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Abstract

Gradients in the elemental composition of a potato leaf tissue (i.e. its ionome) can be linked

to crop potential. Because the ionome is a function of genetics and environmental condi-

tions, practitioners aim at fine-tuning fertilization to obtain an optimal ionome based on the

needs of potato cultivars. Our objective was to assess the validity of cultivar grouping and

predict potato tuber yields using foliar ionomes. The dataset comprised 3382 observations

in Québec (Canada) from 1970 to 2017. The first mature leaves from top were sampled at

the beginning of flowering for total N, P, K, Ca, and Mg analysis. We preprocessed nutrient

concentrations (ionomes) by centering each nutrient to the geometric mean of all nutrients

and to a filling value, a transformation known as row-centered log ratios (clr). A density-

based clustering algorithm (dbscan) on these preprocessed ionomes failed to delineate

groups of high-yield cultivars. We also used the preprocessed ionomes to assess their

effects on tuber yield classes (high- and low-yields) on a cultivar basis using k-nearest

neighbors, random forest and support vector machines classification algorithms. Our

machine learning models returned an average accuracy of 70%, a fair diagnostic potential

to detect in-season nutrient imbalance of potato cultivars using clr variables considering

potential confounding factors. Optimal ionomic regions of new cultivars could be assigned to

the one of the closest documented cultivar.

1 Introduction

Potato cultivars are commonly classified into maturity groups based on the number of days

from planting to maturity [1]. Compared to other maturity groups, cultivars with longer matu-

rity generally show yield potential that is similar or higher [2–4] because of higher genetic

potential [5] related to higher foliar nitrogen status [6] and root acquisition rate [7]. Hence,

nutrient management of potato cultivars often consider the cultivar maturity group. However,

nutrient profiles or ionomes [8, 9] may vary among potato cultivars of the same maturity

groups because cultivars inherit from a diversity of parents specific traits for nutrient absorp-

tion and assimilation [10]. Indeed, White et al. [11] provided evidence of important ionome

variations in angiosperm species and stated that plant families could be distinguished by their

shoot ionomes. Successful classifications of plant species based on axis-reductions have been
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implemented on compositionally preprocessed plant ionomes [12, 13]. The potato cultivar

may also be classified similarly, allowing newly introduced cultivars to benefit from the docu-

mented nutrient management of older cultivars. Hence, the foliar ionome, easily collected

from field trials, could provide a tool for the fertilization of newly introduced cultivars.

Tissue ionome portrays plant nutritional status [13] under the assumption of causal rela-

tionships between plant growth rate and nutrient concentration in a tissue [14, 15]. In survey

datasets, reference compositions are those that are nutritionally balanced [12]. Imbalanced

ionomes could be rebalanced theoretically through a perturbation operation [16] i.e., a change

in tissue composition after nutrient stress has been applied. Any factor impacting yield

response to nutrients can perturb leaf composition [17]. Fertilization perturbs soil composi-

tion [18] by supplying readily available plant-nutrients [19].

Because nutrients interact in the plant, Baxter [20] suggested that the ionome could be

treated as a combination of elements rather than elements taken in isolation. Parent [13]

described ionomes as multivariate balance systems of isometric log-ratios [16]. Isometric log-

ratios maps vectors of concentrations, which are strictly positive data constrained to the mea-

surement unit that convey only relative information, to a real space of orthonormal coordi-

nates [21]. Indeed, ionomes are intrinsically multivariate: each part cannot be interpreted

without being related to the other parts of the whole [22]. Parent and Dafir [23] developed the

compositional nutrient diagnosis in plants using row-centered log-ratios (clr). Thereafter,

compositional data transformation has been used to preprocess combined nutrients traits of

plant species and cultivars [13, 24–26] as well as animal species [27], and human food [28, 29].

The first objective of this study was to identify clusters of potato cultivars based on their leaf

ionomes. The second objective was to develop, evaluate and compare the performance of

machine learning algorithms in predicting yield categories using ionomes. The third objective

was to develop a conceptual workflow to adjust the ionome of potato cultivars using composi-

tional perturbations. Our hypotheses were that (1) nutritionally balanced leaf ionomes of

potato cultivars differ among potato cultivars, (2) tuber yield is impacted by specifically leaf

compositional traits, and (3) cultivar-specific leaf ionomes could be rebalanced using a pertur-

bation operation.

2 Methodology

2.1 Data set

The data set is a collection of potato surveys, and nitrogen (N), phosphorus (P) and potassium

(K) fertilizer trials conducted in the province of Québec (Canada) from 1970 to 2017 (S1

Table) between the US border (45th parallel) and the Northern limit of cultivation (49th paral-

lel). The data set was filtered to remove foliar samples collected too early or too late from the

beginning (10%) of flowering, as reported by scouting teams, and where three or more of the

five major elements (N, P, K, Ca and Mg) have not been quantified. The complete data set

comprised 3382 observations of 151 field trials. Five maturity classes were represented, and we

matched the duration from planting to harvest described by the Canadian Food Inspection

Agency [1], although the names differed: early season (65–70 days), early mid-season (70–90

days), mid-season (90–110 days), mid-season late (110–130) and late season (130 days and

more) cultivars. The number of samples per cultivar and the corresponding maturity classes

are reported in S2 Table.

2.2 Diagnostic tissue composition

The potato diagnostic tissue is the first mature leaf (4th leaf from top) sampled at the beginning

(10%) of the blooming stage [15, 30]. Twenty to 30 leaves were collected at random in each
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plot, composited, dried at 65˚C, ground to pass through a 1 mm sieve, and analyzed for N, P,

K, Ca and Mg concentrations after dissolution of combustion. Total N was determined by

micro-Kjeldahl or Dumas combustion (Leco CNS-2000 analyzer, St. Joseph, MI, USA). After

acid dissolution [31], K, Ca, and Mg concentrations were quantified by atomic absorption

spectrometry or inductively coupled plasma spectroscopy (ICP), and P by colorimetry or ICP.

We made no distinction between methodologies in the analysis of ionomes.

2.3 Processing nutrient composition to nutrient balances

The compositional space [16] of the leaf tissue comprised five nutrients (N, P, K, Mg, Ca) and

undetermined components amalgamated into a filling value (Fv) computed by difference

between the measurement unit and the sum of quantified nutrients. Tissue components were

preprocessed using the row-centered log-ratio transformation, as follows [23]:

clri ¼ ln
xi
gðxÞ

� �

ð1Þ

where xi is raw concentration of the ith component and g(x) is the geometric mean across com-

ponents including the filling value.

2.4 Clustering cultivars

Yield thresholds are useful for decision-making. Because tuber yield potential varies widely

among cultivars, we processed by discretizing tuber yields into low- and high-productivity cat-

egories [12] by ranking the marketable yield in ascending order within a given cultivar, and

selecting the yield corresponding to the 65th percentile as cut-off between the two subgroups.

Hence, each cultivar had its cut-off with respect to its yield potential as shown in S2 Table. The

high-yielding subpopulation ionomes were used to assess cultivars clustering ability. This sub-

group comprised 1190 occurrences (after the exclusion of 144 outliers) across 151 trials and 47

cultivars. A density-based clustering method [32] was used to delineate cultivar groups of simi-

lar compositions using clr variables.

2.5 Ionome effect and yield prediction

Machine learning algorithms can either regress to predict continuous variables or classify to

predict categories [33]. Tuber yield categories were predicted using clr variables and informa-

tion on ionomic groups of the full data set (high and low yielders i.e. 3382 rows). Three

machine learning algorithms were compared: k-nearest neighbors, random forest and support

vector machines.

We estimated the relative influence of variables in the model and their rank by examining

how can prediction error increases when data for a variable is permuted while all others are

left unchanged [34, 35]. A variable can score a zero or too small value compared to others.

Deleting such variable from the dataset should not impact on the results. The random forest

model was used for feature selection to assess importance of each clr variable in predicting

tuber yield, but none of the variable was removed.

The data were split into training (75%) and testing (remaining 25%) sets at cultivar level

i.e., for each cultivar the samples were randomly separated according to these proportions.

The performance of the classification models was assessed using accuracy computed with the

testing set. Applied to the context, the four quadrants defined by Swets [36] in binary system

diagnosis to delineate the response classes are presented in the contingency table (Table 1).
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The accuracy is the proportion of correctly-predicted instances:

Accuracy ¼
TN þ TP

TN þ TP þ FN þ FP
ð2Þ

2.6 Rebalancing a composition: The enchanting islands

A compositional perturbation is a translation in the compositional space [37, 38]. A perturba-

tion vector expressed as clr values contains a series of deltas (differences). Once back-trans-

formed into the compositional space, the perturbation vector alters a composition through a

perturbation (�) operation as follows [37]:

A� B ¼ ½a1; a2; . . . ; aD� � ½b1; b2; . . . ; bD� ¼ Cða1 � b1; a2 � b2; . . . ; aD � bDÞ ð3Þ

where a D-part composition A is perturbed (�) by a D-part composition B, and C is the clo-

sure operator to constant sum.

We used the testing set to display the effect of a perturbation across the simplex. We

selected two elements (N and P) and simulated an increase of their initial (observed) clr values

by 20% (theoretically). The observed (ionome of the instance) and new clr vector (perturbed

ionome) were back-transformed into N, P, K, Ca, Mg and Fv compositional space for compari-

son using familiar concentration units.

The high yielders of the training set correctly diagnosed as balanced (true negative speci-

mens) by the most accurate model were used as the reference subpopulations. The clr values of

these reference specimens were used as reference nutritional status at high yield potential. A

potato nutrient imbalance index was computed as a distance from the closest high-yielding

specimen using the Aitchison distance, i.e. the Euclidean distance between compositions using

clr-transformed concentrations [39]. For any misbalanced or new specimen of a given cultivar,

the closest true negative (closest reference composition) was identified as the sample with the

minimum Aitchison distance from the new composition. The nutrient clr differences defining

the Aitchison distance may be considered as apparently excess or deficiency of the nutrient

requiring correcting measures in a multivariate and compositional data perspective [40].

Hence, the clr space of nutrient components (N, P, K, Ca, Mg) was described not as an ellipsoi-

dal hyper-space [41] but as islands of high-yielding specimens dispersed in the hyper-space of

differently yielding specimens. The closer is a specimen from the enchanting island, the higher

its chance to become a high-yielder [40]. The clr-difference was converted into a perturbation

vector between two nutrient compositions expressed as familiar nutrient concentrations.

2.7 Statistical analysis

Statistical computations were performed in the R statistical environment version 3.6.1 [42].

Compositional data analysis was conducted using the R compositions package version 1.40–2

[43]. Multivariate outliers were removed for robust multivariate analysis [44] using the

Table 1. Term definitions used for the study.

Observed yield

Low (unbalanced) High (balanced)

Predicted

yield

Low True positive (TP): observed low-yielders correctly predicted as low-

yielders.

False positive (FP): observed high-yielders incorrectly predicted as

low-yielders.

High False negative (FN): observed low-yielders incorrectly predicted as

high-yielders.

True negative (TN): observed high-yielders correctly predicted as

high-yielders.

As in medical sciences, the negative term is used in cases where no intervention is needed after diagnosis.

https://doi.org/10.1371/journal.pone.0230458.t001
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Mahalanobis distance at a 0.01 level of significance with the R mvoutlier package version 2.0.9

[45]. The clustering operation were performed using dbscan package version 1.1–3 [32]. Linear

discriminant analysis (LDA) was conducted using the R ade4 package version 1.7–13 [46]

which allows computing linear combinations of clr coordinates that best discriminate cultivars

ionomes centroids. Supervised analysis was conducted using the caret package version 6.0–84

[47]. Our results are reproducible by using the R computation codes and data given as supple-

mentary information and available online in a GitHub repository (https://git.io/Jvt2r).

3 Results

3.1 Cluster analysis

The data set used for clustering is described in S2 Table. The AC Chaleur cultivar showed the

lowest tuber marketable yield cut-off (65th percentile) at 17.4 Mg ha-1 and Red-Maria, the

highest at 64.6 Mg ha-1. Average marketable yield was 40.5 Mg ha-1 for high yielders and 24.8

Mg ha-1 for low yielders. In comparison, average potato tuber yields in Canada and Québec

were 31.2 Mg ha-1 and 32.2 Mg ha-1 respectively, in 2018 [48].

The dbscan clustering function looked for dense regions in the clr-space, and detected a sin-

gle cluster of cultivars i.e., cultivars were scattered without any particular dense region. A prin-

ciple components analysis allowed to map cultivars and nutrients in the biplot shown in Fig 1.

The principle components scores mapped on the distance biplot (Fig 1A) showed no particular

pattern allowing groups partition. The clr correlation loadings (Fig 1B) showed a negative

Fig 1. Principle components biplot of potato ionome showing (A) scores in distance scaling and (B) loadings in correlation scaling.

https://doi.org/10.1371/journal.pone.0230458.g001
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relationship between K and Mg, P and Ca, and positive relationship between N and P in agree-

ment to concentration changes with time as the plant matures [49]. Discrepancies between cul-

tivars were driven mainly by Mg and K on the first axis, and by P and Ca on the second axis

(right hand side plot).

3.2 Predicting tuber yield

Classification models assigned explanatory clr variables to two categorical tuber marketable

yield: high- and low-yielders. The random-forest algorithm allowed to rank the importance of

variables in the model. The clr of nitrogen appeared to be the most discriminant variable

between tuber yield categories, followed by the amalgamated unknown components (Fv), then

Ca, Mg and, finally, P.

After splitting data into training (75%) and testing (25%) data sets, we used a ten-fold

cross-validation process that sequentially splits the training data set into ten parts, using nine

parts for calibration and the remainder for validation. The k-nearest neighbours, the random

forest and the support vector machine models returned practically similar predictive accura-

cies (although slightly lower for the support vector machine algorithm), with a mean accuracy

of 70% representing 591 successful and 254 unsuccessful cases classification with the testing

set. The null hypothesis for a random classifier i.e., non-informative classification consisting of

an equal distribution of 50% successful and 50% unsuccessful cases was rejected after a χ2

homogeneity test (χ2 = 69.135, p< 2.2 10−16). Since all the models returned practically similar

accuracy over the testing set, predictions with the k-nearest neighbors model were used for

interpreting. There was high variation in model fit by cultivar as shown in Fig 2. The accuracy

at testing varied from 25% for Estima and Waneta, to 100% for Ambra, Carolina, Dark Red

Fig 2. The k nearest neighbors model evaluation accuracies for cultivars.

https://doi.org/10.1371/journal.pone.0230458.g002
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Chieftain, Harmony, Peribonka and Viking. All these cultivars had small sample sizes in the

dataset, as shown in the S2 Table.

3.3 Ionome perturbation

The true negative specimens (correctly diagnosed as balanced) comprising 783 occurrences in

the training data set provided the clr reference values required to compute the Aitchison dis-

tance, which is equal to the Euclidean distance across clr-transformed compositions. The S3

Table displays mean values for each cultivar. Using the Aitchison metric, the closest true nega-

tive specimen was set as the reference composition for each imbalanced specimen. In the clr-

space, the difference between the reference and the imbalanced compositions returns a pertur-

bation vector. The Fig 3 shows the imbalanced sample with the highest Aitchison distance

from its reference and the perturbation to apply as a translation to reach a balanced ionome.

4 Discussion

4.1 Clustering potato cultivars

The Canadian Food Inspection Agency classified potato cultivars broadly into maturity groups

based on the time elapsed between planting and maturity [1]. However, nutrient requirements,

especially nitrogen, vary widely between cultivars of the same maturity group. In New Bruns-

wick (Canada), Zebarth et al. [50] recommended 200–208 kg N ha-1 for Russet Norkota (early-

season cultivar) and Russet Burbank (late-season cultivar), 190 kg N ha-1 for Superior (early-

mid-season cultivar) and Goldrush (mid-season cultivar), 175 kg N ha-1 for Shepody (mid-

Fig 3. Perturbation vector example mapped using the most imbalanced sample. The most imbalanced observation nutrient

composition was (0.0601, 0.0037, 0.0355, 0.0032, 0.0048. 0.8919), the nearest reference composition was (0.0561, 0.0036, 0.0603,

0.0052, 0.0184, 0.8565), the corresponding perturbation vector was (0.0919, 0.0965, 0.1696, 0.1629, 0.3832, 0.0959) for N, P, K, Mg,

Ca and Fv respectively. The Aitchison distance computed between the observation and its associated true negative was 1.135.

https://doi.org/10.1371/journal.pone.0230458.g003
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season), 135 kg N ha-1 for early cultivars for the table market, 160–180 kg N ha-1 for other

mid-season, 180–200 kg N ha-1 for other late, and 135–160 kg N ha-1 for low N requirement

cultivars. Such large discrepancies within the same cultivar maturity group was attributed to

differential foliar gene expression [6] and root development [7]. Hence, information additional

to maturity grouping is needed to assess nutrient requirements of potato cultivars. Huang and

Salt [51] reported that ionomics allows the discovery of genes controlling natural variation in

the plant ionome and for Salt et al. [9], ionomics could capture information about the func-

tional state of an organism driven by genetic and environmental factors. The content of plant

tissue reflects what the plant can absorb from the soil and for each nutrient, there is a correla-

tion between its concentration and yield. Moreover, since tissue analysis is also carried out to

observe the effect of fertilizer applications, and for determining the in-season or next season

nutrient requirement [52, 53], ionomes could be useful in discriminating potato cultivars.

Indeed, using a small data set of eight potato cultivars, Hernandes et al. [10] showed that foliar

nutrient profiles varied widely among cultivars of the same maturity group. According to Par-

ent et al. [12], variations in ionomes could be interpreted only partly as genotypic effect, and

phenotypic plasticity can also be driven by nutrient supply capacity specific to agroecosystems

while breeding programs are conducted under relatively luxurious environments to reach high

productivity. The N, Mg and K clr values, that dominated principal components (Fig 1), could

reflect the abilities of individual cultivars to acquire and use those nutrients more efficiently

[54, 55]. Natale et al. [56] provided evidence that in general macronutrient contents differ

among species and cultivars and within the same species for fruit trees. For N, K and Ca, this

range is wider because of higher requirement of these elements by plants, and narrower for P,

Mg and S, indicating smaller demand for the latter.

To cluster is to recognize that objects are sufficiently similar to be put in the same group,

and to identify distinctions or separations between groups of objects [57, 58]. Based on the

assumptions of differential genotypic potential, root development, nutrient requirements,

nutrient uptake and use efficiency, the goal was to discover interesting structures in the N, P,

K, Mg and Ca contents of the diagnosis tissue in order to decipher dissimilarities between cul-

tivars [33]. However, the process failed to discriminate groups of cultivars along the clr coordi-

nates. Hernandes et al. [10] reached similar results with overlapping nutrient profiles between

cultivar groups depending on isometric log ratio (ilr) coordinates. They found similar nutrient

profiles between cultivars groups along some ilr coordinates and very different ones along oth-

ers. While ionome dissimilarities are not numerically compelling, they could assist classifying

new cultivars into appropriate ionomic group to benefit from costly fertilizer trials conducted

on cultivars of the same group.

4.2 Tuber marketable yield prediction

The P content of the diagnostic leaf did not appear useful in predicting potato tuber yield clas-

ses. Other elements (N, K, Ca and Mg) showed important contribution of their clr values to

the prediction quality metric, especially N, which is directly related to photosynthesis [59].

Since the fertilization trials were conducted over a time span of 47 years (1970–2017), the ques-

tion arises whether the different methodology of quantifying P (colorimetry/ICP) may have

contributed to depreciating this variable in predicting tuber yield classes. The ICP method is

shown to be faster and to give higher results for total phosphorus content in ‘soil’ extracts in

comparison to the colorimetric method. However, there are exceptions and controversial

results [60–62]. Ivanov et al. [61] found that the two methods for total P determination in

plant material were highly correlated, and the results were generally within 5% to 10% of one

another. Moreover, Valkama et al. [63] reported that, although agricultural practices, soil
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conditions and analytical techniques have undergone substantial changes over time, the differ-

ences between old and recent experiments in yield responses to P application were not statisti-

cally important. For all these reasons, we consider the two analytical methods equally relevant

to the analysis. The low importance of the P clr variable in predicting tuber yield classes may

come from its correlation with Ca. Globally, the selection of relevant features is achieved, by

first checking the correlation between features and response to select the features that have

correlation above a selected level (e.g., 0.5). Then, the independent variables need to be uncor-

related with one another. If some features are correlated, only one is kept. The process selected

the clr_Ca variable (alphabetical order) instead of clr_P since these features are correlated as

shown in Fig 1B. In this study no element was discarded from the process relative to its

importance.

The tested algorithms (k-nearest neighbours, random forest and support vector machine)

returned similar accuracies in the prediction of yield classes using clr variables as predictors

and showed fair diagnostic potential to detect nutrient imbalance. The correctly predicted

high and low yielders reached 70% in the testing data set. The models classified more accu-

rately the yield categories compared to a random classifier [64]. Specimens classified as false

negatives (i.e., low yielders incorrectly classified as high yielders) are attributable to limiting

conditions other than N, P, K, Mg, and Ca nutrition: soil physical and chemical properties [65,

66], fertilization [67], management failures, diseases [68] or weather events [69] impacting

plants growth and yield potential. False positive specimens (i.e., high yielders incorrectly classi-

fied as low yielders) indicate luxury consumption when nutrient concentrations are higher

[12, 70], or other particularly favorable growth conditions. The confusion matrix built for cul-

tivars revealed poor predictive accuracy for certain cultivars (i.e., 25% for Estima and Waneta)

and conversely an accuracy of 100% for others (i.e., Ambra, Peribonka) as shown in Fig 2.

These cultivars involved mainly small sample sizes (only one, two or three high-yielders and

five, six or lightly more low-yielders). The problems of small-data in machine learning are

numerous, but mainly revolve around over-fitting. The training and testing datasets division

could only aggregate observations of one class in the training set so that the model would train

to always predict this dominant class [71]. The model could also memorize labels, which is not

ideal for generalizing from new data. Brownlee [72] explained that imbalanced classifications

(one or less examples in a minority class for hundreds or more examples in the other) pose a

challenge for predictive modeling as most of the machine learning algorithms used for classifi-

cation were designed around the assumption of an equal number of examples for each class.

This results in models that have poor predictive performance, specifically for the minority

class. The controversial accuracy level for some cultivars (especially low level) could also come

from other yield limiting factors specific to the experiments but not involved in this study, as

for false positive specimens. Our model was not effective for these cultivars treated separately.

The differential nutrition of potato cultivars could be addressed objectively using mineral

analysis of the diagnostic leaf. More data are needed for poorly documented cultivars. More-

over, dedicated models could be trained for cultivars for which sufficient data are available (e.g.,

Goldrush, Superior, FL 1207, Chieftain). Other algorithmic, sampling and quality measurement

approaches could further be implemented to deal with the problems of small-data and unequal

distribution of classes [71, 72]. One could extend the predictors to the experimental conditions

(soils, weather data), fitting a site-and-cultivar-specific nutrients diagnosis model.

4.3 Perturbation vector for fertilizer recommendation

Rational fertilization requires information on the nutrients that are available in the soil, and

the nutritional status of the plant [14] as portrayed by the diagnostic tissue composition [14,
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15]. However, the diagnosis of deficiency and toxicity of mineral nutrients may be complicated

in field-grown plants where more than one mineral nutrient is deficient or where there is a

deficiency of one nutrient and simultaneously toxicity of another [14]. The scientific principle

behind tissue analysis is that healthy plants contain predictable concentrations of analytical

nutrients [73]. The values are compared to established norms for inadequate, adequate and

excess levels. However, Parent et al. [13] proved that this concept of growth-limiting nutrient

concentrations supported by the Law of minimum and illustrated by Liebig’s barrel, should be

replaced by a concept of growth-limiting nutrient balances illustrated by a pan balance design,

where groups of elements are balanced optimally against each other in weighing pans.

The difference between two equal-length compositional vectors can only be computed

using tools of compositional data analysis. The perturbation vector concept applied to foliar

tissue diagnosis returns a scaling operator [21] that when applied to an imbalanced composi-

tion translates it (theoretically) into a balanced composition with high yield potential (i.e., true

negative). Although the closure of the simplex implies that a perturbation on the clr of a spe-

cific nutrient is methodologically not a change in proportion of a single nutrient, perturbations

expressed in the clr space appear suitable for interpretation. Indeed, the difference measured

between clr values of the diagnosed sample and reference (true negative) specimen can be

ranked using the sign of that difference [10, 74, 75], hence indicating which components are at

excessive or deficient levels. As provided by Parent [40], K and Mg were apparently deficient

while N, P and Ca were apparently in excess compared to the closest reference specimen (Fig

3). Using the same approach, ionomes of newly introduced cultivars with unknown nutrient

requirements could be assigned to the cultivars of known nutrient requirements showing the

closest ionomes.

A perturbation as the one shown in Fig 3 should not be interpreted as shifts of individual

components, since the operation on a single component resonates on the whole simplex [40].

For instance, an offset in the simplex S (N, P, K, Ca, Mg, Fv) composition following the

increase by 20% (theoretically) of N and P clr values is displayed on Fig 4. The K, Ca and Mg

concentrations seemed more stable with respect to the others. Although P clr values have been

increased, P proportion decreased globally for the new equilibrium of the simplex. The offset

was higher for the selected components followed by the filling value (Fv).

Perturbation (as defined in Eq 3) is the measure of compositional change from one compo-

sition to another [37]. Because foliar composition belongs to compositional data family, the

Fig 4 illustrates the principle that changing a proportion of such data affects at least another

proportion of the simplex [16]. The result displayed variable offsets for other elements,

decreasing or increasing to reach another balance in the simplex.

5 Conclusion

Since the concept of compositional data analysis was applied to plant tissues, several studies

classified plant species and cultivars using multivariate analysis of nutrients compositions.

This study is, to our knowledge, the third (following Parent et al. [49] and Hernandes et al.

[10]) to use statistical tools to address the differential nutrition of potato cultivars using combi-

nation of nutrient concentrations in the diagnostic leaf, and the first using tools of machine

learning to predict tuber marketable yield. The potato ionomes showed some dissimilarities in

principle components analysis, but not compelling to separate definite density-based clusters

between cultivars on the basis of the clr values. However, the ionome showed a determinant

effect on tubers yield. Used as predictors in machine learning tools, clr variables showed diag-

nostic potential to detect in-season nutrient imbalance to address objectively the differential

response of cultivars to fertilization. The perturbation vector of the leaf compositional space
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could indicate cultivar sensitivity to fertilization and address specific problems of nutrient

imbalance in new cultivars. Tissue testing remains an informative, diagnostic and preventive

tool with real-world applications for growers in evaluating the effectiveness of their nutrient

Fig 4. Effect of the perturbation of N and P clr coordinates on the other element proportions. ‘Observation’ stands for the element’s original proportion,

‘Perturbation’ designates the new proportion after the ‘Observed’ vector’s clr value was offset. Greyed boxplots plot distribution of perturbed elements of the

simplex.

https://doi.org/10.1371/journal.pone.0230458.g004
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management program. When using the right interpretation, this timely and correct tissue test-

ing helps diagnose the presence and magnitude of suspected nutrient deficiencies. By using the

compositional perturbation vector involving interactions among nutrients, our study provided

a useful tool in potato precision fertilization in Quebec. The perturbation vector can help iden-

tify limiting nutrients requiring correcting measures as a season progresses or for subsequent

seasons. Moreover, our study implicitly provided robust multi-nutrient norms for potato

crops, gathering more cultivars of different maturity classes than the previous works. These

norms are sets of true-negative or nutritionally-balanced compositions per cultivar (enchant-

ing islands) with high-yield potential. More data are needed to fine-tune the models, especially

for poorly-documented cultivars. New algorithms, other sampling methods and model quality

measures could be tested to deal with the problem of small-data and imbalanced classification.

Further studies extending predictive features to site-specific conditions could improve the

diagnosis with a site- and cultivar-specific nutrient diagnosis model.
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