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Purpose: To report the clinical phenotype in patients with a retinal dystrophy associated with novel mutations in the MER
tyrosine kinase (MERTK) gene.
Methods: A consanguineous family of Middle Eastern origin was identified, and affected members underwent a full
clinical evaluation. Linkage analysis was performed using the Affymetrix 50K chip. Regions of homozygosity were
identified. The positional candidate genes protocadherin 21 (PCDH21), retinal G protein-coupled receptor (RGR), and
MERTK were polymerase chain reaction (PCR) amplified and sequenced. Long-range PCR was performed to characterize
the deletion. Two hundred and ninety-two probands with autosomal recessive, childhood onset, retinal dystrophies were
analyzed using the Asper Ophthalmics Leber congenital amaurosis chip to screen for known MERTK mutations.
Results: Analysis of a 50K-Affymetrix whole genome scan identified three regions of homozygosity on chromosomes 2
and 10. Screening of the candidate gene MERTK showed a possible deletion of exon 8. Long-range PCR identified a ~9
kb deletion within MERTK that removes exon 8. Screening of DNA from a panel of Saudi Arabian patients with autosomal
recessive retinitis pigmentosa identified a second consanguineous family with the same mutation. One patient with a known
MERTK mutation (p.R651X) was identified using the Asper Ophthalmics Leber congenital amaurosis chip. Further
screening of the gene identified a second novel splice site mutation in intron 1. The phenotype associated with these
identified MERTK mutations is of a childhood onset rod–cone dystrophy with early macular atrophy. The optical coherence
tomography (OCT) appearance is distinctive with evidence of debris beneath the sensory retina.
Conclusions: Mutations in MERTK are a rare cause of retinal dystrophy. Non homologous recombination between Alu
Y repeats near or within disease genes may be an important cause of retinal dystrophies.

Retinitis pigmentosa (RP) describes a group of disorders
with progressive degeneration of rod and cone photoreceptors
in a rod–cone pattern of dysfunction. RP has a prevalence of
1 in 3,500 [1]. It is genetically and phenotypically
heterogeneous, with all three forms of Mendelian inheritance
having been reported. Autosomal recessive RP (ARRP) is the
most common form, accounting for more than half of all cases
of RP [2]. To date, mutations in 25 genes have been associated
with ARRP, with a further four mapped loci (RetNet).

MER tyrosine kinase (MERTK), a member of the Axl/
Mer/Tyro3 receptor tyrosine kinase family required for
phagocytosis and expressed in the retinal pigment epithelium
(RPE) [3], was first implicated in retinal degeneration in 2000
when a deletion in the gene was identified in the Royal College
of Surgeons (RCS) rat [4]. Gal et al. [5] subsequently
identified three different mutations in patients with recessive
retinal dystrophies. However, in comparison to other genes
involved in retinal dystrophies, the reporting of new mutations
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in MERTK has been slow, with only a further five mutations
having been described since the initial study [6-11].

The present report describes the clinical phenotype
associated with two novel mutations in MERTK.

METHODS
Clinical investigations: Two 10 ml EDTA tubes of peripheral
venous blood were drawn from all available family members,
including both affected and unaffected individuals, and
samples were frozen. DNA was extracted using the
Nucleon™ BACC-2 genomic DNA kit (GE Healthcare Life
Sciences, Buckinghamshire, UK). Following cell lysis,
deproteinization was performed using sodium perchlorate.
DNA extraction was achieved with chloroform and
Nucleon™ resin before DNA recovery and washing.

All patients involved in this study provided informed
consent as part of a research project approved by Moorfields
Eye hospital and King Faisal Specialist Hospital research
ethics committee, and all investigations were conducted in
accordance with the principles of the Declaration of Helsinki.
Clinical evaluation including slit-lamp examination,
assessment of visual acuity, color vision, and perimetry were
performed. Color vision was evaluated using the Hardy-Rand-
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Rittler (HRR) plates (American Optical Company, New York,
NY) and the 24-plate Ishihara color vision test (Kanehara and
Co. Ltd, Tokyo, Japan). Patients underwent retinal imaging,
including fundus autofluorescence imaging (FAF), with
confocal scanning laser ophthalmoscopy (Heidelberg Retina
Angiograph 2 [HRA2]; Heidelberg Retina Angiograph OCT
[HRA-OCT]; Heidelberg Engineering, Heidelberg,
Germany). Full-field and pattern electroretinography (ERG
and PERG) were performed with gold foil recording
electrodes incorporating the International Society for Clinical
Electrophysiology of Vision (ISCEV) Standards [12,13]
Apex chip: A genomic DNA sample from 292 unrelated
affected patients with Leber congenital amaurosis (LCA) or
childhood onset RP was sent to Asper Ophthalmics Ltd for
analysis, as described previously [14,15].
Autozygosity mapping: Genome-wide linkage scan were
performed on family A to identify regions of autozygosity
(where both alleles are identical by descent and are copies of
a common ancestral gene). DNA samples from all affected
family members were genotyped using the Affymetrix human
GeneChip® Mapping 50K XbaI Array (Affymetrix, Santa
Clara, CA). The detailed methodology for genotyping using
the GeneChip® array has been previously described [16].
Briefly, 250 ng of genomic DNA was digested with XbaI
(New England Biolabs, Ipswich, MA) for 2 h at 37 °C, ligated
with XbaI adaptors using T4 DNA ligase (New England
Biolabs, Hitchin, Herts, UK). The ligation reaction was
diluted in 1:4 (v/v) with molecular grade water (Sigma-
Aldrich, St. Louis, MO) to 100 µl. Ten µl of the diluted
ligation mix was used to set up selection by PCR (Fragment
Selection by PCR) in triplicates. The pooled PCR products
were purified using QIAGEN MinElute 96 UF plate (Qiagen,
Duesseldorf, Germany). The concentration of PCR products
was quantified using ND-1000 Nanodrop spectrometry
(Thermo Fisher Scientific, Waltham, MA). Purified PCR
product (90 ng) was fragmented with 0.25 units DNaseI
('Fragmentation Reagent'; Affymetrix), labeled with
'Labeling Regent' (Affymetrix). The labeling reaction (70 µl)
was mixed with 190 μl hybridization reagent and denatured at
99 °C for 10 min (all as detailed in the Affymetrix GeneChip
Mapping 100K Assay Manual). Finally the denatured
hybridization mixture was injected into Affymetrix Human
Mapping XbaI chips and incubated at 48 °C for 16 h, followed
by automatic washing and staining in a Fluidics Station 450,
and scanned by using the GeneChip® Scanner 3000 7G
(Affymetrix). Genotypes for single nucleotide
polymorphisms (SNPs) were called by the GeneChip DNA
Analysis Software (GDAS version 3.0, Affymetrix). A macro
was written in Visual Basic within the Microsoft Excel
(Microsoft, Redmond, WA) program to detect genomic
regions showing regions of shared haplotype.
Mutation screening: Primers to amplify the coding exons and
the intron–exon boundaries of MERTK, protocadherin 21

(PCDH21), and retinal protein-coupled receptor (RGR) were
used as previously described [10,17,18]. All PCR were
performed in a total volume of 30 μl containing 200 μM
deoxynucleotide triphosphate (dNTPs; VH Bio, Gateshead,
UK), 20 μM of each primer, 1× reaction buffer (10× PCR
buffer: 600 mM Tris-sulfate [pH 9.1], 180 mM ammonium
sulfate, 15 mM magnesium sulfate; VH Bio) with 1 unit of
Moltaq (VH Bio) and 100 ng of DNA. PCR was performed
on a PTC200 DNA engine thermal cycler (Bio-Rad, Hemel
Hempstead, UK).

PCR products were visualized on a 2% agarose gel
containing 0.05% ethidium bromide. The products were
cleaned using multiscreen PCR filter plates (Catalogue no
LSKMPCR10; Millipore, Watford, UK) before sequencing.
PCR products were sequenced directly using ABI Prism Big
Dye Terminator kit (ABI Ltd, Warrington, Cheshire, UK;
version 3.1) in a 10-μl reaction. Samples were purified using
the Montage cleanup kit (catalog no LSK509624; Millipore)
before being run on an ABI Applied Biosystems 3730 DNA
sequencer.

Long-range PCR was used to determine the size of the
deletion. PCR primers were designed ranging from intron 7
(7F2, 5′-TGC TGA TAT TCT AGT AGC CAA GTG G-3′)
of the MERTK gene to intron 8 (8R5, 5′-ACA TTT CTC TGA
CAT GAG GTG GTC TG-3′). A total of 12.5 μl of Extensor
Hi-Fidelity PCR Master Mix (Abgene, Epson, UK) was added
to a 12.5-μl mixture containing water, 250 ng of template
DNA, and 200 nM of each primer. Thermal cycling conditions
for long-range PCR were an initial denaturation of 2 min at
94 °C was followed by 10 cycles of 94 °C for 10 s, 60 °C for
30 s and 68 °C for 8 min. This was followed by 20 cycles of
94 °C for 10 s, 60 °C for 30 s and 68 °C for 8 min adding 10
s on every cycle.

RESULTS
Case report: Subject 1. The proband of family A (individual
IV:2), a 26-year-old male of Middle Eastern origin, was
diagnosed with rod–cone dystrophy at the age of 16. There
was no significant history of systemic disease. He first noticed
difficulties with night vision and visual field loss at the age of
9 years; reduced central vision was noted at 13 years. When
examined at age 26, visual acuity was 1.78 logarithm of the
minimum angle of resolution (LogMAR) in each eye. He was
unable to recognize any of the plates of the HRR color vision
test. Fundus examination revealed pale optic discs, attenuated
retinal vessels, macular atrophy, and peripheral retinal
atrophy with intraretinal pigmentary deposition extending
into the posterior pole in each eye (Figure 1A). FAF
demonstrated a large central area of decreased
autofluorescence along with more widespread peripheral
areas of reduced signal in both eyes (Figure 1B). Spectralis
spectral-domain OCT (SD-OCT) imaging (Figure 1C)
revealed disruption of the normal laminar arrangement at the
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Figure 1. Color fundus composite showing fundus autofluorescence (FAF) and spectral domain OCT (SD-OCT) for patients 1, 2, and 3. Patient
1 (Family A, Individual IV:2) at age 28: fundus image (A) shows well circumscribed macular atrophy, vascular attenuation, disc pallor, and
peripheral pigment migration. FAF (B) using high gain demonstrates the absence of macular autofluorescence. SD-OCT (C) reveals thinning
of the photoreceptor layer and wrinkling of the outer limiting membrane, with multiple high reflectance bodies visible in residual outer nuclear
layer. Patient 2 (Family A, Individual IV: 5) at age 12: fundus image (D) shows early macular atrophy and peripheral pigment migration. FAF
(E) reveals limited parafoveal hyperfluorescence with low total autofluorescence. SD-OCT (F) reveals thinning of the photoreceptor layer,
with discrete hyper-reflective bodies below the outer limiting membrane. Fundus composite (G) of patient 3 at age 23 shows foveal and
parafoveal yellow discoloration but minimal peripheral pigmentation. FAF (H) demonstrates hypofluorescence at the fovea and SD-OCT
(I) shows thinning of the photoreceptor layer and high reflectance bodies.
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photoreceptor/RPE interface and loss of the outer limiting
membrane. Discrete hyper-reflective bodies were visible
within the outer nuclear layer. Significant loss of retinal
volume and foveal atrophy could be observed. Mean retinal
thickness of the central Early Treatment Diabetic Retinopathy
Study (ETDRS) subfield (CSF) was 182 µm for the right and
165 µm for the left eyes (normal value 270±22.5 µm [19]),
and central point thickness (CPT) was 70 µm for the right and
64 µm for the left eyes (normal value 227.3±23.2 µm [19]).

Subject 2. This 8-year-old boy (IV:5), the younger
brother of subject 1, was diagnosed with rod–cone dystrophy
at the age of 8 years. Parents reported him having difficulty
seeing in the dark from an early age. His best corrected visual
acuities were 0.32 LogMAR in each eye. He had a low myopic
refractive error (−2.00 OU) and mild generalized
dyschomatopsia on testing with the HRR color vision test.
Visual fields were reduced to 20–30° in each eye. Fundus
examination revealed mild macular RPE changes in a “bull’s-
eye” pattern, with retinal atrophy and intraretinal pigmentary
deposition in the periphery (Figure 1D). There was some
residual macular autofluorescence on FAF (Figure 1E).
Spectralis OCT (Figure 1F) revealed disruption of the normal
foveal inner segment/outer segment (IS/OS) boundary, and
smaller hyper-reflective bodies both at the level of the IS/OS
junction and in the outer nuclear layer. There was reduced
retinal thickness at the fovea, with a mean CSF retinal
thickness of 169 µm for the right and 160 µm for the left eyes
(normal value 270 ±22.5 µm [19]). CPT was 138 µm for the
right and 130 µm for the left eyes (normal value
227.3±23.2 µm [19]).

Subject 3. This 22-year-old male of Caucasian origin was
diagnosed with rod–cone dystrophy at the age of 14. He had
a strong family history of red–green color blindness (affecting
maternal uncle and grandfather and two cousins) and also a

family history of deafness (affecting mother, maternal uncle,
and grandmother). There was no consanguinity, no family
history of retinal dystrophy, and no history of systemic
disease. He had normal hearing. He noticed nyctalopia at age
12 and developed sensitivity to light soon after. At age 22,
visual acuities were 0.6 LogMAR in the right and 1.0
LogMAR in the left eyes. He had a mild refractive error (OD
+0.25/–1.50x120, OS +0.25/–1.00x95) and very poor color
vision. Goldman visual fields performed at age 19 were
reported to be full. Fundus examination revealed focal atrophy
in the central macula and a mild diffuse abnormality of the
RPE at the posterior pole but very little intraretinal pigment.
Retinal vessels were thinned (Figure 1G). FAF imaging
demonstrated a half-disc-diameter-sized central area of
hyperfluorescence, encircled by an area of relatively reduced
autofluorescence (Figure 1H). Spectralis OCT revealed
significant loss of the photoreceptor layer. Mean CSF retinal
thickness was 196 µm for the right and 202 µm for the left
eyes (normal value 270±22.5 µm [19]). CPT was less than
130 µm in both eyes (normal value 227.3±23.2 µm [19]).
Multiple small hyper-reflective bodies could be observed at
the level of the IS/OS junction.

Electroretinography was performed at age 16 and 21. In
the initial recordings the full-field rod-specific ERGs were
undetectable: to a red flash under dark adaptation there was a
clear and delayed cone component but no rod component;
bright flash ERGs showed a markedly delayed and subnormal
a-wave, with a slightly lower amplitude b-wave, and probably
arose from residual cones; cone-derived photopic single flash
and flicker ERGs were severely delayed and were subnormal.
The findings at aged 21 showed no definite clinically
significant deterioration. Pattern ERGs on both occasions
showed possible low-amplitude residual signals but suggested
severe bilateral macular involvement.

Figure 2. Diagram showing the genomic
layout surrounding MERTK exon 8 in
the normal and deleted chromosomes in
Family A. Primers used in the
amplification of the deletions are shown
by the arrows (labeled 7F2 and 8R5).
The position of Alu Y repeats are shown
by a red triangle.
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Genome scan: Results of the Affymetrix 50K genome scan on
family A revealed three shared regions of homozygosity. Two
regions were found on chromosome 2: 2q12-q21 covering 30
Mb in size, a region containing the candidate gene MERTK;
and 2p13.2-p11.2 covering 16 Mb. An 8-Mb region on 10q23
contained two candidate genes known to be expressed in the
eye, RGR and PCDH21. All three possible candidate genes
were screened for mutations [5,17,18]. No sequence changes
segregating with disease were found in RGR and PCDH21.

When screening MERTK, all exons apart from exon 8
amplified, and sequencing showed no disease-causing
mutations. Only one SNP was seen in the family; rs13027171
(G>A S475N) was heterozygous in individual III:2. All other
members of the family were homozygous for the common G
allele. PCRs containing exon 8 did not work for either of the
affected siblings but worked in control DNA. New primers
situated 500 bp either side of exon 8 were designed to rule out
a sequence change where the primers annealed. The PCR
worked for all unaffected members of the family but not the
affected siblings.

A DNA walking PCR-based experiment was designed to
cover the area between exon 7 and exon 9 (18,778 bp) to
determine if there was a deletion of exon 8. Long-distance
PCR between two primers, 7F2 (situated in intron 7) and 8R5
(situated in intron 8), amplified a 9.86-kb product in control

samples. When the same region was amplified from the
affected siblings, the PCR produced a band of 917 bp instead
of the control 9.86 kb, suggesting deletion of exon 8 along
with the majority of introns 7 and 8 (Figure 2). Removal of
exon 8 is predicted to disrupt the reading frame of MERTK,
leading to a premature stop codon in exon 9. Both parents and
three unaffected siblings amplified both the large and the
small fragment (Figure 3). SNP haplotyping of the area
surrounding the deletion confirmed that each parent was a
carrier of the haplotype containing the deletion, as were the
unaffected siblings. Both affected siblings were homozygous
for all SNPs studied (Figure 4).

Sequence analysis of the 917-bp PCR product showed it
did not contain exon 8. The PCR product contained unique
DNA from both intron 7 and 8 at each end and included a
complete Alu Y repeat in its center. By blasting this PCR
product sequence, we identified that 664 bp were identical to
the DNA upstream from primer 8R5 (located in intron 8). The
first 389 bp of this was unique to intron 8, with a complete
Alu Y repeat making up the remainder of the homology. The
remaining 253 bp of the PCR product was unique to intron 7.
Downstream from this 253 bp in genomic sequence is another
Alu Y repeat, suggesting nonhomologous recombination
between repeats as a possible cause for the deletion.

Figure 3. Gel electrophoresis results for
long range PCR in family A. Long range
PCR (using primers 7F2 and 8R5)
showing the normal product of 9.65 kb
and the deleted product of 917 bp in
Family A. The two affected products
(IV:2, IV:5) are missing the upper 9.65-
kb band.
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Screening of 100 unrelated probands with autosomal
recessive retinal dystrophies collected in the UK, using the
PCR described above, failed to identify a similar deletion.
Screening of 100 probands with RP from Saudi Arabia
identified a second family with recessive RP with the same
exon 8 deletion. Affected members of the family were
homozygous for the deletion. Haplotype analysis showed that
these two families shared a region of at least 500 kb based on
the two makers D2S160 and D2S1896 (chr2:112,309,575–
112,815,205). This deletion was not seen in 100 control DNA
samples from Saudi Arabia. This additional family was not
available for detailed phenotyping. A review of the clinical
records showed that there were five affected individuals with
childhood onset RP. Visual acuity ranged from 20/50 in the
first decade to hand movements by the third decade. There
was macular atrophy present from the first decade and
extensive peripheral atrophy and pigmentation.
Screening of MERTK in Leber congenital amaurosis patients:
Screening 292 probands with either LCA or childhood onset
retinal dystrophy, using the Asper LCA mutation chip [15],
identified a single patient with a known MERTK mutation.
Analysis of the LCA chip data of subject 3 revealed the
presence of the known mutation p.R651X caused by a C to T
transition in exon 14 [5]. This was the only sequence variant
identified by the chip. Direct sequencing of the gene in this
patient confirmed the p.R651X change and also revealed a G
to A sequence change in the first base of intron 1 (c.
61+1G>A). This novel change is predicted to disrupt the

donor splice site of intron 1. Analysis of this novel change
using an automated splice site analysis predictor program
[20] revealed that the mutation would eradicate the use of the
true donor splice site, with the cellular splicing mechanism
favoring the use of potential splice sites further downstream.
A site 33 bp downstream from the mutation was predicted to
be used. The extra 33 bp in exon 1 would not disrupt the frame
but would insert 11 new codons into the transcript. Other
potential splice sites (4 bp and 24 bp downstream from the
true site) would cause a change of the reading frame leading
to a stop codon in exon 2. These two mutations were shown
to have been inherited from each parent and were not seen in
100 ethnically matched controls (data not shown).

DISCUSSION
Mutations in MERTK are a rare cause of retinal dystrophy in
humans. The present report describes two novel disease-
causing mutations identified in a large cohort of children with
LCA and childhood onset rod–cone dystrophy. We identified
a large deletion in MERTK affecting members of a
consanguineous family with ARRP. Linkage was established
to the MERTK region by a genome-wide scan using an
Affymetrix SNP chip. Direct sequencing of the coding exons
did not identify a single base change, but long-range PCR
revealed a 9-kb deletion resulting in the removal of exon 8.
The deletion occurred between two Alu Y repeats. Alu repeats
are characterized by sequences approximately 300 bp long
with a poly (A) tract of variable length and flanking direct
repeats. Over one-third of the human genome contains

Figure 4. Haplotype analysis of the
single nucleotide polymorphism
(SNP’s) surrounding the MER protein
kinase (MERTK) gene in Family A.
Haplotyped pedigree of Family A
showing the segregation of the deletion
with the surrounding SNPs (rs ID
numbers to the left of the haplotype)
used to map the family to this region.
The proband (IV:2, patient 1) is marked
by an arrow. The black bar represents
the disease haplotype.
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repetitive interspersed sequences that were once transposable
elements. Alu sequences are the second most common
element (after LINE-1 elements), representing more than 5%
of the genome [21].

Analysis of the MERTK locus identified a total of ten Alu
Y repeats; nonhomologous recombination involving other
Alu Y repeats could therefore be involved in other MERTK-
associated retinal dystrophies. Large deletions in disease
genes are susceptible to being missed when using direct DNA
sequencing, especially if they are in an individual who is a
compound heterozygote. Nonhomologous recombination
between Alu repeats is a frequent cause of deletions and
insertions in the human genome [22]. Such recombination
events have been associated with inherited disease in several
cases, including eye disorders, such as X-linked retinoschisis
[23] and retinitis punctata albescens [24].

Screening of patients with LCA and childhood onset
retinal dystrophies using the Asper Ophthalmics LCA chip
allowed us to identify a further patient with a previously
reported MERTK mutation. The Asper Ophthalmics LCA chip
[14,15] contains known mutations and polymorphisms from
LCA genes but has a limited number of variants in MERTK.
Direct sequencing of coding exons revealed a splice site
mutation in the first base of intron 1. In silico analysis using
a splice site analysis predictor program suggested that this
would reduce the effectiveness of the donor splice site. The
next strongest potential site, if used, would introduce 11 amino
acids into the protein but would not disrupt the frame of the
active protein kinase domain. The other potential sites would
lead to a premature stop codon in exon 2, thus eliminating
most of the protein’s active domains and thus rendering it
inactive. As this is early in the transcript, we predicted that
these altered transcripts would be degenerated through
nonsense-mediated decay (NMD). NMD is a potential
outcome in transcripts where an early stop codon is
recognized. Only when the premature stop codon occurs in
the last coding exon or the last 55 bp of the preceding exon
are these transcripts protected from NMD [25]. It is possible
that NMD may occur in family A as the deletion of exon 8
leads to a premature stop codon in exon 9.

To date, six families have been reported with retinal
disease due to MERTK mutations (Table 1) [5-11]. Gal et al.
[5], in their initial report of MERTK mutations in human
disease, described three patients with MERTK mutations. All
three individuals had a severe retinal dystrophy of childhood
onset, but few details of the phenotype are given. Subsequent
reports [8,10,26] included more clinical details. McHenry et
al. [8] reported a single case with a severe rod–cone dystrophy
symptomatic at age 3 years. By age 9 there was nystagmus,
severe visual field constriction, and an undetectable ERG.

Tschernutter et al. [10] reported three affected individuals
from a consanguineous family from the Middle East who had
a homozygous null mutation. Affected individuals reported

night blindness from early childhood, with subsequent
reduction in central vision. The rod ERG was severely
abnormal at diagnosis with later cone involvement. The
pattern ERG was abnormal early in the disease. An interesting
feature of the disease was the well preserved peripheral field.
Charbel Issa et al. [26] have recently reported similar findings
in five affected individuals from a consanguineous Moroccan
family. The two affected members of our family A have a
phenotype similar to the individuals reported by Tschernutter
et al. [10] and Charbel Issa et al. [26], with early onset of night
blindness, early rod ERG reduction, and early macular
atrophy. Our third patient had a milder overall phenotype with
later onset of disease. However, he shows the typical
characteristic of early macular atrophy and relative
preservation of peripheral visual fields. Spectral domain OCT
shows loss of photoreceptors and hyper-reflective bodies
possibly analogous to the debris layer seen in the RCS rat.
Similar spectral domain OCT changes were reported by
Charbel Issa et al. [26]. These changes as well as a wavelike
appearance of the innermost neurosensory retina might be
distinctive OCT findings in patients with mutations in
MERTK.

The phenotype associated with MERTK mutations is of a
childhood onset rod–cone dystrophy with early macular
atrophy. The OCT appearance is distinctive and may help
guide targeted molecular genetic analysis for the
identification of patients with MERTK mutations. The retinal
dystrophy seen in the animal model of MERTK-related disease
(the RCS rat) has been successfully rescued with gene
replacement therapy [27]. It is evident from the findings in our
patients and others reported in the literature that there is a
window of opportunity for therapeutic intervention in
childhood. This makes MERTK an excellent target for gene
therapy in humans, and the early identification of patients will
be important for their inclusion in future clinical trials.

ACKNOWLEDGMENTS
We thank the families for taking part in this family. This study
was supported by Fight For Sight (UK), the National Institute
for Health Research UK (Moorfields Eye Hospital and
Institute of Ophthalmology, Biomedical Research Centre,
London, UK), Alexander S. Onassis Public Benefit
Foundation (Greece), Foundation Fighting Blindness (USA)
and the Ulverscroft Foundation.

REFERENCES
1. Rivolta C, Sharon D, DeAngelis MM, Dryja TP. Retinitis

pigmentosa and allied diseases:numerous diseases, genes, and
inheritance patterns. Hum Mol Genet 2002; 11:1219-27.
[PMID: 12015282]

2. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa.
Lancet 2006; 368:1795-809. [PMID: 17113430]

3. Finnemann SC, Silverstein RL. Differential roles of CD36 and
alphavbeta5 integrin in photoreceptor phagocytosis by the

Molecular Vision 2010; 16:369-377 <http://www.molvis.org/molvis/v16/a43> © 2010 Molecular Vision

376

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12015282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12015282
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17113430
http://www.molvis.org/molvis/v16/a43


retinal pigment epithelium. J Exp Med 2001; 194:1289-98.
[PMID: 11696594]

4. D'Cruz PM, Yasumura D, Weir J, Matthes MT, Abderrahim H,
LaVail MM, Vollrath D. Mutation of the receptor tyrosine
kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol
Genet 2000; 9:645-51. [PMID: 10699188]

5. Gal A, Li Y, Thompson DA, Weir J, Orth U, Jacobson SG,
Apfelstedt-Sylla E, Vollrath D. Mutations in MERTK, the
human orthologue of the RCS rat retinal dystrophy gene,
cause retinitis pigmentosa. Nat Genet 2000; 26:270-1.
[PMID: 11062461]

6. Brea-Fernández AJ, Pomares E, Brión MJ, Marfany G, Blanco
MJ, Sánchez-Salorio M, González-Duarte R, Carracedo A.
Novel splice donor site mutation in MERTK gene associated
with retinitis pigmentosa. Br J Ophthalmol 2008;
92:1419-23. [PMID: 18815424]

7. Ebermann I, Walger M, Scholl HP, Charbel Issa P, Lüke C,
Nürnberg G, Lang-Roth R, Becker C, Nürnberg P, Bolz HJ.
Truncating mutation of the DFNB59 gene causes cochlear
hearing impairment and central vestibular dysfunction. Hum
Mutat 2007; 28:571-7. [PMID: 17301963]

8. McHenry CL, Liu Y, Feng W, Nair AR, Feathers KL, Ding X,
Gal A, Vollrath D, Sieving PA, Thompson DA. MERTK
arginine-844-cysteine in a patient with severe rod-cone
dystrophy: loss of mutant protein function in transfected cells.
Invest Ophthalmol Vis Sci 2004; 45:1456-63. [PMID:
15111602]

9. Tada A, Wada Y, Sato H, Itabashi T, Kawamura M, Tamai M,
Nishida K. Screening of the MERTK gene for mutations in
Japanese patients with autosomal recessive retinitis
pigmentosa. Mol Vis 2006; 12:441-4. [PMID: 16710167]

10. Tschernutter M, Jenkins SA, Waseem NH, Saihan Z, Holder
GE, Bird AC, Bhattacharya SS, Ali RR, Webster AR. Clinical
characterisation of a family with retinal dystrophy caused by
mutation in the Mertk gene. Br J Ophthalmol 2006;
90:718-23. [PMID: 16714263]

11. Thompson DA, McHenry CL, Li Y, Richards JE, Othman MI,
Schwinger E, Vollrath D, Jacobson SG, Gal A. Retinal
Dystrophy Due to Paternal Isodisomy for Chromosome 1 or
Chromosome 2, with Homoallelism for Mutations in RPE65
or MERTK, Respectively. Am J Hum Genet 2002;
70:224-9. [PMID: 11727200]

12. Marmor MF, Fulton AB, Holder GE, Miyake Y, Brigell M,
Bach M. ISCEV Standard for full-field clinical
electroretinography (2008 update). Documenta
Ophthalmologica. 2009; 118:69-77. [PMID: 19030905]

13. Holder GE, Brigell MG, Hawlina M, Meigen T. Vaegan, Bach
M; International Society for Clinical Electrophysiology of
Vision. ISCEV standard for clinical pattern
electroretinography—2007 update. Documenta
Ophthalmologica. 2007; 114:111-6. [PMID: 17435967]

14. Henderson RH, Waseem N, Searle R, van der Spuy J, Russell-
Eggitt I, Bhattacharya SS, Thompson DA, Holder GE,
Cheetham ME, Webster AR, Moore AT. An assessment of
the apex microarray technology in genotyping patients with
Leber congenital amaurosis and early-onset severe retinal

dystrophy. Invest Ophthalmol Vis Sci 2007; 48:5684-9.
[PMID: 18055820]

15. Zernant J, Külm M, Dharmaraj S, den Hollander AI, Perrault I,
Preising MN, Lorenz B, Kaplan J, Cremers FP, Maumenee I,
Koenekoop RK, Allikmets R. Genotyping microarray
(disease chip) for Leber congenital amaurosis: detection of
modifier alleles. Invest Ophthalmol Vis Sci 2005;
46:3052-9. [PMID: 16123401]

16. Sellick GS, Longman C, Tolmie J, Newbury-Ecob R,
Geenhalgh L, Hughes S, Whiteford M, Garrett C, Houlston
RS. Genomewide linkage searches for Mendelian disease loci
can be efficiently conducted using high-density SNP
genotyping arrays. Nucleic Acids Res 2004; 32:e164. [PMID:
15561999]

17. Bolz H, Ebermann I, Gal A. Protocadherin-21 (PCDH21), a
candidate gene for human retinal dystrophies. Mol Vis 2005;
11:929-33. [PMID: 16288196]

18. Ksantini M, Senechal A, Humbert G, Arnaud B, Hamel CP.
RRH, Encoding the RPE-Expressed Opsin-Like Peropsin, Is
Not Mutated in Retinitis Pigmentosa and Allied Diseases.
Ophthalmic Genet 2007; 28:31-7. [PMID: 17454745]

19. Grover S, Murthy RK, Brar VS, Chalam KV. Normative Data
for Macular Thickness by High-Definition Spectral-Domain
Optical Coherence Tomography (Spectralis). Am J
Ophthalmol 2009; 148:266-71. [PMID: 19427616]

20. Nalla VK, Rogan PK. Automated splicing mutation analysis by
information theory. Hum Mutat 2005; 25:334-42. [PMID:
15776446]

21. Smit AFA. The origin of interspersed repeats in the human
genome. Curr Opin Genet Dev 1996; 6:743-8. [PMID:
8994846]

22. Deininger PL, Batzer MA. Alu Repeats and Human Disease.
Mol Genet Metab 1999; 67:183-93. [PMID: 10381326]

23. Huopaniemi L, Tyynismaa H, Rantala A, Rosenberg T, Alitalo
T. Characterization of two unusual RS1 gene deletions
segregating in Danish retinoschisis families. Hum Mutat
2000; 16:307-14. [PMID: 11013441]

24. Humbert G, Delettre C, Sénéchal A, Bazalgette C, Barakat A,
Bazalgette C, Arnaud B, Lenaers G, Hamel CP. Homozygous
deletion related to Alu repeats in RLBP1 causes retinitis
punctata albescens. Invest Ophthalmol Vis Sci 2006;
47:4719-24. [PMID: 17065479]

25. Khajavi M, Inoue K, Lupski JR. Nonsense-mediated mRNA
decay modulates clinical outcome of genetic disease. Eur J
Hum Genet 2006; 14:1074-81. [PMID: 16757948]

26. Charbel Issa P, Bolz HJ, Ebermann I, Domeier E, Holz FG,
Scholl HP. Characterisation of severe rod-cone dystrophy in
a consanguineous family with a splice site mutation in the
MERTK gene. Br J Ophthalmol 2009; 93:920-5. [PMID:
19403518]

27. Vollrath D, Feng W, Duncan JL, Yasumura D, D'Cruz PM,
Chappelow A, Matthes MT, Kay MA. LaVail. Correction of
the retinal dystrophy phenotype of the RCS rat by viral gene
transfer of Mertk. Proc Natl Acad Sci USA 2001;
98:12584-9. [PMID: 11592982]

Molecular Vision 2010; 16:369-377 <http://www.molvis.org/molvis/v16/a43> © 2010 Molecular Vision

The print version of this article was created on 4 March 2010. This reflects all typographical corrections and errata to the article
through that date. Details of any changes may be found in the online version of the article.

377

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11696594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11696594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10699188
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11062461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11062461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18815424
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17301963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15111602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15111602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16710167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16714263
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11727200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19030905
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17435967
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18055820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18055820
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16123401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15561999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15561999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16288196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17454745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19427616
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15776446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15776446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=8994846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=8994846
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10381326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11013441
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17065479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16757948
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19403518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19403518
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11592982
http://www.molvis.org/molvis/v16/a43

