) 0.44 (0.35–0.56) 0.23 (0.15–0.31) 0.17 (0.15–0.2)

21 94%

30 84%

≤ 15 7 99% 18 (13–30) 0.26 (0.19–0.33) 0.13 (0.08–0.19) 0.1 (0.08–0.13)

14 99% 20 (15–32) 0.41 (0.32–0.52) 0.21 (0.15–0.29) 0.16 (0.14–0.19)

21 97% 22 (16–34) 0.56 (0.45–0.71) 0.3 (0.21–0.39) 0.22 (0.19–0.26)

30 92%

Live birds (qPCR) 60 14 72%

30 30%

120 14 89%

30 69%

Live birds 
(serology)

60 14 47%

30 9%
aFlock sizes of 6000 and 60,000 chicken layers were also assessed. No differences in the results regarding reduction of Rs < 1 were observed.
bAn individual infected flock is considered detected when the probability of escaping detection < 0.01 (probability of detection > 0.99).
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Surveillance in ducks

In flocks of 6000 ducks or larger, the results reported in Table 11A indicate that the strategy based on ‘mortality thresholds’ 
achieved the earliest detection, at a median of 17 (13–26) days post- introduction, with a Rs < 1. Note that the strategy based 
on ‘passive reporting’ is ineffective for early detection, with a median detection day of 23 (19–32) and Rh > 1. Sampling dead 
birds at weekly intervals showed in more than 95% of the simulations that they would be effective for early detection, with 
a detection time of 14–15 days and Rs < 1 irrespective of collecting all up to a number of 5, 10 or 15 dead birds. Similarly, 
biweekly sampling of all up to a number of 10, or every 3 weeks up to 15 dead birds would be effective for early detection. 
The median number of dead birds likely to be found at the time of sampling and detection of an infected flock would be 4 
(2–9) when sampling weekly, 6 (4–10) when sampling every 2 weeks and 8 (5–12) when sampling every 3 weeks.

The strategy of ‘sampling live birds (n = 60)’ every 14 days as recommended by the EU Regulation for emergency vacci-
nation (E1), or testing 60 birds serologically, would be effective for early detection with a median detection time of 17 days 
(13–25) and Rs < 1. This is also in contrast to chicken layers (both small and larger flocks), likely because of the higher trans-
mission rate in duck flocks. Of note, sampling live ducks implies challenges in terms of welfare consequences as the animals 
undergo catching and handling, as well as in term of logistics and resources needed as more samples would be collected 
and tested compared with those required if dead birds are sampled.

T A B L E  1 0 B  Efficacy of different combination of sampling types, sample size, sampling frequency and diagnostic test for early detection (defined 
as reduction of Rs < 1) of vaccinated- infected flocks, strategy E1. These simulations were done for a flock of 2500 chicken layers and assuming a 
case fatality equal to 0.2, a qPCR Se = 0.99 and a Serology (ELISA) Se = 0.9. Results are reported only for effective surveillance strategies, i.e. where the 
proportion of outbreak simulations with the probabilities of escaping detection below 1% is above 95%; otherwise, these are left empty.

Sample type 
(diagnostic 
test)

Sample 
size

Sampling 
interval 
(days)

Percentage 
of outbreak 
simulations with 
the probabilities 
of escaping 
detection below 
1%a

Detection 
time as 
days post 
introduction 
(median 
(2.5–97.5 CI))

Prevalence 
(%) infectious 
birds (median 
(2.5–97.5 CI))

Prevalence 
(%) recovered 
birds (median 
(2.5–97.5 CI))

Rh/Rs 
(reproduction 
number)
(median 
(2.5–97.5 CI))

Passive 
reporting 
(reference)

21 (16–33) 4.09 (3.01–5.35) 2.19 (1.59–2.91) 1.4

Mortality 
threshold 
(0.13%)

15 (10–26) 1.01 (0.6–1.56) 0.48 (0.24–0.81) 1.27 (0.44–1.41)

Dead birds 
(qPCR)

≤ 5 7 87%

14 50%

21 2%

30 0%

≤ 10 7 90%

14 79%

21 59%

30 18%

≤ 15 7 90%

14 80%

21 69%

30 47%

Live birds 
(qPCR)

60 14 69%

30 25%

120 14 85%

30 67%

Live birds 
(serology)

60 14 42%

30 7%
aAn individual infected flock is considered detected when the probability of escaping detection < 0.01 (probability of detection > 0.99).
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In flocks of 2500 ducks, the results reported in Table  11B indicate that the strategy based on ‘mortality thresholds’ 
achieved the earliest detection, at a median of 10 (7–18) days post- introduction, with an Rs < 1. Sampling dead birds at 
weekly intervals showed in more than 95% of the simulations that they would be effective for early detection, with a detec-
tion time of 14–15 days and Rs < 1 irrespective of collecting all up to a number of 5, 10 or 15 dead birds. Different from the 
simulations made for flocks with ≥ 6000 birds, sampling intervals longer than 7 days would not be effective (< 95% of the 
simulations detected > 99% of the outbreaks). The median number of dead ducks likely to be found at the time of sampling 
and detection of an infected flock would be around 3 (2–6) when sampling up to five dead birds, or 3 (2–5) when sampling 
up to 10 (sampling up to 15 birds does not improve further the efficacy). This is in contrast to surveillance in small flocks of 
chicken layers, where weekly sampling of dead birds could only reach detection of 90% of the simulations. This contrast is 
likely to be due to the faster transmission rate expected in ducks than in chickens.

T A B L E  11 A  Efficacy of different sample types, sample size, sampling frequency and diagnostic test combination for early detection (defined 
as reduction of Rs < 1) of vaccinated- infected flocks, strategy E1. These simulations were done for a flock ≥ 6000 ducksa and assuming a case fatality 
equal to 0.05 and qPCR sensitivity of 0.99 and ELISA sensitivity of 0.90. Results are reported only for effectiveness surveillance strategies, i.e. those 
where the proportion of outbreak simulations with the probabilities of escaping detection below 1% is above 95% otherwise these are left empty.

Sample type 
(diagnostic 
test)

Sample 
size

Sampling 
interval 
(days)

Percentage 
of outbreak 
simulations 
with the 
probabilities 
of escaping 
detection 
below 1%b

Detection 
time as 
days post- 
introduction 
(median 
(2.5–97.5 CI))

Prevalence (%) 
infectious birds 
(median (2.5–97.5 
CI))

Prevalence (%) 
recovered birds 
(median (2.5–97.5 
CI))

Rh/Rs 
(reproduction 
number) (median 
(2.5–97.5 CI))

Passive 
reporting 
(reference)

23 (19–32) 20.5 (18.9–22.3) 33.31 (29.26–37.26) 1.8

Mortality 
threshold 
(0.17%)

17 (13–26) 5.84 (4.83–7.22) 6.13 (4.9–7.28) 0.62 (0.49–0.63)

Dead birds 
(qPCR)

≤ 5 7 98% 15 (11–24) 3.09 (2.51–3.86) 3.09 (2.33–3.88) 0.21 (0.18–0.26)

14 70%

21 0b

30 0%

≤ 10 7 99% 14 (11–23) 2.35 (1.87–3.02) 2.35 (1.74–3) 0.17 (0.14–0.19)

14 97% 16 (12–25) 4.29 (3.48–5.19) 4.37 (3.34–5.38) 0.3 (0.26–0.34)

21 89%

30 36%

≤ 15 7 99% 14 (10–23) 2.33 (1.86–2.96) 2.3 (1.72–2.99) 0.16 (0.14–0.19)

14 98% 16 (12–24) 3.93 (3.18–4.8) 3.99 (2.97–4.94) 0.28 (0.24–0.32)

21 96% 17 (13–26) 5.5 (4.54–6.68) 5.75 (4.43–6.97) 0.39 (0.35–0.44)

30 89%

Live birds 
(qPCR)

60 14 97% 17 (13–25) 4.95 (4.03–5.98) 5.05 (3.9–6.34) 0.35 (0.32–0.39)

30 44%

90 14 98% 15 (12–24) 3.34 (2.64–4.11) 3.33 (2.49–4.17) 0.23 (0.21–0.26)

30 93%

Live birds 
(serology)

60 14 97% 17 (13–25) 5.16 (4.25–6.28) 5.34 (4.17–6.62) 0.36 (0.29–0.44)

30 93%
aFlock size of 15,000 ducks was also assessed. No differences in the results were observed.
bAn individual infected flock is considered detected when the probability of escaping detection < 0.01 (probability of detection > 0.99). Results for scenarios where 
this probability is 0 are results for flocks where the probability of escaping detection was > 0.01 and hence not considered an effective surveillance scenario for early 
detection.
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Surveillance in turkeys

Table 12A reports results for flocks of 18,000 turkeys. However, the model outcomes remained consistent for flock sizes 
of 6000 and 60,000 birds; simulations for these flock sizes produced similar results as those presented in Table 12A. The 
results reported in Table 12A indicate that sampling all dead birds up to a number of five every week is effective to early 
detect HPAIV. The earliest detection is achieved using all up to a number of 15 dead birds at weekly intervals, with a median 
of 15 (10–27) days post- introduction and with the lowest Rs at 0.11 (0.09–0.13). The median number of dead birds likely to 
be found at the time of sampling and detection of an infected flock would be 14 (7–22). Less frequent sampling intervals, 
such as every 14 days with a sample size of all up to a number of 15 dead birds and every 21 days with a sample size of up 
to a number of 20 birds, remains effective for early detection and limited transmission (Rs < 1). The median number of dead 
birds likely to be found at the time of sampling and detection of an infected flock would be 16 (11–23) when sampling bi-
weekly and 18 (11–25) when sampling every 3 weeks.

The strategies involving ‘sampling live birds’ (qPCR or serology) (n = 60 or 90) would not be effective, including the one 
recommended by the EU Regulation for emergency vaccination (E1), e.g. 60 live birds every 14 days.

The strategies based on ‘passive reporting’ or on ‘mortality thresholds’ would not be effective for early detection, with 
median detection days of 27 (21–38) and 24 (19–34), respectively, and Rs > 1.

T A B L E  11 B  Efficacy of different sample types, sample size, sampling frequency and diagnostic test combination for early detection (defined 
as reduction of Rs < 1) of vaccinated infected flocks, strategy E1. These simulations were done for a flock of 2500 ducksa and assuming a case fatality 
equal to 0.05 and qPCR sensitivity of 0.99 and ELISA sensitivity of 0.90. Results are reported only for effectiveness surveillance strategies, i.e. those 
where the proportion of outbreak simulations with the probabilities of escaping detection below 1% is above 95% otherwise these are left empty.

Sample type 
(diagnostic 
test)

Sample 
size

Sampling 
interval 
(days)

Percentage 
of outbreak 
simulations 
with the 
probabilities 
of escaping 
detection 
below 1%b

Detection 
time as 
days post 
introduction 
(median  
(2.5–97.5 CI))

Prevalence (%) 
infectious birds 
(median (2.5–97.5 
CI))

Prevalence (%) 
recovered birds 
(median (2.5–97.5 
CI))

Rh/Rs 
(reproduction 
number) 
(median 
(2.5–97.5 CI))

Passive 
reporting 
(reference)

21 (17–30) 20.76 (18.37–23.21) 34.5 (29.9–38.74) 1.8

Mortality 
threshold 
(0.17%)

10 (7–18) 1.29 (0.77–1.97) 1.21 (0.72–1.73) 0.63 (0.1–0.76)

Dead birds 
(qPCR)

≤ 5 7 96% 15 (11–24) 5.83 (4.64–7.25) 6.13 (4.4–7.56) 0.4 (0.34–0.48)

14 33%

21 0%

30 0%

≤ 10 7 97% 14 (11–24) 5.42 (4.37–6.81) 5.63 (4.12–7.11) 0.37 (0.31–0.44)

14 92%

21 12%

30 0%

≤ 15 7 97% 14 (11–24) 5.42 (4.37–6.81) 5.63 (4.12–7.11) 0.37 (0.31–0.44)

14 92%

21 20%

30 0%

Live birds 
(qPCR)

60 14 97% 14 (11–23) 4.91 (3.98–6.16) 5.04 (3.67–6.72) 0.34 (0.31–0.37)

30 48%

90 14 98% 13 (9–22) 3.33 (2.51–4.34) 3.3 (2.34–4.38) 0.23 (0.2–0.25)

30 93%

Live birds 
(Serology)

60 14 97% 14 (11–24) 5.22 (4.2–6.61) 5.36 (3.9–7.02) 0.36 (0.27–0.45)

30 93%
aThis was the median size for flocks smaller than 4000 in France.
bAn individual infected flock is considered detected when the probability of escaping detection < 0.01 (probability of detection > 0.99).
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In flocks < 6000 neither testing dead birds, nor testing live birds would be effective for early detection. Different to 
chicken layers but similar to small duck flocks, using a daily mortality threshold to raise suspicions and issuing guidelines 
for sampling and detection could result in an effective early detection (Table 12B).

T A B L E  12 A  Efficacy of different sample types, sample size, sampling frequency and diagnostic test combination for early detection (defined 
as reduction of Rs < 1) of vaccinated partially protected infected flocks, strategy E1. These simulations were done for a flock of 18,000 turkeysa and 
assuming a case fatality equal to 0.2. A qPCR sensitivity of 0.99 and an ELISA sensitivity of 0.9. Results are reported only for effective surveillance 
strategies, i.e. those where the proportion of outbreak simulations with the probabilities of escaping detection below 1% is above 95% otherwise 
these are left empty.

Sample type 
(diagnostic 
test)

Sample 
size

Sampling 
interval 
(days)

Percentage 
of outbreak 
simulations 
with the 
probabilities 
of escaping 
detection 
below 1%b

Detection 
time as 
days post 
introduction 
(median 
(2.5–97.5 CI))

Prevalence (%) 
infectious birds 
(median (2.5–97.5 
CI))

Prevalence (%) 
recovered birds 
(median (2.5–97.5 
CI))

Rh/Rs 
(reproduction 
number) (median 
(2.5–97.5 CI))

Passive 
reporting 
(reference)

27 (21–38) 4.1 (3.51–4.79) 3.31 (2.83–3.83) 1.6

Mortality 
threshold 
(0.21%)

24 (19–34) 2.5 (2.07–2.96) 1.97 (1.64–2.34) 1.42 (1.68–1.04)

Dead birds 
(qPCR)

≤ 5 7 95% 19 (14–31) 0.66 (0.53–0.81) 0.52 (0.38–0.66) 0.28 (0.23–0.34)

14 66%

21 5%

30 0b

≤ 10 7 99% 16 (11–28) 0.33 (0.25–0.44) 0.25 (0.16–0.36) 0.14 (0.11–0.18)

14 94%

21 77%

30 59%

≤ 15 7 99% 15 (10–27) 0.26 (0.18–0.35) 0.2 (0.12–0.29) 0.11 (0.09–0.14)

14 98% 18 (12–29) 0.46 (0.35–0.6) 0.35 (0.25–0.48) 0.2 (0.17–0.24)

21 94%

30 87%

≤ 20 7 99% 15 (10–27) 0.25 (0.17–0.33) 0.18 (0.12–0.27) 0.1 (0.08–0.13)

14 98% 17 (12–29) 0.42 (0.31–0.53) 0.31 (0.22–0.43) 0.18 (0.15–0.21)

21 96% 19 (13–30) 0.59 (0.48–0.75) 0.45 (0.33–0.6) 0.26 (0.22–0.3)

30 93%

Live birds 
(qPCR)

60 14 70%

30 21%

90 14 82%

30 55%

Live birds 
(serology)

60 14 61%

30 22%
aFlock sizes of 6000 and 60,000 turkeys were also assessed. No differences in the results were observed.
bAn individual infected flock is considered detected when the probability of escaping detection < 0.01 (probability of detection > 0.99).
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Surveillance in peri- vaccination zone (only for emergency protective vaccination)

According to Article 9 1(c)(ii) Delegated Regulation (EU) No 2023/361, HPAIV surveillance should be applied in a peri- 
vaccination zone established for emergency vaccination to detect any possible new outbreaks. The risk assessment carried 
out by EFSA in the opinion on control measures for Category A diseases (EFSA AHAW Panel, 2021) (pp. 35–38) has been 
used to assess the radius of the peri- vaccination zone. Given that the 3- km recommended radius for an emergency 
vaccination zone (EFSA AHAW Panel, 2023) corresponds to the 3- km radius of a classical ‘protection zone’ following HPAIV 
outbreaks in poultry, the peri- vaccination zone always overlaps with the ‘surveillance zone’ that, according to Delegated 
Regulation (EU) No 2020/687 should have a 10- km minimum radius.

In the EFSA Opinion on Category A diseases, a simple kernel based on three parameters was used on unvaccinated pop-
ulation to estimate the radius of a surveillance zone based on the probability of HPAIV transmission beyond given distances 
(jump spread), as reported in Table 13 for scenarios of the Netherlands (epidemic in 2003) and Italy (epidemic 1999). In 
particular, if the aim of the peri- vaccination zone is to contain the spread of the disease avoiding any jump outside the area 
with 95% confidence, a zone radius of at least 10 km would be needed (probability of jump spread equal to 0.04, meaning 
probability of containment equal to 0.96, so 96%). For emergency vaccination, the establishments within the 3- km pro-
tection zone would be vaccinated and therefore should have a reduced risk of HPAIV transmission compared with that 
observed in the absence of vaccination; therefore, emergency vaccination applied in the 3- km radius around the outbreak 

T A B L E  12 B  Efficacy of different sample types, sample size, sampling frequency and diagnostic test combination for early detection (defined 
as reduction of Rs < 1) of vaccinated partially protected infected flocks, strategy E1. These simulations were done for a flock of 2500 turkeys and 
assuming a case fatality equal to 0.2. A qPCR sensitivity of 0.99 and an ELISA sensitivity of 0.9. Results are reported only for effective surveillance 
strategies, i.e. those where the proportion of outbreak simulations with the probabilities of escaping detection below 1% is above 95% otherwise 
these are left empty.

Sample type 
(diagnostic test)

Sample 
size

Sampling 
interval 
(days)

Percentage 
of outbreak 
simulations 
with the 
probabilities 
of escaping 
detection 
below 1%a

Detection time 
as days post- 
introduction 
(median 
(2.5–97.5 CI))

Prevalence (%) 
infectious birds 
(median (2.5–97.5 
CI))

Prevalence (%) 
recovered birds 
(median (2.5–97.5 
CI))

Rh/Rs 
(reproduction 
number) 
(median 
(2.5–97.5 CI))

Passive reporting 
(reference)

19 (13–29) 4.24 (3.18–5.56) 3.37 (2.52–4.29) 1.6 (1.6–1.6)

Mortality 
threshold 
(0.21%)

5 (3–9) 0.16 (0.04–0.28) 0.04 (0–0.15) 0.89 (0.06–0.98)

Dead birds (qPCR) ≤ 5 7 11%

14 11%

21 9%

30 0%

≤ 10 7 11%

14 11%

21 11%

30 10%

≤ 15 7 11%

14 11%

21 11%

30 11%

≤ 20 7 11%

14 11%

21 11%

30 11%

Live birds (qPCR) 60 14 64%

30 12%

90 14 77%

30 43%

Live birds 
(serology)

60 14 44%

30 6%
aAn individual infected flock is considered detected when the probability of escaping detection < 0.01 (probability of detection > 0.99).
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increases the confidence that the probability of transmission beyond 10 km is lower than 0.04. Given this consideration, a 
10- km peri- vaccination zone radius can be considered as a worst- case scenario estimate.

In relation to the type of surveillance to detect any new outbreaks in the peri- vaccination zone, the options depend 
on the vaccination status of the establishments within that area. If the establishments are vaccinated (e.g. when preventive 
vaccination was applied before the outbreak), the scenarios presented in Tables 10A–12B would also apply here.

If establishments in the peri- vaccination zone are not vaccinated, the recommendations provided in the EFSA Opinion 
on control measures for Category A diseases (EFSA AHAW Panel, 2021) are applicable, i.e. passive surveillance would be ap-
plied for gallinaceous poultry species (chickens and turkeys) and bucket sampling for Anseriformes (ducks and geese). The 
reason for the latter is due to the risk that some HPAIV strains could cause limited mortality (case fatality) in these species. 
Therefore, we have assessed scenarios where we assumed a low case fatality of 0.2 (20%) (Table 14) in unvaccinated duck 
flocks. Weekly sampling of all available dead birds (preferably dead within the last 48 h), as recommended by the EFSA 
opinion on Category A diseases, would be effective to early detect the infection.

3.1.2.2 | Surveillance for demonstrating disease freedom following emergency vaccination (strategy E3, E4)

During the process of controlling an epidemic where emergency vaccination is applied and surveillance is implemented, 
following the strategies identified and described in Tables 10A–12B, there is a moment in time when no more outbreaks are 
detected. This will result in only negative results at both establishment (flock(s) within an establishment) and zone levels. 
In some cases (and for some establishments), multiple samplings would be done in time and all would be negative. Given 
these repeated negative results in time and the high probability of detection (> 99%) of infected flocks within an establish-
ment, one could expect a high level of confidence in freedom. If the estimation of the probability of freedom is required, 
then Equation (10) (Section 2.1.5.2) could be used.

3.1.2.3 | Surveillance for early detection and demonstrating freedom in preventive vaccination populations (strategy 
P1, P3, P4)

In this section, results are presented based on simulated scenarios in the Netherlands, France and Italy, focusing specifically 
on areas previously identified as high- risk zones for the incursion of HPAIV (see Opinion Part 1). We assessed scenarios for 
demonstrating freedom from disease within these high- risk zones, where specific poultry species are vaccinated (chicken 
layers in the Netherlands, ducks in France and turkeys in Italy), leading to the co- existence of vaccinated and unvaccinated 

T A B L E  13  Probability of transmission of highly pathogenic avian influenza virus beyond different distances in the scenario of the Netherlands 
(epidemic in 2003) and Italy (epidemic 1999) as estimated in EFSA AHAW Panel (2023).

Distance (km)

3 5 10 15 20 25 50

Netherlands, 2003 epidemic 0.52 0.22 0.04 0.01 0.007 0.004 < 0.001

Italy, 1999 epidemic 0.33 0.15 0.04 0.02 0.01 0.006 0.001

T A B L E  14  Efficacy of different sample size, sampling frequency and diagnostic test combination for early detection (defined as reduction of 
Rs < 1) of unvaccinated infected flocks, strategy E1. These simulations were done for a flock of 2500 ducksa and assuming a case fatality equal to 0.2, a 
qPCR sensitivity of 0.99 and ELISA sensitivity of 0.90.

Sample type 
(diagnostic test)

Sample 
size

Sampling 
interval 
(days)

Percentage 
of outbreak 
simulations 
with the 
probabilities 
of escaping 
detection 
below 1%b

Detection time 
as days post- 
introduction 
(median 
(2.5–97.5 CI))

Prevalence (%) 
infectious birds 
(median (2.5–97.5 
CI))

Prevalence (%) 
recovered birds 
(median (2.5–97.5 
CI))

Rh/Rs 
(reproduction 
number) 
(median 
(2.5–97.5 CI))

Passive reporting 
(reference)

6 (5–8) 59.81 (45.26–68.1) 7.66 (4.4–11.5) 1.8

Mortality threshold 
(0.13%)

4 (3–5) 5.41 (2.85–11.43) 0.44 (0.12–1.07) 0.2 (0.1–0.33)

Dead birds (qPCR) ≤ 15 7 96% 3 (2–5) 2.33 (1.04–4.5) 0.16 (0–0.48) 0.08 (0.06–0.12)

14 95% 3 (3–5) 3.41 (1.68–6.9) 0.24 (0.04–0.67) 0.13 (0.1–0.18)

21

30
aThis was the median size for flocks smaller than 4000 in France.
bAn individual infected flock is considered detected when the probability of escaping detection < 0.01 (probability of detection > 0.99).
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poultry populations. This situation could occur if, for instance, only certain poultry species are vaccinated during a cam-
paign of preventive vaccination as described in Opinion part 1 (EFSA AHAW Panel, 2023). In this high- risk zone, it is assumed 
that active surveillance is conducted in all vaccinated flocks by collecting every 30 days in a 48- h period all dead birds up to 
a number of 15 to be tested by qPCR, while passive surveillance is applied in unvaccinated flocks (Tables 15A, 16A and 17A). 
As mentioned in Table 4, this testing scheme corresponded to a median of 97% of outbreak simulations being detected 
(Sensitivity) in chicken layers, 96% in ducks and 96% (CL: 87–97) in turkeys. Note that passive surveillance is by default ap-
plied also on vaccinated flocks; therefore, if unusual increased mortality is observed between two consecutive sampling 
events, additional testing should be considered to exclude the presence of HPAIV.

In addition, we explored scenarios with variations in sampling intervals (30, 15 and 7 days) and proportions of vaccinated 
flocks (100%, 50% and 25%) (Tables 15B, 16B and 17B). For definitions of the measures used in the tables, see Glossary.

As indicated in the methods, the probability of freedom from the disease is here provided and, considering that this 
probability is highly dependent on the prior chosen for the prevalence of the disease in a certain area (Equation 11 and see 
Glossary), we also provided the early detection sensitivity (EDSe, i.e. the probability that at least one infected establishment 
is detected by the surveillance component in the selected time frame for a given design prevalence) and the surveillance 
system sensitivity (TotalSe), which combines the sensitivity of all surveillance components in the Tables below.

Results show that by testing all dead birds up to a number of 15 collected in a flock during 48 h by qPCR every 30 days 
in all vaccinated flocks and by applying passive surveillance in unvaccinated flocks, the estimated probability of disease 
freedom (Pfree) would exceed 99% in the three high- risk regions assessed, if all results show negative. The overall sensi-
tivity of active and passive surveillance in all the poultry (Surveillance system sensitivity) was 95% in the high- risk regions 
of the Netherlands and 99% in the high- risk regions of France and Italy. The probability of detecting at least one infected 
vaccinated establishment (EDse) in the time frame of 30 days was 92% for vaccinated chickens in the Netherlands, 74% 
for vaccinated ducks in France and 93% for vaccinated turkeys in Italy. This indicates that the early detection sensitivity in 
vaccinated flocks is higher (chicken layers and turkeys) or similar (ducks) to the early detection sensitivity of passive surveil-
lance in unvaccinated flocks of other poultry types in the regions (Tables 15A, 16A and 17A)

Results show that the early detection surveillance sensitivities (EDSe) vary with different sampling frequencies and pro-
portions of vaccinated establishments sampled (Tables 15B, 16B and 17B). For example, reducing the proportion of tested 
turkey flocks from 100% to 50% reduces the EDSe from an average of 93% to 49% (Table 17B). Similarly, reducing it to 25% 
further reduces the early detection surveillance sensitivity to 25% (Table 17B). Conversely, the early detection surveillance 
sensitivities are increased by reducing the sampling intervals. For example, reducing the sampling intervals from 30 to 7 days 
in the turkey flocks that are tested increases the early detection sensitivity from an average of 93% to 100% (Table 17B).

However, reducing the proportion of the establishments tested or reducing the sampling intervals had a more limited 
effect on the probability of freedom (Pfree), given all tests were negative. This is likely due to the low hypothetical prior 
probability of infection (priorInf) chosen (5%) and the inclusion of passive surveillance in non- vaccinated poultry types. 
For example, sampling every 30 days and reducing the proportion of vaccinated turkey flocks tested to 25% resulted in a 
probability of freedom of 96% (compared with 99% if 100% of vaccinated turkey flocks are tested).

The monthly clinical examination of poultry, check of production records, check of health records of each epidemiolog-
ical unit, as set out in Delegated Regulation (EU) No 2023/361 for surveillance in preventive vaccination, when applied in 
addition to the surveillance scheme here proposed, further contributes at increasing the estimated confidence for early 
detection and disease freedom.

T A B L E  15 A  Early detection sensitivity and probability of freedom from disease in a high- risk zone for both introduction and transmission in 
the Netherlands. Here, the active surveillance is performed in vaccinated chicken layer flocks (testing all dead birds up to a number of 15 and up to 
30 days) and passive surveillance in unvaccinated flocks.

Farm type

Number of 
establishments 
in the high- risk 
zone

Time frame 
(days)a

Sensitivity of 
surveillance 
component (CSe)b

Early detection 
sensitivity 
(EDSe)c

Surveillance 
system 
sensitivity 
(TotalSe)d

Probability of 
freedom (Pfree)e

Unvaccinated breeder 
flocks

1 16 (14–23) 0.02 (0.01–0.03) 0.02 (0.01–0.03) 0.95 (0.70–0.99) 0.997 (0.985–0.999)

Unvaccinated broiler flocks 33 16 (14–23) 0.20 (0.08–0.34) 0.19 (0.07–0.32)

Unvaccinated duck flocks 2 6 (5–8) 0.16 (0.07–0.28) 0.15 (0.07–0.25)

Vaccinated Layer flocks 242 31 (25–43) 0.93 (0.56–0.99) 0.92 (0.56–0.99)

Unvaccinated turkey flocks 1 7 (6–9) 0.07 (0.03–0.13) 0.06 (0.03–0.12)
aTime period between virus introduction and detection by passive surveillance.
bCse as in Equation (8).
cEDSe as in Equation (9). For passive surveillance of unvaccinated flocks, the cumulative EDSe is calculated (assuming no outbreaks was reported) up to the end of the 
sampling interval.
dTotalSe as in Equation (10).
ePfree as in Equation (11).
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T A B L E  15 B  Early detection sensitivity and probability of freedom from disease (if all sampled establishments are negative) when considering 
different sampling frequency and proportion of vaccinated chicken layer establishments tested.

Sampling interval
Proportion of vaccinated chicken 
layer establishment sampled (%)

Number of 
establishments

Early detection sensitivity 
(EDSe)a

Probability of 
freedom (Pfree)

30 100 242 0.92 (0.56–0.99) 0.996 (0.977–0.999)

30 50 121 0.46 (0.28–0.50) 0.973 (0.963–0.974)

30 25 61 0.23 (0.14–0.25) 0.961 (0.957–0.962)

14 100 242 0.986 (0.80–0.99) 0.999 (0.989–1)

14 50 121 0.71 (0.48–0.75) 0.985 (0.973–0.987)

14 25 61 0.41 (0.26–0.44) 0.970 (0.962–0.971)

7 100 242 1 1

7 50 121 0.99 (0.99–1) 1

7 25 61 0.99 (0.99–0.99) 0.999 (0.999–1)
aFor sampling intervals shorter than the time frame, the cumulative EDSe up to the end of the time frame (expected detection by passive surveillance) is calculated.

T A B L E  1 6 A  Early detection sensitivity and probability of freedom from disease in a high- risk zone for both introduction and transmission in 
France. Here, active surveillance is performed in vaccinated duck flocks (testing all dead birds up to 15 and every 30 days) and passive surveillance in 
unvaccinated establishments.

Farm type

Number of 
establishments 
in the high- risk 
zone

Time frame 
(days)a

Sensitivity of 
surveillance 
component 
(CSe)b

Early detection 
sensitivity 
(EDSe)c

Surveillance 
system 
sensitivity 
(TotalSe)d

Probability 
of freedom 
(Pfree)e

Unvaccinated breeder 
flocks

625 16 (14–23) 0.99 (0.99–1) 0.77 (0.74–0.81) 0.99 (0.99–1) 0.999 (0.999–1)

Unvaccinated broiler flocks 3194 16 (14–23) 1 0.77 (0.74–0.81)

Vaccinated duck flocks 1907 21 (17–30) 1 0.74 (0.60–0.90)

Unvaccinated layer flocks 1000 16 (14–23) 1 0.77 (0.74–0.81)

Unvaccinated turkey flocks 154 7 (6–9) 0.99 (0.99–1) 0.68 (0.67–0.69)
aTime period between virus introduction and detection by passive surveillance.
bCse as in Equation (8).
cEDSe as in Equation (9). For passive surveillance of unvaccinated flocks, the cumulative EDSe is calculated (assuming no outbreaks was reported) up to the end of the 
sampling interval.
dTotalSe as in Equation (10).
ePfree as in Equation (11).

T A B L E  1 6 B  Early detection sensitivity and probability of freedom from disease (if all sampled establishments are negative) when considering 
different sampling frequency and proportion of vaccinated duck establishments tested.

Sampling interval
Proportion of vaccinated duck 
establishment sampled (%)

Number of 
establishments

Early detection sensitivity 
(EDSe)a

Probability of 
freedom (Pfree)

30 100 1907 0.74 (0.60–0.90) 0.999 (0.998–0.999)

30 50 954 0.37 (0.30–0.45) 0.968 (0.964–0.972)

30 25 478 0.18 (0.15–0.22) 0.959 (0.957–0.961)

14 100 1907 1 1

14 50 954 0.75 0.987 (0.987–0.999)

14 25 478 0.44 0.971 (0.970–0.999)

7 100 1907 1 1

7 50 954 0.95 0.997

7 25 478 0.71 0.985
aFor sampling intervals shorter than the time frame, the cumulative EDSe up to the end of the time frame (expected detection by passive surveillance) is calculated.
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3.1.2.4 | Surveillance to assess vaccination effectiveness (E2)

Estimation of vaccine effectiveness – data needed and possible analysis

Surveillance can also be used to assess vaccination effectiveness (VE), e.g. the ability of vaccination to prevent outbreaks 
upon exposure. The regional implementation of vaccination allows the observation of many vaccinated establishments 
to assess vaccination effectiveness following natural exposure and it may also be possible to assess vaccination character-
istics like the onset of protection upon vaccination (e.g. following emergency vaccination) or the duration of protection. 
In addition, the effectiveness of different vaccines or vaccination schemes can be compared. However, some challenges 
can be foreseen: (i) Natural virus circulation has to occur in the population, (ii) an effective surveillance system has to be in 
place to early detect the virus, (iii) the probability of exposure to the pathogen is not necessarily equal across the territory 
or across an epidemic (i.e. among study groups). To estimate the effectiveness of vaccination, the probability of exposure 
of vaccinated and non- vaccinated flocks to the field virus should be similar on average (EFSA, 2018; Klement et al., 2020). 
Given that vaccination is expected to be applied in those regions most at risk, it would be difficult to have all those condi-
tions in place.

During an epidemic, where emergency vaccination is applied, it will be of interest to assess VE at different time points 
following vaccination. During emergencies, it is of interest to assess the onset of protection and progression of VE in time 
post- vaccination, e.g. assessment of VE at 7, 14, ≥ 21 days following vaccination would be desirable. This information would 
help, for example, improve emergency preparedness by using these VE parameters to inform simulation models such as 
those used for the assessment of ToRs 1 and 2 in the Opinion Part 1 (EFSA AHAW Panel, 2023).

T A B L E  17 A  Early detection surveillance sensitivity, and probability of freedom from disease in a high- risk zone for both introduction and 
transmission in Italy. Here, active surveillance is performed in vaccinated turkey flocks (testing all dead birds up to a maximum of 15 every 30 days) 
and passive surveillance in unvaccinated establishments.

Farm type

Number of 
establishments 
in the high- risk 
zone

Time framea 
(days)

Sensitivity of 
surveillance 
component 
(CSe)b

Early detection 
sensitivity 
(EDSe)c

Surveillance 
system 
sensitivity 
(TotalSe)d

Posterior 
probability free 
(Pfree)e

Unvaccinated breeder 
flocks

120 16 (14–23) 0.89 (0.68–0.99) 0.71 (0.58–0.71) 0.99 (0.99–1.00) 0.999 (0.999–1.00)

Unvaccinated broiler 
flocks

501 16 (14–23) 0.93 (0.36–0.99) 0.72 (0.34–0.80)

Unvaccinated duck 
flocks

10 6 (5–8) 0.35 (0.13–0.79) 0.30 (0.12–0.58)

Unvaccinated layer 
flocks

300 16 (14–23) 0.99 (0.98–1) 0.77 (0.74–0.81)

Vaccinated turkey 
flocks

385 27 (21–38) 0.99 (0.97–1) 0.93 (0.83–1)

aTime period between virus introduction and detection by passive surveillance.
bCse as in Equation (8).
cEDSe as in Equation (9). For passive surveillance of unvaccinated flocks, the cumulative EDSe is calculated (assuming no outbreaks was reported) up to the end of the 
sampling interval.
dTotalSe as in Equation (10).
ePfree as in Equation (11).

T A B L E  17 B  Early detection sensitivity and probability of freedom from disease (if all sampled establishments are negative) when considering 
different sampling frequency and proportion of vaccinated turkey establishments tested.

Sampling frequency
Proportion of vaccinated turkey 
establishment sampled (%)

Number of 
establishment

Early detection sensitivity 
(EDSe)a Probability free (Pfree)

30 100 385 0.93 (0.83–1) 0.988 (0.986–0.990)

30 50 193 0.49 (0.46–0.50) 0.974 (0.973–0.975)

30 25 97 0.25 (0.24–0.25) 0.962 (0.961–0.962)

14 100 385 0.99 (0.99–1) 0.999 (0.999–1)

14 50 193 0.75 (0.74–0.75) 0.987 (0.986–0.987)

14 25 97 0.44 (0.43–0.44) 0.971 (0.970–0.971)

7 100 385 1 1

7 50 193 1 1

7 25 97 0.99 (0.99–1) 0.999 (0.999–1)
aFor sampling intervals shorter than the time frame, the cumulative EDSe up to the end of the time frame (expected detection by passive surveillance) is calculated.
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To estimate the vaccination effectiveness based on relative risk in the vaccinated population compared with the un-
vaccinated population, the data needed are the vaccination status of an establishment (Y/N), the date of vaccination, the 
HPAI infection status (Y/N) and the respective date of detection. Based on this date of detection, inferences on the date of 
infection could be made (e.g. suspected date of virus introduction).

It is recommended to collect and group the data at the smallest administrative area (e.g. municipality). This is to ensure 
(as much as possible) that unvaccinated/vaccinated establishments within the geographical region have a similar proba-
bility of exposure. In addition, during emergencies, these establishments are likely to be vaccinated practically at the same 
time. During epidemics, it could be challenging to separate vaccinated from unvaccinated groups geographically. Instead, 
separation can be made temporally, by comparing the probabilities (or Hazard) of infection before vaccination and at dif-
ferent time points following vaccination (e.g. 7, 14 and > 21 days). Depending on the analytic method, either regression or 
survival models, RR (Poisson regression), OR (logistic regression) or HR (Cox proportional hazard) could be calculated and 
VE values could be derived.

In summary, assessing VE following emergency vaccination would help to improve emergency preparedness, to make 
inferences of the vaccine used and to assess the efficacy of the implemented control strategies and related allocation of 
resources, and together define more effective interventions for future epidemics.

During preventive vaccination, all establishments of a specific poultry type are likely to be vaccinated, so no comparison 
with unvaccinated ones is possible. Nevertheless, the occurrence of outbreaks in vaccinated establishments points to vac-
cination failure. Given the assumption that vaccination is effective in 70% of the establishments (EFSA AHAW Panel, 2023), 
some outbreaks may be expected if HPAIV exposure from wild birds occurs. Nevertheless, this should not result in exten-
sive between farm transmission (EFSA AHAW Panel, 2023). To detect this as soon as possible, it is important to sequence 
viruses from the outbreaks to estimate the likelihood of between farms spread in contrast to separate introductions from 
the wild compartment.

3.1.2.5 | Surveillance to assess the level of immune response induced by vaccination (P2)

In the absence of virus circulation, vaccination effectiveness cannot be assessed, but the level of immunity at the establish-
ment level induced by vaccination can be measured using seropositivity, or any other correlate of protection, following the 
administration of the vaccine. Therefore, in addition to monitoring the level of immunity, there needs to be confirmation 
that there is no virus circulation in the vaccinated flock, following the surveillance approach discussed in Section 3.1.2.3.

The type of vaccine applied can affect the character (humoral or cell- mediated) and magnitude of immune response, 
this may in turn determine the most appropriate diagnostic test to monitor the immunity response at the flock level, as 
thoroughly discussed in Section 3.1.1. To do this, the animals should be sampled at a precise time within the time window 
for detection of birds with a specific correlate of protection (e.g. 28–35 days post vaccination for HVT- H5 vectored vaccine, 
not earlier than 21 days post- vaccination or latest booster for inactivated vaccines). However, identifying a correlate of pro-
tection, e.g. a given HI titre, which can be used to monitor the level of immunity reached within a flock (referred to as ‘herd 
immunity’) remains elusive (EFSA AHAW Panel, 2023). Hence, we suggest a pragmatic approach to assess the percentage 
(prevalence) of a vaccinated flock showing an ‘effective’ immune response (as defined by the diagnostic test to be used) as 
an indication of ‘adequate vaccination’ and assume that this could also provide an indication of the level of herd immunity 
reached in the vaccinated flock. First, the desired level of herd immunity (minimum prevalence of birds with a positive vac-
cine induced immune response) should be defined. This herd immunity level is equal to 1–1/R0. Median (range) of experi-
mental and field estimates of R0 for HPAI H5 viruses (CVI and APHA, 2017; EFSA AHAW Panel, 2023) are 3 (2–6) for chickens 
and 20 (16–88) for ducks. For turkeys, only one estimation was available, this estimate was 13 (95% Confidence Intervals: 
9–17) (Ssematimba et al., 2019). Given these estimates, the desired level of immunity would be ≥ 95 (94–99)% for domestic 
ducks (R0 = 24), ≥ 92 (89–94)% for turkeys (R0 = 12.8) and ≥ 73 (50–83)% for chicken layers (R0 = 3.6).

A sampling approach could be the one previously adopted in the emergency vaccination plans, set out in Commission 
Decision 2000/721/EC,10 applied for the control of LPAI in Italy in 2000 and currently being used to monitor vaccination in 
France. The approach is based on taking and assessing at least 20 random samples per establishment. In Table 18 sample 
sizes, prevalence estimates based on the number of positive (for immune response) birds (the ‘sample prevalence’) and the 
one- sided 95% lower confidence limit (LCL) of the prevalence are provided. The latter gives an indication of the confidence 
that the ‘true’ prevalence of immune response in the establishment is at the required level. For example, if we were moni-
toring vaccinated chicken layers, the level of immunity we could target is ≥ 73%. If 20 samples were taken and 15 are posi-
tive, the sample prevalence is 75% but we cannot be 95% confident that the ‘true’ prevalence in the establishment is ≥ 73%, 
since the 95% LCL of the prevalence is 58%. If, however, 18 samples were positive, then one can be 95% confident that the 
prevalence in the establishment is ≥ 73%, since the 95% LCL of the true prevalence is 74% (Table 18). Similar interpretations 
can be made for different sample sizes and results combinations, for chickens, ducks or turkeys.

 10Commission Decision 2000/721/EC of 7 November 2000 on introducing vaccination to supplement the measures to control avian influenza in Italy and on specific 
movement control measures. OJ L 291, 18.11.2000, pp.33–36.
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3.1.2.6 | Surveillance after cessation of vaccination (duration and type)

After cessation of vaccination, i.e. after the last vaccine has been administered and there are no further plans to vaccinate 
the birds, it is expected that vaccinated flocks will be gradually replaced by unvaccinated flocks at the end of each pro-
duction cycle. This gradual replacement will end to a time point where all the flocks in the area will be unvaccinated and, 
therefore, no longer subject to HPAI surveillance to be implemented after vaccination. As assessed in the Opinion Part 1 
(EFSA AHAW Panel, 2023), currently, there is no knowledge on the length of protective immunity in vaccinated birds, par-
ticularly for long- living birds (e.g. breeders) and on threshold values for correlate of protection. Therefore, an assessment 
of the duration of the surveillance after cessation of vaccination based on the demonstration that the vaccinated birds are 
still protected at a certain time point cannot be conclusive. Vaccinated flocks should be under surveillance depending on 
the context of vaccination (emergency/preventive) up to their replacement, with dead birds being preferred for testing. 
Meanwhile, passive surveillance should be applied on unvaccinated flocks present in the vaccination area.

3.1.2.7 | Surveillance in vaccinated captive birds

According to Regulation (EU) No 2016/42911 on transmissible animal diseases (‘Animal Health Law’ – AHL), captive birds12 
are defined as any birds other than poultry13 that are kept in captivity for any reason other than poultry, including those 
that are kept for shows, races, exhibitions, competitions, breeding or selling.

 11Regulation (EU) No 2016/429 of the European Parliament and of the Council of 9 March 2016 on transmissible animal diseases and amending and repealing certain acts 
in the area of animal health (‘Animal Health Law’). OJ L 84, 31.3.2016, p. 1.
 12According to Regulation (EU) No 2016/429, captive birds means any birds other than poultry that are kept in captivity for any reason other than those referred to in 
point (9), including those that are kept for shows, races, exhibitions, competitions, breeding or selling.
 13According to Regulation (EU) No 2016/429, poultry means birds that are reared or kept in captivity for: (a) the production of: (i) meat; (ii) eggs for consumption; (iii) other 
products; (b) restocking supplies of game birds; (c) the purpose of breeding of birds used for the types of production referred to in points (a) and (b).

T A B L E  1 8  Sample sizes, to determine the prevalence of birds showing a positive immune response induced by vaccination and assess whether 
this prevalence is at the required level.

Poultry species
Required prevalence of 
immune responders Sample size

Number 
positives

Sample 
prevalence

95% lower confidence 
limita

Chickens ≥ 73 (50–83)% 20 15 75% 58%

Turkeys ≥ 92 (89–94)% 16 80% 62%

Ducks ≥ 95 (94–99)% 17 85% 69%

18 90% 74%

19 95% 80%

20 100% 88%

30 25 83% 70%

26 87% 73%

27 90% 77%

28 93% 82%

29 96% 86%

30 100% 92%

40 35 87% 76%

36 90% 79%

37 92% 83%

38 95% 86%

39 97% 89%

40 100% 94%

50 45 90% 81%

46 92% 83%

47 94% 86%

48 96% 89%

49 98% 92%

50 100% 95%
aThese are one- sided Wilson exact 95% confidence limits.
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Vaccinated birds in EU- approved confined establishments 

Vaccinated birds in EU- approved confined14 establishments such as zoos, wildlife park or rehabilitation centres, are 
exempted from the surveillance as set out by Delegated Regulation (EU) No 2023/361 (see Part 5, point 2.3) (e.g. serological 
or virological testing). This is likely due to the negligible risk of HPAIV transmission from zoos to poultry holdings because 
of their confinement. Also, active surveillance is impractical, because periodically catching, swabbing and testing live wild 
birds of high value are difficult. Thus, passive surveillance is deemed more feasible and practical. Regular clinical 
examinations (e.g. weekly) by zoo personnel and zoo veterinarians should be conducted to early detect and intercept the 
presence of HPAIV in vaccinated zoo birds. In this setting, any clinical signs can be promptly detected, coupled with prompt 
analyses of any sick and dead birds, including wild birds found dead on the zoo premises. Moreover, environmental samples 
collected from each cage regularly (e.g. monthly) from e.g. cage structures, drinkers, feeders, faeces, feathers might improve 
the sensitivity of the surveillance system. If vaccinated birds are to be moved to another confined establishments, they 
should be subjected to clinical examination and molecular virological testing with negative results within 72 h before 
movement. Of note, there is limited knowledge in relation to the dynamic of HPAI infection of vaccinated zoo bird species.

Establishments with vaccinated ornamental birds 

For establishments housing vaccinated ornamental birds, the surveillance approach may be tailored to their size and trade 
activities. In limited size establishments, passive surveillance similar to that proposed for confined establishments could be 
appropriate. However, in establishments with more extensive trade activities, surveillance strategies as proposed for poultry 
in Section 3.1.2.1 might be more suitable. Pre- movement clinical examination and molecular virological testing with negative 
results within 72 h before movement are recommended, considering the potential risks associated with movements of such 
birds to other establishments or to events (e.g. for trade, markets, exhibitions, shows, etc.) with a gathering of HPAI- sensitive 
animals. Of note, there is limited knowledge in relation to the dynamic of HPAI infection of vaccinated ornamental birds.

3.2 | ToR 4: Restrictions and risk mitigation measures

3.2.1 | Emergency vaccination

According to Delegated Regulation (EU) No 2020/687, during emergency vaccination authorisation can be granted for the 
movement of animals and eggs if the risk is considered negligible by the competent authority based on a risk assessment 
including results of clinical examination, laboratory examination (if necessary) and an official veterinary visit.

It should be considered that, according to Delegated Regulation (EU) No 2023/361, the establishments that have been 
vaccinated under emergency are already under surveillance, so laboratory examination is ongoing. According to the EFSA 
assessment, the surveillance to be applied in these establishments is reported in Sections 3.1.2.1 and 3.1.2.2. to early detect 
HPAI and to demonstrate freedom from HPAI (Tables 10A–12B). Therefore, including the effectiveness of the combined 
emergency vaccination and surveillance established in this Opinion, the risk of movement of animals and eggs is consid-
ered negligible in the following situations described in Delegated Regulation (see Figure 6). Note that, laboratory examina-
tions, differently from what is stated in Delegated Regulation (EU) No 2020/687 where it should be done only if necessary, 
are here considered as part of the risk mitigation measures to be implemented.

For movement to the slaughterhouse, vaccinated poultry is clinically inspected and dead birds for molecular testing should 
be collected not earlier than 72 h before the movement. Negative test results should be provided before the movement and 
no clinical signs should be observed. Sampling should focus on the birds that have died on the day of clinical inspection or/
and the day before. This combination of inspection and virological checks results in a negligible risk and, consequently, from 
the perspective of HPAIV risk, there is no need to slaughter vaccinated animals separately from non- vaccinated animals.

For the movement of ready to lay poultry, vaccinated birds are clinically inspected and dead birds for testing should 
be collected not earlier than 72 h before the movement. Negative test results should be provided before the movement 
and no clinical signs should be observed. If the recipient establishment is located in the vaccinated zone, the appropriate 
testing scheme provided in Tables 10A–12B should be followed. If the recipient establishment is located outside the vac-
cinated zone, the establishment should be under official supervision for at least 21 days, during which the appropriate 
testing protocol provided in Tables 10A–12B should be followed. In addition, no other animals of listed species should be 
present in such an establishment.

For the movement of hatching eggs, vaccinated poultry in the breeding flock should be clinically inspected and dead 
birds for testing should be collected no earlier than 72 h before the movement. Negative test results should be provided 
before the movement and no clinical signs should be observed. Eggs should not come in contact with eggs or day- old 
chickens from outside the restriction zone.

 14Confined establishments are defined according to Regulation (EU) No 2016/429 Art. 4 as any permanent, geographically limited establishment, created on a voluntary 
basis and approved for the purpose of movements, where the animals are: (a) kept or bred for the purposes of exhibitions, education, the conservation of species or 
research; (b) confined and separated from the surrounding environment; and (c) subject to animal health surveillance and biosecurity measures.
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For the movement of day- old chickens, it should be confirmed that the breeding flock of origin has been free from 
HPAIV following the appropriate testing protocol provided in Tables 10A–12B. The establishments of destination should be 
under official supervision for 21 days.

Placing the establishments of destination of day- old- chickens, ready to lay poultry and hatcheries under official sur-
veillance should facilitate proper implementation of biosecurity measures and assure early detection of the disease, thus 
reducing the potential risk of spread of the infection.

If the process of movement (e.g. loading) is not completed within 72 h, then testing should be repeated every 48 h until 
the process is finished.

Given the already ongoing surveillance, in all the situation described above, testing could coincide with the sampling 
session of the surveillance in place after emergency vaccination.

For movement of chicken layers from establishments < 3000 birds, given the reduced confidence of early detection in 
this flock size of the surveillance applied (Section 3.1.2.1), molecular testing of live birds (as recommended in Delegated 
Regulation (EU) No 2023/361) should be considered before movement in addition to clinical inspection and molecular viro-
logical testing of dead birds (all up to a number of 10 dead birds weekly as indicated in Section 3.1.2.1).

For movement of turkeys from establishments < 6000 birds, in addition to the surveillance strategy based on mortality 
threshold (see Section 3.1.2.1), it is recommended to combine clinical inspection and molecular testing of live (as recom-
mended in Delegated Regulation (EU) No 2023/361) and dead birds before movements. It should be noted that those flock 
sizes are likely to contribute less to HPAIV transmission than larger flocks at a regional level.

3.2.2 | Preventive vaccination

According to Delegated Regulation (EU) No 2023/361, safe movements of vaccinated birds and their products are guar-
anteed if the vaccinated poultry or the day- old chickens and hatching eggs deriving from such poultry were negative to 
the active and enhanced passive surveillance implemented after preventive vaccination against HPAI (Table 1) and also 
other mitigation measures are implemented (see Figure 7). In the current Opinion, the surveillance to be applied after pre-
ventive vaccination is assessed in Section 3.1.2.3 and prescribes the monthly sampling of all dead birds up to a number of 
15 collected in a flock 48 h before the testing to assess a zone as free from HPAIV.

Therefore, for preventive vaccination, where no outbreaks are present, the surveillance as described in Section 3.1.2.3 
that is already in place provides a very high certainty that the area is free from infection (see Tables 15A–17B). Accordingly, 
if no outbreaks are detected and all establishments follow the surveillance protocol, the risk of movement is considered 
negligible in the following situations.

For movement to the slaughterhouse, vaccinated poultry should be clinically inspected not earlier than 72 h before the 
movement. Negative surveillance test results should be provided, and, before the movement, no clinical signs should be 
observed. In addition, at the slaughterhouse ante mortem inspection should be taking place. For Anseriformes, the sam-
pling scheme to be applied under surveillance is the one provided in Tables 16A and 16B.

For the movement of ready to lay poultry, vaccinated poultry should be clinically inspected not earlier than 72 h before 
the movement. Negative surveillance test results should be provided and, before the movement, no clinical signs should 
be observed. If the recipient establishment is located in the vaccinated zone, the appropriate testing scheme provided in 
Tables 15A–17B should be followed. If the recipient establishment is located outside the vaccinated zone, the farm should 
be under official supervision for at least 21 days, during which the appropriate testing protocol provided in Tables 15A–17B 
should be followed. In addition, no other animals of listed species should be present in such an establishment.

For the movement of hatching eggs to a hatchery, the breeding establishment should follow the appropriate surveil-
lance protocol given in Tables 15A–17B.

For the movement of day- old chickens, it should be clear that the breeding flock of origin has been free from HPAIV 
following the appropriate testing protocol provided in Tables 15A–17B. The establishment of the destination is under offi-
cial supervision for 21 days.

If the establishment from where the vaccinated birds are to be moved is not under surveillance, for example when fewer 
than 100% of vaccinated establishments are subjected to testing (such as 50% or 25%), then vaccinated poultry or day- old 
chickens and hatching eggs deriving from such poultry are clinically inspected and dead birds for testing, all up to a num-
ber of 15, should be collected not earlier than 72 h before the movement. Negative test results should be provided before 
the movement and no clinical signs should be observed.

All other measures described for preventive vaccination, e.g. disinfection, traceability, are considered useful and suitable 
to prevent HPAIV spread via the movement of vaccinated birds or their products.

3.3 | Sources of uncertainty

The source of uncertainty found in the current assessment are here listed. In relation to the assessment on diagnostic tests 
used in the context of HPAIV surveillance, there is a lack of information on several aspects including: the impact of vaccina-
tion on the performance of molecular tests under field conditions given the expected decrease in viral loads/shedding; the 
suitability of different environmental samples for surveillance in vaccinated flocks; the usefulness of amplification- based 
techniques other than PCR- based methods (e.g. LAMP, SDA, CRISPR) for detection of HPAIV; the performance of rapid 
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antigen detection systems on dead birds for monitoring of HPAIV circulation in vaccinated flocks; on the duration of the 
immunity elicited by vaccination; and on the correlate of protection which are described in Section 3.1.1.

Regarding the sources of uncertainty for the assessment of the effectiveness of the surveillance strategies at the estab-
lishment level, these are mainly related to the within- flock and between- flock transmission models chosen, which assumed 
values for transmission and clinical parameters such as the transmission rates, duration of latent and infectious periods, case 
fatality rate and baseline mortality and a given range of values for the between- flock reproduction number Rh based on 
previously published estimates when available or based on expert opinion (mainly for vaccinated turkeys) which may not 
be applicable to certain chicken layer, duck and turkey production systems in Europe. Also, there is uncertainty on species 
different from chicken layers, ducks and turkeys, given that data available for this assessment only relate to those species.

Similarly, for the assessment of surveillance strategies at area/zone level, there is uncertainty related to the parameters 
used as inputs for the scenario tree modelling, such as the relative risks of virus incursion in a zone/poultry species, which 
could differ among Member States, the proportion of establishments effectively protected following vaccination and the 
probability of infection in vaccinated flocks, which were informed by previously published studies which may not be rep-
resentative of all the scenarios/populations covered by this assessment.

4 | CO NCLUSIO NS AN D R ECOM M E N DATIO NS

4.1 | ToR 3: Diagnostic methods

• A broad spectrum of diagnostics methods is available for selection according to vaccine type, vaccination strategy and 
surveillance objective.

⚬ Recommendation: The vaccination plan should already pre- select the most appropriate diagnostic assays based 
on vaccine type, vaccination strategy and surveillance objective. Recommended diagnostic tests are provided in 
Tables 2 and 5.

• There is a lack of field experience and validation data for diagnostic methods to be used for active surveillance in vacci-
nated flocks.

⚬ Recommendation: The vaccination plan should only set out the use of diagnostic methods compliant with Points 
a or b of Point 1 of Article 6 of Commission Delegated Regulation (EU) No 2020/689,15 while Members States are 
encouraged to conduct additional studies to collect field experience and validation data on alternative diagnostic 
methods in vaccinated establishments. The Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 
(WOAH, online- b) (Section 1.1.6. – Validation of diagnostic assays for infectious diseases of terrestrial animals and 
Section 2.2. – Validation of diagnostic tests), as well as the requirements of the EN ISO/IEC 1702516 provide guidance 
for validating diagnostic methods to ensure they are compliant with the purpose they are intended for.

⚬ Recommendation: Since vaccinated birds, if exposed and infected, are expected to excrete lower levels of the 
virus than unvaccinated birds, the use of diagnostic methods with high sensitivity is recommended.

• Serological methods used to assess vaccination coverage, which are based on the detection of antibodies, can perform 
poorly in flocks that have received only replicating- vectored vaccines as these predominantly induce T- cell over humoral 
immune responses.

⚬ Recommendation: For each vaccine strategy- specific thresholds to estimate vaccination coverage as well as cor-
relates of protection need to be identified based on experimental studies and field evidence.

• Serological methods usually have a lower specificity than molecular diagnostic methods. This compromises their use as 
a sole surveillance assay.

⚬ Recommendation: Serological results when aiming at demonstrating disease freedom must be confirmed with 
molecular virological investigations (i.e. adequate samples should be collected to allow for virological testing in 
DIVA- vaccinated flocks with seropositive monitoring results).

• Serological data obtained from laboratory trials performed in the EU demonstrated that accurate selection of antigens 
for HI tests is important for sensitive detection of vaccine- induced humoral immune responses (i.e. selection of antigens 

 15Commission Delegated Regulation (EU) 2020/689 of 17 December 2019 supplementing Regulation (EU) 2016/429 of the European Parliament and of the Council as 
regards rules for surveillance, eradication programmes, and disease- free status for certain listed and emerging diseases. OJ L 174, 3.6.2020, pp. 211–340.

 16EN ISO/IEC 17025:2017. General requirements for the competence of testing and calibration laboratories. International Organization for Standardization.
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antigenically close to the one contained or expressed by the vaccine used) and for the differentiation of antibodies stim-
ulated by HPAI infection in vaccinated birds from antibodies elicited by vaccination (i.e. antigens antigenically close to 
circulating field strains).

⚬ Recommendation: Besides data collected in laboratory settings, field data are needed to understand antibody 
dynamics in the field.

⚬ Recommendation: Continuous monitoring and improvement of test antigens tailored to the specific surveillance 
activities aims is needed to ensure the highest performances of HI assays.

• NP- ELISA assays can be used to detect past infection in vaccinated birds (DIVA approach) starting from 7 days post- 
infection with Se that range from 60 to 100% depending on the species and if compatible vaccines (i.e. vaccines that do 
not contain the AI- NP in the formulation) are used.

⚬ Recommendation: Commercially available indirect ELISA have demonstrated superior performance compared 
with available competitive ELISA assays in both chickens and ducks and thus should be preferred if employed in 
surveillance activities and if the assay is validated for the target species.

• Reservation to using DIVA vaccination is linked to the low specificity of serological tests which increases risks of false- 
positive results.

⚬ Recommendation: Seropositive results in DIVA- vaccinated flocks require independent confirmation by molecular 
assays carried out on swab samples.

⚬ Recommendation: Continuous monitoring and improvement of serological tests tailored to the specific surveil-
lance activities aims in vaccinated flocks, is needed to ensure the highest performances of these assays.

• Co- circulation of avian influenza viruses of low pathogenicity can interfere with clear- cut molecular and serological di-
agnostic surveillance measures in HPAI vaccinated as well as in non- vaccinated flocks.

⚬ Recommendation: Molecular methods that allow identifying all avian influenza viruses, including LPAIV, down to 
the sub-  and pathotype levels must be in place in official laboratories.

• Analysis of samples collected from the environment is cost-  and time- saving compared with sampling and testing in-
dividual birds for HPAIV in premises suspected of infection. However, it is not yet suitable for surveillance, particularly 
when targeting early detection, as there is currently a lack of validation data and protocols in comparison to diagnostic 
performances with individual bird- derived samples in vaccinated flocks.

⚬ Recommendation: Validation of environmental sampling methods and associated protocols for vaccinated flocks, 
in particular for use as part of an early detection strategy, are needed in the field; research studies aimed at filling 
these knowledge gaps are encouraged also in the context of zoos or confined establishments.

• Field experience in vaccinating countries has demonstrated that the use of unvaccinated fully susceptible sentinels can 
increase the risk of infection of the flock and that numerous practical problems reduce their advantages or hamper their 
implementation.

⚬ Recommendation: Use of sentinels in vaccination plans is not recommended.

• Currently available commercial point- of- care diagnostic methods for HPAIV detection cannot be employed for surveil-
lance in vaccinated flocks due to lack of validation. In general, they have lower performance (in particular lower sensitiv-
ity) compared with RT- qPCR.

⚬ Recommendation: Further development and validation of point- of- care assays are needed in the field; research in 
that direction should be performed. Currently, the use of rapid antigen assays for active surveillance in vaccinated 
flocks is not recommended.

• Genetic and phenotypic characterisation tools are available for the accurate detection and characterisation of vaccine 
escape mutants.

⚬ Recommendation: Genetic characterisation of all viruses identified from HPAIV detected in vaccinated flocks is 
highly recommended and NRLs should be prepared for this activity before beginning the vaccination campaigns.

⚬ Recommendation: Viral isolation followed by phenotypic characterisation (e.g. evaluation of antigenic character-
istics by HI and/or V- NT; adaptation to mammalian species; replicative behaviour; etc.) is recommended in a repre-
sentative number of PCR- positive samples obtained from vaccinated flocks.
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4.2 | ToR 3: Surveillance

General considerations

• The epidemiological unit for surveillance is the establishment, which may consist of one or several flocks (comprising all 
poultry of the same health status kept in the same enclosure).

• Sample sizes are provided at the flock level, meaning that if an establishment includes several flocks, sampling should 
be carried out within each individual flock. Detection of HPAIV in one flock within an establishment indicates infection 
for the entire establishment.

• Surveillance strategies for testing dead birds include random sampling of all dead birds up to a number of 5, 10 or 15. If 
fewer dead birds than this number are available, all available dead birds should be tested.

• We assumed the lowest case fatality rates of 20%, 5% and 20% in infected vaccinated chicken layers, ducks and tur-
keys, respectively, observed for vaccines considered as not effective in stopping sustained transmission (EFSA AHAW 
Panel, 2023). However, uncertainty remains in estimating these parameters accurately.

• The model relies on within- flock transmission parameters, yet uncertainty persists regarding these parameters and their 
accurate determination due to data limitations.

⚬ Recommendation for research: It is recommended to estimate case fatality in (a sample of) HPAIV outbreaks in vac-
cinated flocks to reduce the uncertainty of this parameter. Laboratory testing of dead and live birds individually can 
be used to obtain these estimates.

⚬ Recommendation for research: It is recommended to estimate within- flock transmission parameters during HPAIV 
outbreaks to reduce the uncertainty of the transmission parameters.

General conclusions

• Surveillance strategies based on sampling and testing dead birds have a higher probability of early detecting HPAIV than 
strategies based on testing live birds.

• Increasing the sample size above the numbers of 5, 10 or 15 dead birds provided does not increase the probability of 
HPAIV detection.

• The effectiveness of surveillance is increased by the repeated sampling in time.
• If HPAIV enters a flock between two sampling events, the proportion of infected birds will be highest close to the second 

sampling event. Consequently, testing birds found dead in the last 48 h yields the highest sensitivity.
• If, at a certain sampling event, no dead birds are present in the flock, it is probable that the infection has either not en-

tered the flock or entered so recently that it cannot be detected yet. In the latter case, the surveillance strategy involving 
repeated sampling would result in the collection of dead birds in the next sampling event, leading to the detection of 
the infection entered in the previous sampling interval.

⚬ Recommendation: Sampling and testing dead birds should consist of dead birds found in the last 48 h.

• No definitive conclusion can be drawn regarding the duration of the surveillance after the cessation of vaccination in a 
flock, due to the current lack of knowledge on the correlate of protection and consequently on the duration of protective 
immunity in vaccinated poultry, particularly in long- living birds.

⚬ Recommendation: Vaccinated flocks should be under surveillance up to their replacement, with the sampling and 
testing of dead birds being the recommended option. Meanwhile, passive surveillance should be applied for unvac-
cinated flocks within the vaccination area.

4.2.1 | Surveillance for early detection at establishments for emergency vaccination

Strategies for early detection were considered effective if they resulted in more than 95% of the simulated outbreaks 
reaching detection probabilities above 99% (interpreted as leading to early detection). ‘Passive reporting’ and ‘mortality 
threshold’ strategies were considered effective if they stopped sustained between- flock transmission (Rs < 1).

Chicken layers

• The surveillance strategy described in Delegated Regulation (EU) No 2023/361, which involves testing 60 live birds for 
virus presence (virological testing) every 2 weeks during emergency vaccination to detect at least one infected bird 
given 5% or higher disease prevalence, was assessed as not effective for early detection since there was < 95% certainty 
that it would lead to the early detection of HPAIV in vaccinated chicken layer flocks.
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• The alternative surveillance strategy of testing 60 live birds for antibodies presence (serological testing) every 2 weeks 
during emergency vaccination was also assessed as not effective since there was < 95% certainty that it would lead to 
HPAIV early detection in vaccinated chicken layers.

• The surveillance strategies based on ‘passive reporting’ or on ‘mortality thresholds’ were not effective for HPAIV early 
detection, resulting in sustained between- flock transmission (Rs > 1) and long mean detection times post- introduction 
(e.g. 31 days (95% CI: 25–43) and 28 days (95% CI: 22–39), respectively, for 20,000 size flock; 21 days (95% CI: 16–33) and 
15 days (CI 95%: 10–26), respectively, for 2500 flock size).

• The alternative strategy of testing dead birds, when implemented for flocks ≥ 3000 birds, was effective for early detec-
tion with > 95% certainty (Table 10A).

• For flocks < 3000 chicken layers, none of the surveillance strategies assessed was effective with > 95% certainty for early 
detection (Table 10B). The maximum certainty that could be reached for early detection, by sampling all up to a number 
of 10 or 15 dead birds weekly, was 90%.

⚬ Recommendation: For early detection of HPAIV outbreaks, in flocks ≥ 3000 birds, during emergency vaccination, 
molecular testing of dead chicken layers in a flock is recommended. A number of effective options have been 
identified according to flock size – testing all up to a number of 5, 10 or 15 dead birds weekly, up to 10 or 15 dead 
birds every 2 weeks or up to 15 dead birds every 3 weeks – and should be selected according to a country's specific 
circumstances and resources.

⚬ Recommendation: For flocks < 3000 birds, it is recommended to test all up to a number of 10 dead birds weekly, 
which combined with molecular testing of live birds every 2 weeks, as recommended in the Delegated Regulation 
(EU) No 2023/361, would increase the level of confidence of early detection.

Ducks

• The surveillance strategy described in the Delegated Regulation (EU) No 2023/361, which involves testing 60 live birds 
for virus presence (virological testing) every 2 weeks during emergency vaccination to detect at least one infected bird 
given a disease prevalence of 5% or higher, was assessed as effective for early detection since there was > 95% certainty 
(specifically 97%) that it would lead to the early detection of HPAIV in vaccinated ducks flocks. The average detection 
time post- introduction was 14 days (95% CI: 11–23) in flocks of 2500 ducks, and 17 days (95% CI: 13–27) in flocks housing 
6000 ducks, with these detection timeframes resulting in limited between- flock transmission (Rs < 1).

• The alternative surveillance strategy of testing 60 live birds for antibody presence (serological (DIVA) testing) every 
2 weeks during emergency vaccination was also assessed as effective since there was > 95% certainty (specifically 97%) 
that it would lead to HPAIV early detection in vaccinated ducks. However, diagnostic performance of the serological tests 
is inferior compared with molecular tests, thus reducing our certainty in this strategy.

• A surveillance strategy based on ‘passive reporting’ only was not effective for HPAIV early detection, resulting in sus-
tained between- flock transmission (Rs > 1) and a longer mean detection time post- introduction of 21 and 23 days (95% 
CI: 17–30; 19–32), depending on flock size (2500 and 6000, respectively).

• A surveillance strategy based on ‘mortality thresholds’ was effective for early detection, resulting in limited between- 
flock transmission (Rs < 1); additionally, in flocks of 2500 ducks, the average detection time post- introduction was the 
shortest – 10 days (95% CI: 7–18).

• The alternative strategies of testing dead birds were proven to be effective with > 95% certainty that it would lead to 
early detection of HPAIV in vaccinated ducks. The average detection time ranged between 14 and 17 days post- HPAIV 
introduction in the flock, depending on sampling frequency, sample size and flock size and this was accompanied by 
limited between- flock transmission (Rs < 1) (Tables 11A and 11B).

⚬ Recommendation: For early detection of HPAIV outbreaks during emergency vaccination, molecular testing of dead 
ducks in a flock is recommended. A number of effective options have been identified: (i) in flocks of 2500 ducks (rep-
resenting flocks with < 6000 ducks), testing all dead birds up to a number of 5, 10 or 15 weekly, (ii) in flocks of ≥ 6000 
ducks, testing all dead birds up to 5, 10 or 15 weekly, testing all dead birds up to 10 or 15 every 2 weeks, or testing all 
dead birds up to 15 every 3 weeks. These strategies should be selected according to country's specific circumstances 
and resources.

⚬ Recommendation: As an alternative to testing dead birds, testing of 60 live ducks every 2 weeks (by means of mo-
lecular or serological testing) in a flock can also be carried out, but it may present more challenges in terms of welfare 
consequences and logistics (e.g. catching, handling and restrain) as well as requiring more resources.

⚬ Recommendation: As an alternative to testing dead birds, a surveillance strategy based on mortality threshold can 
also be carried out, but its effectiveness depends on the availability and accuracy of information about mortality 
thresholds that could prompt farmers to report suspicions of HPAI.
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Turkeys

• The surveillance strategy described in the Delegated Regulation (EU) No 2023/361, which involves testing 60 live birds 
for virus presence (virological testing) every 2 weeks during emergency vaccination to detect at least one infected bird 
given a disease prevalence of 5% or higher, was assessed as not effective for early detection since there was < 95% cer-
tainty that it would lead to the early detection of HPAIV in vaccinated turkey flocks.

• The alternative surveillance strategy of testing 60 live birds for antibodies presence (serological testing) every 2 weeks 
during emergency vaccination was also assessed as not effective since there was < 95% certainty that it would lead to 
HPAIV early detection in vaccinated turkeys.

• The surveillance strategies based on ‘passive reporting’ or on ‘mortality thresholds’ were not effective for HPAIV early 
detection in flocks ≥ 6000 turkeys, resulting in sustained between- flock transmission (Rs > 1) and long mean detection 
time post- introduction (e.g. at 27 days (95% CI: 31–38) and 24 days (95% CI: 19–34), respectively, for flock 18,000).

• The alternative strategies of testing dead birds, when implemented for flocks of ≥ 6000 turkeys, proved to be effective 
for early detection with > 95% certainty (Table 12A).

• For flocks < 6000 turkeys, the only effective surveillance strategy for early detection was based on the use of ‘mortality 
thresholds’ (0.21%), resulting in limited between- flock transmission (Rs < 1) (Table 12B).

⚬ Recommendation: For early detection of HPAIV outbreaks, for flocks ≥ 6000 turkeys, during emergency vaccination, 
molecular testing of dead turkeys in a flock is recommended. A number of effective options have been identified – 
testing up to 5, 10, 15 or 20 dead birds weekly, up to 15 or 20 dead birds every 2 weeks or up to 20 dead birds every 
3 weeks – and should be selected according to country's specific circumstances and resources.

⚬ Recommendation: For flocks < 6000 turkeys, the surveillance strategy based on mortality threshold should be 
carried out which combined with molecular testing of live birds every 2 weeks, as recommended in the Delegated 
Regulation (EU) No 2023/361, would increase the level of confidence of early detection; the effectiveness of mortality 
threshold depends on the availability and accuracy of information about mortality thresholds that could prompt 
farmers to report suspicions of HPAI.

Surveillance in peri- vaccination zone

• Based on the results from EFSA AHAW Panel (2021), it was assessed that in a ‘surveillance zone’, where there is an unvacci-
nated poultry population, the probability of transmission of HPAIV beyond a 10- km radius (jump spread) was below 0.04. 
The same radius can be applied to the peri- vaccination zone as a conservative estimate which increases the confidence 
that the probability of transmission beyond 10 km is lower than 0.04.

⚬ Recommendation: A 10- km peri- vaccination zone during emergency protective vaccination is recommended, to 
increase the confidence that the probability of jump spread is lower than 0.04 (4%).

• In relation to the type of surveillance in the peri- vaccination zone, the options depend on the vaccination status of the 
establishments.

⚬ Recommendation: For preventively vaccinated farms, it is recommended to apply the same surveillance strategy 
as for early detection of emergency vaccination. For those farms that are not vaccinated, the recommendations pro-
vided in EFSA Opinion on control measures for Category A diseases (EFSA AHAW Panel,  2021) are considered ap-
plicable. Therefore, passive surveillance is to be applied for gallinaceous poultry (chickens and turkeys) and bucket 
sampling for Anseriformes (ducks and geese), carrying out a weekly sampling of all available dead birds, preferably 
within the last 48 h.

4.2.2 | Surveillance for early detection and demonstrating disease freedom following preventive 
vaccination

• Molecular virological testing of all dead birds in vaccinated flocks up to a number of 15 every 30 days, coupled with pas-
sive surveillance in unvaccinated flocks, would lead to at least 99% confidence in disease freedom in the zone, assuming 
≤ 5% prior prevalence of establishments infected. This was confirmed by the model in the three high- risk zones assessed, 
the Netherlands with vaccinated chicken layers, France with vaccinated ducks and Italy with vaccinated turkeys.

⚬ Recommendation: Molecular virological testing of up to 15 dead birds every 30 days in vaccinated flocks, while main-
taining passive surveillance in both vaccinated and unvaccinated flocks, is recommended to effectively demonstrate 
disease freedom with > 99% confidence within high- risk zones for HPAIV infection.
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• With the above testing scheme, the probability of early detecting at least one infected vaccinated establishment (EDse) 
in the time frame of 30 days was 92% for vaccinated chicken layers in the Netherlands, 74% for vaccinated ducks in France 
and 93% for vaccinated turkeys in Italy; reducing the sampling intervals from 30 days to 14 or 7 days increased the EDse 
to > 98% for chicken layer and turkey flocks and to 100% in duck flocks.

⚬ Recommendation: If the aim is to increase the early detection surveillance sensitivities, then it is recommended to 
reduce the sampling intervals.

• Reducing the proportion of vaccinated establishments to be tested to 25% would have a limited impact on the probabil-
ity of freedom, remaining > 96% for chicken layers, 95% for ducks and > 96% for turkeys.

• Reducing the proportion of vaccinated establishments tested markedly decreases the early detection sensitivity (EDse). 
For instance, reducing the proportion of establishments to be tested from 100% to 50% would result in a decrease on 
EDse from 92% to 46% in chicken layers, from 74% to 37% in ducks and from 93% to 49% in turkeys.

⚬ Recommendation: For chicken layers, a number of effective options have been identified to maintain a level of 
early detection sensitivity > 92%, and probability of freedom > 99%, by testing all dead birds up to a number of 15 
in 100% of the vaccinated establishments monthly; in 25% of the vaccinated establishments weekly – and should be 
selected according to country's specific circumstances and resources.

⚬ Recommendation: For ducks, a number of effective options have been identified to maintain a level of early detec-
tion sensitivity > 74% and probability of freedom > 98%, by testing all dead birds up to a number of 15 in 100% of the 
vaccinated establishments monthly; in 50% of the vaccinated establishments every 2 weeks – and should be selected 
according to the country's specific circumstances and resources.

⚬ Recommendation: For turkeys, a number of effective options have been identified to maintain a level of early detec-
tion sensitivity > 75% and probability of freedom > 98%, by testing all dead birds up to a number of 15 in 100% of the 
vaccinated establishments monthly; in 50% of the vaccinated establishments every 2 weeks; in 25% of the vaccinated 
establishments weekly – and should be selected according to country's specific circumstances and resources.

• In the high- risk zones, where unvaccinated and vaccinated establishments are present, passive surveillance in the un-
vaccinated establishments would contribute to increase the overall surveillance system sensitivity, and the confidence 
of disease freedom.

⚬ Recommendation: Maintaining passive surveillance efforts in unvaccinated establishments in vaccinated zones is 
recommended to enhance the overall sensitivity of the surveillance system.

4.2.3 | Surveillance for estimation of vaccination effectiveness

• The estimation of vaccination effectiveness (VE) under field conditions is a crucial element for (i) preventing and con-
trolling epidemics, (ii) verifying the measures applied and (iii) justifying the investments. The effectiveness can differ 
among vaccination programmes.

• The assessment of vaccination effectiveness requires careful planning, a good data collection framework, follow up of all 
flocks in the vaccinated area as well as sufficient human resources to conduct the study, in order to ensure high quality 
of data and outcomes from the analysis.

⚬ Recommendation: Data from the vaccinated population in the field should be collected from each epidemiological 
unit considered, including at least outbreak (events, suspicion and confirmation date) and vaccination (events, date) 
data, and spatial coordinates of each epidemiological unit. Data should be assessed to estimate vaccination effective-
ness. Assessing VE at 7 and 14 days post- vaccination would give an indication of the VE for emergency vaccination.

⚬ Recommendation: In case of HPAI outbreaks following vaccination, it is recommended to sequence the virus to esti-
mate the likelihood of between farm spread in contrast to separate introduction from wild birds.

4.2.4 | Surveillance to assess level of immune response induced by vaccination

• Assessment of the level of immune response following vaccination of an establishment can be performed when virus 
circulation is absent or expected to be low in the zone where (preventive) vaccination was applied.

⚬ Recommendation: Assessment of level of immune response following vaccination of an establishment according to 
the vaccines used and the selected diagnostic test, should be done combined with an assessment of the absence of 
virus circulation in the flock.
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⚬ Recommendation: To best detect the proportion of birds with a measurable immune response sampling should 
be done when the highest immune response is expected, e.g. between 21 and 28 days post primary or booster 
vaccination. If only vector- based vaccines are used (e.g. HVT- H5), immune response should be assessed at least 
4 weeks (e.g. 4 weeks in chickens or 7 weeks in turkeys) after vaccination.

• Based on the R0 for within flock transmission quantified from experimental and field data, the minimum proportion of 
protected birds needed to stop transmission was estimated to be higher than 90% for ducks and turkeys, and 70% for 
chicken layers. Although there are limited estimates of R0 values for ducks and turkeys, transmission in these species is 
expected to be faster and more extensive (with 95% certainty) than transmission between chickens, hence the high level 
(> 90%) of herd immunity required.

⚬ Recommendation for research: Further quantification of R0 values for the currently circulating HPAIV is recom-
mended to have a more accurate estimate of the minimum proportion of birds that should be protected in a flock to 
stop transmission.

• There is no established correlate of protection, e.g. antibody titre against HPAIV, that could be considered as a proven 
indicator of protection for poultry species. In the meantime, assessment of the prevalence of birds showing an immune 
response following vaccination is assumed to provide an indication of sufficient protection and possibly herd immunity. 
For chickens, taking 20 samples per establishment would allow confirmation of this prevalence being higher than the 
70% with 95% certainty. For turkeys and ducks, 40, 50 or higher number of samples might be needed to confirm that the 
prevalence of birds' immune response is higher than 90% with 95% certainty.

⚬ Recommendation: At least 20 blood samples per establishment, tested with the most suitable diagnostic test de-
pending on the vaccine used, are appropriate to determine whether vaccines are correctly used in the field.

⚬ Recommendation: As there are no established antibody titres that can be used as a correlate of protection for poul-
try species, the (sero)positivity in an appropriate test could be used as a proxy measure of protection in vaccinated 
birds. To estimate the true level of protection (herd immunity), an animal level correlate of protection should be de-
fined. If a certain antibody titre was to be shown as a good correlate of protection, then a serological survey (based 
on serological test) could be conducted.

4.2.5 | Surveillance in vaccinated captive birds

• In confined establishments such as zoos and in small ornamental bird establishments, the risk of HPAI transmission to 
poultry holdings is likely limited, warranting passive surveillance. However, ornamental bird establishments with more 
extensive trade activities may pose increased risks.

• There is limited knowledge about the dynamics of HPAI infection in vaccinated species reared in confined or captive bird 
species establishments (which are usually different from poultry species).

⚬ Recommendations: Maintaining passive surveillance in vaccinated birds from confined and small ornamental bird 
establishments is recommended.

⚬ Recommendations: For kept ornamental birds, certain movements (i.e. those with a high risk of HPAIV spread such as 
for trade, exhibitions, shows, etc.) may represent a risk, and testing should be carried out before the movement takes 
place, since the premovement clinical examination alone may not be sufficient.

4.3 | ToR 4: Restriction and risk mitigation measures

4.3.1 | Emergency vaccination

• For emergency vaccination, where HPAI outbreaks are present in the area, vaccinated establishments are already 
under surveillance, including laboratory examination. In Delegated Regulation (EU) No 2020/687, clinical inspection in 
the 72 h before movement and laboratory examination to demonstrate freedom from HPAI is considered part of the risk 
mitigation measures.

⚬ Recommendation: To enable safe movement of vaccinated poultry, day- old chickens and hatching eggs deriving 
from such poultry, birds should be clinically inspected and all up to a number of 15 dead birds should be tested no 
earlier than 72 h before movement to demonstrate that they are free from HPAIV. Negative test results and the ab-
sence of clinical signs should be provided before movement.

⚬ Recommendation: Given the ongoing surveillance applied after emergency vaccination for early HPAIV detection 
and to demonstrate that the establishment is free from HPAIV, testing could coincide with the sampling session of the 
surveillance in place.
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4.3.2 | Preventive vaccination

• For preventive vaccination, in which no HPAI outbreaks are present, the surveillance described in Section 3.1.2.3 (test-
ing all dead birds up to a number of 15 in vaccinated flocks every month, see Section 4.2.2) provides high certainty that 
the area is free from HPAIV, given negative results. Accordingly, if no outbreaks are detected and all establishments fol-
low the surveillance protocol, the risk of HPAIV spread via birds' movement is considered negligible.

⚬ Recommendation: To enable the safe movement of vaccinated poultry, day- old chickens and hatching eggs deriving 
from such poultry, negative surveillance test results should be provided, and no clinical signs should be observed 
before the movement.

⚬ Recommendation: If the vaccinated establishment is not under surveillance, for example when fewer than 100% of 
vaccinated establishments are tested, vaccinated poultry, day- old chickens and hatching eggs deriving from such 
poultry should be clinically inspected and all up to a number of 15 dead birds should be tested no earlier than 72 h 
before movement. Negative test results and the absence of clinical signs should be provided before movement.

A B B R E V I AT I O N S
AI avian influenza
AIV avian influenza virus
AR adjusted relative risks
CVMP Committee for Veterinary Medicinal Products
DIVA Differentiating Infected from Vaccinated Animals
EMA European Medicines Agency
FPV Fowlpox virus
GMO genetically modified organism
HDPA high- density poultry areas
HI haemagglutination inhibition
HP highly pathogenic
HPAI highly pathogenic avian influenza
HPAIV highly pathogenic avian influenza virus
HVT Turkey Herpesvirus
LP low pathogenic
LPAI low pathogenic avian influenza
LPAIV low pathogenic avian influenza virus
NDV Newcastle Disease Virus
NP- ELISA nucleoprotein- based ELISA
Rh between- flocks reproduction number
RR relative risk
SAN specific antibody negative
SLR systematic literature review
SPF specific pathogen free
TRL technology readiness level
USDA United States Department of Agriculture
VE vaccine efficacy
WOAH World Organisation for Animal Health

G L O S S A R Y
CSei component sensitivity for the i- th surveillance system component. It is the average probability that a 

surveillance system component will return a positive surveillance outcome, given disease is present in the 
population at a level equal to, or greater than, the specified design prevalence

EDSe early detection sensitivity of each SSC, which is the probability that the surveillance activity is able to cor-
rectly detect among the poultry establishments the epidemiological unit(s) affected by a new incursion 
within a specific time frame

Pfree probability that the country is free from disease, given that the surveillance system did not detect the 
disease. Confidence of population freedom (= negative predictive value)

PriorInf prior probability (also known as prior prevalence) that the poultry population at establishment level 
would be infected

SSC surveillance system components, a surveillance activity that, in itself, can contribute evidence to disease 
freedom; it has the capacity to detect disease if/when it occurs Five SSCs were identified: broilers, fatten-
ing ducks, meat turkeys, breeders and laying hens

TotalSe surveillance system sensitivity, which combines the EDSe calculated for each SSC
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APPE N D IX A

Mapping of ToRs 3 and 4 and Opinion's output

T A B L E  A1  Term of references (ToR) as they were received from the European Commission and the assessment methods and results relative to each ToR or sub- ToR.

ToR Sub- ToR Assessment method Assessment results

3. Surveillance in 
the vaccinated 
zone and/or 
vaccinated 
establishments

3.1. Assess the suitability and effectiveness of the reinforced 
surveillance set out in Part 2 and in point 2 of Part 5 of 
HPAI Annex to the Delegated Regulation (EU) No 2023/361 
to early detect infection in the vaccinated flocks and to 
prevent spread of the HPAI virus by movement of birds and 
their products from vaccinated establishments/flocks.

The above assessment should include scenarios depending on 
different vaccination strategies.

By vaccination strategy:
a. To early detect (Section 2.1.5.1) and demonstrate 

freedom from HPAIV during emergency vaccination: 
modelling HPAI infection dynamic in vaccinated flocks

b. To early detect and demonstrate freedom from HPAIV 
during preventive vaccination (Section 2.1.5.2): scenario's 
tree model

By vaccination strategy (emergency protective/
preventive):

a. Rs values and time between introduction and 
detection based on virology (prev infectious), serology 
(prev recovered), mortality (prev dead), given different 
sampling scheme (frequency and size) (Section 3.1.2.1)

b. Sensitivity of HPAIV early detection given different 
sampling schemes (frequency and proportion of 
vaccinated establishments under surveillance) and 
confidence of freedom (Section 3.1.2.3)

3.2. Taking into account the possible different surveillance 
approaches (e.g. serology, virology, conventional, DIVA, 
passive/active surveillance of vaccinated birds, use of 
sentinels) explore and provide for alternative suitable 
surveillance approaches/strategies indicating the 
minimum level and duration of surveillance required in a 
vaccinated establishment, including sampling schemes and 
testing procedures, to:

a. ensure early detection of infection with HPAI viruses;
b. be implemented as additional guarantees to authorise the 

movement of vaccinated and non- vaccinated poultry and 
poultry products within the vaccinated zone and from the 
vaccinated zone or establishment to outside that zone or 
establishment;

c. be implemented after cessation of vaccination as 
necessary risk mitigation measure to authorise movement of 
birds and their products from those establishments, taking 
into account:

•  the relevant factors to influence the level and duration 
of protection following vaccination with different type 
of vaccines,

•  simultaneous presence in the establishment of 
vaccinated and unvaccinated animals.

By vaccination strategy (emergency protective/preventive):
a. To early detect (Section 2.1.5.1) and demonstrate 

freedom from HPAIV during emergency vaccination: 
modelling HPAI infection dynamic into vaccinated flocks

b. To early detect and demonstrate freedom from HPAIV 
during preventive vaccination (Section 2.1.5.2): scenario's 
tree model

c. Qualitative assessment
d. Descriptive analysis of diagnostic methods available for 

surveillance of HPAIV vaccinated birds (Section 2.1.4)

By vaccination strategy (emergency protective/
preventive):

a. Rs values and time between introduction and 
detection based on virology (prev infectious), 
serology (prev recovered), mortality (prev dead), given 
different sampling schemes (frequency and size) 
(Section 3.1.2.1)

b. Sensitivity of HPAIV early detection given different 
sampling schemes (frequency and proportion of 
vaccinated establishments under surveillance) and 
confidence of freedom (Section 3.1.2.3)

c. Timespan of surveillance to be applied after cessation 
of vaccination (Section 3.1.2.6)

d. Indication of appropriate diagnostic methods tailored 
to the surveillance objectives and sample type 
(Section 3.1.1)

Description of vaccination effectiveness (Article 9) based on 
relative risk measures; assessment of level of immune 
response induced by vaccination (Section 2.1.5.3)

Indication of options and data needed to assess 
vaccination effectiveness (Section 3.1.2.4) and 
level of immune response induced by vaccination 
(Section 3.1.2.5)

3.3. Taking into account the WOAH standards (i.e. surveillance 
to be carried out in all vaccinated flocks) explore and 
provide for alternative suitable surveillance approaches/
strategies to be implemented in a vaccination zone to 
demonstrate freedom from HPAI based on representative 
sampling of the vaccinated (and not vaccinated) 
establishments within a vaccination zone.

For preventive vaccination:
b. Scenario's tree model (Section 2.1.5.2)

b. Confidence of freedom given different sampling 
schemes considering different proportion of 
vaccinated establishments under surveillance 
(Section 3.1.2.3)

(Continues)
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ToR Sub- ToR Assessment method Assessment results

4. Restrictions and 
risk mitigation 
measures to 
be applied in 
a vaccinated 
establishment 
or a vaccination 
zone

4.1. Assess the suitability of the restrictions and risk mitigation 
measures set out in Part 3 and in points 3 to 5 of Part 
5 of HPAI Annex to the Delegated Regulation (EU) No 
2023/361 to prevent the spread of HPAI viruses, enabling 
safe movement of poultry and their products following 
emergency and preventive vaccination, respectively.

By vaccination strategy (emergency protective/preventive) 
(Section 2.2.1):

Qualitative assessment of measures currently in place and 
demonstration of freedom as additional/alternative 
measure via modelling HPAI infection dynamic into 
vaccinated flocks (emergency vaccination) and 
scenario's tree model (preventive vaccination)

By vaccination strategy (emergency protective/
preventive): confidence of freedom given different 
sampling schemes (frequency, size, proportion 
of vaccinated establishments under surveillance) 
(Section 3.1.2.3)

4.2. Explore and provide for alternative (to those referred in 
4.1.) suitable movement restrictions and risk mitigation 
measures required to prevent the spread of virus by 
movement of birds or their products from a vaccinated 
establishment/vaccination zone.

The EFSA Journal is a publication of the European Food Safety  
Authority, a European agency funded by the European Union

T A B L E  A1  (Continued)
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