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Abstract

Specific skeletal myopathy constitutes a common feature of heart failure, chronic obstructive pulmonary disease, and type 2
diabetes mellitus, where it can be characterized by the loss of skeletal muscle oxidative capacity. There is evidence from
in vitro and animal studies that iron deficiency affects skeletal muscle functioning mainly in the context of its energetics by
limiting oxidative metabolism in favour of glycolysis and by alterations in both carbohydrate and fat catabolic processing. In
this review, we depict the possible molecular pathomechanisms of skeletal muscle energetic impairment and postulate iron
deficiency as an important factor causally linked to loss of muscle oxidative capacity that contributes to skeletal myopathy
seen in patients with heart failure, chronic obstructive pulmonary disease, and type 2 diabetes mellitus.
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Introduction

Specific skeletal myopathy represents an important patho-
physiological feature of many chronic diseases and contrib-
utes to debilitating symptomatology. Indeed, derangements
within skeletal muscle occur in such illnesses as rheumatoid
arthritis, chronic kidney disease (CKD), chronic liver disease,
heart failure (HF), chronic obstructive pulmonary disease
(COPD), and type 2 diabetes mellitus (T2DM).1–6 Pathophysi-
ology of skeletal myopathy secondary to systemic disorders is
multifactorial, being particularly complex in rheumatoid
arthritis, CKD, and chronic liver disease where muscle struc-
ture and functioning may be influenced among others by a
variety of circulating toxic metabolites, immune complexes,
or enhanced muscle inflammatory signalling.7–10 Instead,
functional impairments of skeletal muscle seen in HF, COPD,
and T2DM, such as decreased performance and decreased

exercise capacity, seem to co-exist with similar histological
abnormalities and to result from comparable molecular
pathomechanisms, most of which concerns energetics and
yields in loss of muscle oxidative capacity.11

There are premises that iron plays a crucial role in skeletal
muscle functioning, especially in the context of energy me-
tabolism. Cellular oxidative metabolism strongly relies on iron
availability, which is indispensable for both sufficient oxygen
supply and effective substrate catabolism.12 It is worth noting
that both iron overload and iron deficiency (ID) were proven
to be detrimental for mitochondria that constitute cellular
energy centres.13 Iron overload leads to the excessive forma-
tion and accumulation of reactive oxygen species whose
harmful effects have already been described.14,15 On the
other hand, although numerous deleterious effects of ID on
skeletal muscle have been summarized (for a detailed review,
see Stugiewicz et al.16), they have not been discussed in the
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particular context of fuel selection and efficiency of specific
catabolic routes for the energy production.

In this review, we aim to describe the possible molecular
pathomechanisms of skeletal muscle energetic impairment,
gathering evidence from in vitro and animal studies. Further,
we postulate ID as an important causative factor of loss of
muscle oxidative capacity that significantly contributes to
skeletal myopathy seen in patients with HF, COPD, and
T2DM and therefore may be considered as a co-target in a
therapeutic process.

Paragraph 1. Skeletal muscle energy
metabolism

Energy-consuming and multitasking skeletal muscle tissue
possesses complex machinery, which integrates various
pathways for the efficient adenosine triphosphate (ATP)
production.17–19 The flexibility of usage of different energy
sources that can be metabolized along distinct metabolic
routes is inevitable for skeletal muscle to adapt to dynamic
changes in their energy demand. The total amount of ATP
stored in human skeletal muscles accounts for approximately
80 g and needs to be continuously re-synthesized at the rate
of its consumption.20 Muscles can take advantage of three

main groups of energy substrates such as high-energy phos-
phates (creatine phosphates), carbohydrates (glycogen and
glucose), and lipids (triacylglycerol and free fatty acids).21–24

Notably, endurance power of muscles is strongly related to
their capacities to oxidize energy fuels in the process of
mitochondrial oxidative phosphorylation (OXPHOS), which
yields in ATP synthesis. Once oxygen flux to a muscle cell is
not disturbed, OXPHOS can result in most efficient energy
production, being fuelled by carbohydrate or fat as sub-
strates.20 Both carbohydrate and lipid pathways branch to
form four parallel pathways that converge on mitochon-
dria.23 Thus, mitochondria integrate several metabolic routes,
which result in the energy supply being essential for skeletal
muscle functioning and capacity (Figure 1A).

Anaerobic vs. aerobic energy metabolism

Under limited oxygen availability, energy from carbohydrates
in skeletal muscle is produced via anaerobic glycolysis, which
results mostly in lactate production.25 The process has a net
yield of 2 molecules of ATP per molecule of glucose. There-
fore, it is not sufficiently powered to provide muscle with
energy for a prolonged submaximal exercise. As soon as
myocytes receive sufficient oxygen, they switch towards a
more advanced form of energy acquisition, or OXPHOS,

Figure 1 Energetic pathways in human skeletal myocytes (A) when iron stores are sufficient and (B) when changed upon iron deficiency. ETC, electron
transport chain; ATP, adenosine triphosphate; I–IV, mitochondrial enzymatic complexes; NEFA, non-esterified fatty acids.
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which is programmed as a natural continuation of glycolysis
and is preceded by Krebs cycle.20 OXPHOS is conditioned by
enzymatic complexes (complexes I–IV) of mitochondrial elec-
tron transport chain (ETC) that enables the generation of
electrochemical gradient across the mitochondrial membrane
essential for the synthesis of about 30–36 molecules of ATP.
On the other hand, the efficiency of oxidative consumption of
fats is estimated at 14 molecules of ATP.25

Carbohydrate energy metabolism in skeletal
muscle

Catabolic processing of carbohydrates in skeletal muscle re-
lies on two substrate sources, namely, intramuscular glycogen
and blood glucose,22 which, depending on the oxygen avail-
ability, can be metabolized via anaerobic glycolysis in the cy-
toplasm or aerobic OXPHOS within mitochondrial enzymatic
machinery. Notably, the substrates for mitochondrial oxida-
tion at work intensities of around 80% of VO2max are initially
supplied from glycogen droplets inside the muscle cells with
no more than 20–30% of the fuel acquired from the capil-
laries.23,26 During prolonged exercise, as soon as glycogen
stores are depleted, the contribution of blood glucose be-
comes more appreciable, reaching close to 100% of muscle
carbohydrate metabolism.22,27 There are three points at
which muscle glucose acquisition can be regulated: glucose
delivery to the muscle cells, transmembrane transportation,
and flux through the intracellular metabolism.22 The amount
of glucose delivered to the muscular capillaries is usually re-
ferred as a resultant of blood flow and blood glucose concen-
tration from which only the latter component has been
proven to constitute a considerable limitation for glucose up-
take during prolonged exercise.22,28 Second rate-limiting step
of glucose acquisition is the permeability of the muscle cell
membrane, which can be influenced by either extracellular
stimuli, like contraction or insulin, or internal cellular factors,
including metabolic status and Ca2+ signalling. All of the fac-
tors mentioned earlier have been proposed to affect either
abundance or activity of the muscle-specific glucose trans-
porter (GLUT-4).29–31 Finally, the final site of regulation of
muscle glucose delivery is the flux of this monosaccharide
through the metabolic routes, being mainly dependent on
the activity of enzymes involved in glucose catabolism.

Lipid energy metabolism in skeletal muscle

Another two pathways for muscle energy metabolism rely on
the lipid catabolism, which can be fuelled by intramuscular
triglycerides or blood lipids. In general, in the main form of
non-esterified fatty acids (NEFA), lipid substrates are released
from their stores in skeletal muscle or adipose tissue and
transport to muscle mitochondria to be metabolized in the

β-oxidation process, which in turn yields in substrates for
OXPHOS. The contribution of fatty acids to oxidative metabo-
lism is essentially maximal at exercise intensities of 60% of
VO2max, while at higher intensities being decreased.24,32

Similarly to the order of carbohydrate substrate utilization,
muscles primarily take an advantage from the intracellular
lipid droplets, which remain in direct contact with the outer
mitochondrial membrane. It allows muscle cell to circumvent
the transport problems because of the low solubility of NEFA
in the cytosol. Notably, lipid droplets comprise mainly intra-
muscular triglyceride whose concentration can adaptively in-
crease in response to endurance training,23,33 but also,
according to the experimental evidence from human studies,
it can accumulate in pathological conditions, contributing to
the development of skeletal muscle insulin resistance.34–38

Interactions between carbohydrate and lipid
metabolism in skeletal muscle

Crosstalk between carbohydrate and lipid metabolic routes in
skeletal muscle has been proposed decades ago by Randle
et al. and has been referred as ‘glucose-fatty acid cycle’ or
‘Randle cycle’.39,40 The original hypothesis has evolved over
the years and in its current form postulates that the products
of NEFA catabolism inhibit rate-limiting enzymes of glycolysis,
thus limiting glucose uptake and catabolism.41,42 In general,
Randle cycle should be considered as the biochemical mech-
anism that controls fuel selection, adjusting substrate supply
and demand within skeletal muscle tissue, thus fine-tuning
hormonal regulation of substrate concentrations in the
blood.42,43 However, under conditions of disturbed energy
status, an activation of the major sensor of cellular energy
demand in skeletal muscle, AMP-activated protein kinase,
leads to abrogation of mechanisms of the glucose-fatty acid
cycle. Then, NEFA oxidation no longer inhibits the glucose
uptake itself, while it may limit carbohydrate oxidative
metabolism.44,45

Paragraph 2. The importance of iron in
the context of energy metabolism in
skeletal muscle

Over recent years, there has been increasing interest in a role
of iron metabolism in skeletal muscle functioning. Containing
10–15% of iron in the body, skeletal muscle mainly utilizes
this micronutrient to build enzymes indispensable for oxida-
tive metabolism, including myoglobin, which secures oxygen
for a muscle cell as well as enzymes involved in substrate
catabolism for OXPHOS.46,47 Taking into consideration differ-
ent extent of reliance on OXPHOS in a distinct type of muscle
fibres, it should be noted that major amount of iron is
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present in slow ‘red’ fibres in which the oxidative energy pro-
duction prevails. Thus, iron is of particular importance for
muscles rich in red fibres, such as dorsal muscles, lower ex-
tremity extensors, the diaphragm, and intercostal muscles.48

Involvement of iron in Krebs cycle in skeletal
muscle

Skeletal myocytes, like other mammalian cells, are attributed
with two central regulators of cellular adaptive response to
ID: IRP1 and IRP2 (for a detailed review, see Anderson
et al.49 and Guo et al.50). Noteworthy, however, is that in a
state of optimal or elevated intracellular iron, IRP1 switches
from its transcriptional function towards enzymatic activity,
being an important catalyst of Krebs cycle51 or series of
reactions that intermediate between glycolysis and OXPHOS
in the oxidative metabolism. Therefore, in non-ID, environ-
ment IRP1 appears as a cytosolic isoform of aconitase that
transforms citrate to isocitrate in Krebs cycle, which, in turn,
constitutes a metabolic link between initial catabolism of
either carbohydrate or fat and mitochondrial ETC, which
leads to OXPHOS. Importantly, the second isoform of the
aforementioned enzyme, which is referred as mitochondrial
aconitase, is involved in Krebs cycle held in mitochondria.
Because both cytosolic and mitochondrial aconitases contain
iron–sulfur clusters (ISC), their activities decrease in a low
iron state, because of either conversion to IRP1 in the case
of cytosolic isoform51 or inactivation in the case of the
mitochondrial enzyme.52

Involvement of iron in oxidative phosphorylation in
skeletal muscle

As mentioned before, the efficiency of OXPHOS is directly
related to the activities of four mitochondrial enzymatic
complexes. Being embedded in the mitochondrial inner
membrane, together they form the mitochondrial ETC that
enables generation of electrochemical gradient needed for
the final ATP synthesis.13,25 It is worth mentioning that each
of these enzymatic complexes contains iron in its structure
in the form of either haem, which builds haem proteins
(cytochromes) present in complexes III and IV, or ISC, which
are the parts of ISC proteins in the complexes I, II, and
III.13,25 Because of its ability to exist in two interchangeable
oxidative states [the reduced ferrous (Fe 2+) and the oxidized
ferric (Fe 3+) forms], iron plays a central role in oxidation–
reduction reactions (redox) carried out within mitochondrial
ETC.13,25 Because none of those aforementioned enzymes
can efficiently function without iron atoms, this micronutri-
ent is indispensable for the effective oxidative catabolism of
both carbohydrates and fats.

Involvement of iron in fat catabolism

Iron-containing prosthetic groups are not only present in the
aforementioned enzymatic complexes but also account for
the essential components of molecules that link initial catab-
olism of fatty acids to OXPHOS to enable the efficient energy
acquisition in skeletal muscle. Indeed, an iron–sulfur enzyme,
electron-transferring-flavoprotein dehydrogenase, was iden-
tified to be responsible for the transfer of products of fatty
acids oxidation to the mitochondrial ETC.53,54 Therefore, iron
appears to be a microelement unique in its ubiquity in
molecular systems of myocytes’ energetics.

Possible importance of muscle-specific regulation
of iron metabolism

Taking into consideration the apparent role of iron avail-
ability in the efficient energetics of skeletal muscle, one
should consider more in-depth studies on the mechanisms
orchestrating iron metabolism within myocytes. Although
systemic iron homoeostasis has been extensively studied
and can be reviewed elsewhere,55–57 local iron metabolism
in skeletal muscle and its crosstalk with fuel selection and
metabolism are still poorly understood. Because the
expression of two main regulatory peptides, namely,
hepcidin and hemojuvelin, has been confirmed in skeletal
muscle,58,59 therefore, the possibility of involvement of
muscle-specific regulation of iron metabolism in energy
metabolism may worth to be discussed and further
investigated.

Paragraph 3. Iron deficiency and
metabolic alterations in skeletal
muscle

Manifold deleterious effects of ID on skeletal muscle include
a deranged selection of energy substrates and altered cata-
bolic pathways. Experimental data from in vitro and animal
studies indicate that skeletal muscle network of pathways
for energy production is hampered by ID at different points
of the distinct metabolic routes (Figure 1B).

Alterations in oxidative metabolism:
oxidative-to-glycolytic shift

Affecting oxidative metabolism on several sites, ID rearranges
skeletal muscle energy metabolism, limiting the contribution
of the oxidative pathway in favour of glycolysis (Figure 2).
Firstly, ID affects the morphology of mitochondria as the
density of cristae of the mitochondrial inner membrane is
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decreased.60 Because these structures are responsible for
binding of enzymes of mitochondrial ETC, such an alteration
contributes to the mitochondrial oxidative inefficiency. Fur-
ther, ID dramatically impairs OXPHOS, affecting both oxygen
delivery and the final step of substrate catabolism within mi-
tochondrial ETC. Notably, the concentration of myoglobin
was decreased in predominantly slow- and mixed-fibre skel-
etal muscle from iron-deficient rats as compared with iron-
replete controls.61 ID also caused multifocal decoupling of
mitochondrial ETC as the activities of I, II, and IV enzymatic
complexes were decreased along with an inhibition of ISC
protein maturation and decreased the concentration of
cytochromes.62–68 Furthermore, Graber et al. suggested that
reduced amount of intracellular haem could affect myoglo-
bin content, as a haem synthesis inhibitor was able to re-
duce also a myoglobin level by 40% in rat skeletal muscle

cells.69 Apart from derangements in OXPHOS, ID was re-
ported to cause a decrease in level and activity of the key
enzyme of Krebs cycle or mitochondrial aconitase, probably
via post-translational regulation, thus limiting the conversion
of acetyl coenzyme A for OXPHOS. Finally, Finch et al. de-
scribed in rat skeletal muscle links between ID and excessive
lactate production that could result from impaired OXPHOS
and consequent accumulation of product of enhanced gly-
colysis.70 All of these effects of ID may add to the general
decrease in oxidative metabolism efficiency.

Alterations in carbohydrate metabolism

The influence of ID on muscle carbohydrate uptake and
utilization is multifaceted. Most of all, experimental data

Figure 2 Different levels of muscle energetic alterations caused by iron deficiency. GLUT4, glucose transporter; NEFA, non-esterified fatty acids;
OXPHOS, oxidative phosphorylation; ID, iron deficiency; Acetyl-CoA, acetyl coenzyme A; ATP, adenosine triphosphate.
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indicate an increased reliance on carbohydrate metabolism
as reported for both mildly and severely iron-deficient
rats.71–74 Several studies investigated the effects of ID on
the glucose transporters of skeletal muscle and yielded in
partially inconsistent results. In general, ID was proven to
increase the expression of muscle glucose transporters.
However, skeletal muscle of iron-deficient rats demonstrated
an increased expression of the muscle-specific GLUT-4,75

while experimental data from in vitro studies on the
myocytes suggested an increase in expression of ubiquitously
distributed transporter GLUT-1. Concerning the intensity of
carbohydrate metabolism, Barrientos et al. demonstrated
that mice with skeletal muscle-specific transferrin receptor
knockout, which was interpreted as muscle-specific ID, pre-
sented with an upregulation of genes involved in glycolysis
along with an enhancement of gluconeogenesis in liver possi-
bly due to increased muscle glucose demand.76

Alterations in fat metabolism

In general, ID is presumed to shift the skeletal muscle reliance
from fat to glucose as the preferred metabolic substrate. Davis
et al. have reported a significant decrease in the expression of
several enzymes involved in the central pathway of muscle fat
catabolism, β-oxidation. Notably, the same study demonstrated
an increase in expression of lipogenic genes, which leads to
lipid accumulation in skeletal muscle.74 Indeed, an increased
abundance of lipid droplets was reported in the skeletal mus-
cles of ID rats.51,77 Further, in transgenic mice lacking transfer-
rin receptor, the β-oxidation of fatty acids was impaired, with
an accumulation of potentially toxic intermediates.76 It is worth
noting that ID was also reported to increase lipid peroxidation
in rats,78 leading to the severe cell damage. Therefore, the
accumulation mentioned earlier due to ID may yield in the
intensified detrimental effects.

The possible mechanism of impaired fuel
metabolism in iron-deficient skeletal muscle

Considering metabolic changes induced by ID in skeletal mus-
cle, it can be concluded that low iron state increases non-
anaerobic glucose metabolism, thus improving glucose up-
take and insulin sensitivity in this tissue. Indeed, ID is re-
ported to improve insulin sensitivity in peripheral tissues of
iron-deficient animals71,79–81 possibly through an enhanced
expression of the glucose transporters,75,82 but it also triggers
less desirable metabolic adaptations, such as hyperglycaemia,
hyperinsulinaemia, and hypertriglyceridaemia.73,74,77,80,83,84

This phenomenon may result from the ID-induced deficien-
cies of mitochondrial ETC, which in turn lead to ineffective
carbohydrate and fat oxidative metabolism combined with
compensatory increased glucose demand.

Paragraph 4. Links between iron
deficiency, loss of oxidative capacity,
and functional capacity in patients with
chronic diseases accompanied by
skeletal myopathy

The decline in muscle strength and quality has emerged as a
common pathophysiological feature of HF, COPD, and T2DM,
significantly aggravating symptoms and outcomes.1,3,85–90

Skeletal myopathy that accompanies these diseases has been
linked to the loss of skeletal muscle oxidative capacity, de-
fined by the ability to oxidize nutrients to obtain energy.11

Macroscopically, structural changes that correlate with the
decreased functional muscle capacity can be observed as a
reduced muscle mass and volume measured in different body
regions.3,91–93 Among the skeletal muscle derangements oc-
curred at various levels, from the macroscopic to subcellular,
and reported in patients with HF, COPD, and T2DM, many
may result from the loss of oxidative capacity.

Histological and ultrastructural alterations in
skeletal muscle in chronic diseases

Histological examination of skeletal muscle in patients with
HF reveals changes in fibre composition with an increased
contribution of fast glycolytic fibres.85,94 Because the fast
muscle fibres rely mainly on anaerobic metabolism, this ob-
servation accounts for microscopic evidence on the de-
creased extent of OXPHOS within skeletal muscle, thus a
shift in energy metabolism towards anaerobic route. Further,
alterations in skeletal muscle seen at the cellular level involve
mostly myocyte energetic centres, namely, mitochondria, and
comprise not only a decreased total number and volume of
these organelles but also diminished both mitochondrial vol-
ume density and surface density of mitochondrial cristae.85,95

These structural modifications of cellular organelles may lead
to severe limitation of oxidative ATP synthesis, which
normally takes place exactly on mitochondria cristae. Indeed,
the changes as mentioned earlier in mitochondria ultrastruc-
ture significantly correlate with decreased oxidative capacity
of skeletal muscle,85,95 suggesting a significant contribution
of compromised muscle oxidative metabolism to exercise
intolerance seen in patients with HF.

Analogous oxidative-to-glycolytic shifts within muscle
fibres are observed in both patients with COPD96 and
patients with T2DM.97 Skeletal muscle in COPD is character-
ized by a decreased mitochondrial content and decreased
the fractional area of these organelles,98 whereas in T2DM,
because muscle mitochondria present with smaller mean
size and narrowed cristae, they most likely contribute to
skeletal muscle dysfunction seen in diabetic patients.99–101
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Therefore, both in COPD and in T2DM, the molecular
centres of oxidative energy production exhibit structural al-
terations that diminish their ability to bind the oxidative
enzymes.

Alterations of oxidative metabolism in skeletal
muscle in chronic diseases

In general, oxidative metabolism in skeletal muscle in HF is
limited, and the anaerobic glycolysis is enhanced. Concerning
oxidative energetics, the efficiency of Krebs cycle in skeletal
muscle of patients with HF is decreased because the activities
of rate-limiting enzymes, namely, citrate synthase (CS) and
succinate dehydrogenase, are diminished.102,103 These results
suggest a limited substrate flux to OXPHOS and resultant inef-
ficient ATP synthesis. Abnormal oxidative metabolism is
coupled with a shift towards rapid energy sources such as
high-energy phosphates or glycolysis, which leads to intracel-
lular acidification.85,104

Abnormalities in oxidative metabolism of skeletal muscle
have also been demonstrated in patients with COPD. The
changes include a decrease in activity of CS of Krebs cycle105

and a diminished activity of enzymatic complex IV of
mitochondrial ETC.106 Similarly, skeletal muscles in T2DM
have decreased the activity of both CS and enzymatic
complexes I and IV of mitochondrial ETC.99,107 Importantly,
in both COPD and T2DM, deranged oxidative metabolism
coexists with increased activities of enzymes of anaerobic
glycolysis.107,108

Alterations of carbohydrate and fat metabolism in
skeletal muscle in chronic diseases

Apart from the general decline in oxidative metabolism,
skeletal muscle in HF demonstrates significant changes in fuel
selection and their catabolism. For example, the glycogen
content is decreased in skeletal muscle of patients with
HF.2,94 This alteration may contribute to the limitation of
muscle functional capacity taking into consideration that
mitochondrial oxidation is predominantly supplied from
intramuscular glycogen droplets.23 On the other hand, fat
catabolism is also compromised because skeletal myocytes
in HF present with a diminished concentration of an essential
enzyme mediating initial catabolism of fatty acids, 3-
hydroxyacyl-coenzyme A-dehydrogenase.94 Therefore, oxida-
tive metabolism in skeletal muscle of patients with HF is
disturbed not only because of abnormalities within mito-
chondria but also because of regarding inefficient initial
catabolism of two main fuels, carbohydrates and fat. Also,
Keith et al. reported that in patients with HF, plasma concen-
trations of lipid peroxidation products are increased,109

which possibly may result from abnormal mitochondrial

functioning, namely, inefficient oxygen reduction coupled
with the large accumulation of lipid intermediates being not
effectively catabolized in the oxidative pathway. Skeletal
muscle in patients with COPD demonstrates similar alter-
ations as the amount of intramuscular glycogen is de-
creased.110 Furthermore, the accumulation of fat within
skeletal muscle in COPD and the enhanced lipid peroxidation
may suggest a deranged lipid oxidative metabolism.111,112

Similarly, in T2DM, lipid accumulation occurs within skeletal
muscle as a supposed consequence of impaired mitochon-
drial oxidative capacity and might contribute to the develop-
ment of insulin resistance.113–115

The prevalence of iron deficiency in patients with
chronic diseases

Iron deficiency has been recognized as a frequent comorbid
condition in patients with HF with the prevalence estimated
at 30–60% of those patients.116–118 In an international pooled
cohort of >1500 European patients with HF, ID affected 50%
of subjects.117,119 Previously, we have gathered available
evidence on the correlation between ID and impaired func-
tional capacity in patients with HF, as well as on beneficial
effects of iron supplementation on physical performance in pa-
tients with HF and ID, regardless of the presence of anaemia.16

Moreover, there is evidence on the improvement of myocardial
function in patients with HF and ID after iron replacement
therapy.120–122 Indeed, Gaber et al. reported that intravenous
(i.v.) iron administration improved diastolic and systolic func-
tion as assessed using echocardiographic parameters, such as
S0-wave, E/E0 ratio, and peak systolic strain rate.121 In another
small trial, iron repletion caused a correction of left ventricular
end-systolic dimension, left ventricular end-diastolic dimen-
sion, left ventricular end diastolic posterior wall dimension, in-
terventricular septal end diastolic dimension thickness, left
ventricular mass index and left ventricular end systolic vol-
ume.120 Regarding COPD, several studies refer to the preva-
lence of ID. For example, among 113 patients with stable,
moderately severe COPD, 18 were found to be iron defi-
cient.123 Data from the study mentioned earlier indicate that
iron-deficient patients had more self-reported exacerbations
as well as a trend towards worse exercise tolerance.123

Notably, the higher severity of the disease has been correlated
with the greater decline in lung function as assessed using
FEV1%FVC.124 In other study, Horadagoda et al.125 detected
ID in 38% of 94 consecutive patients with acute exacerbations
of COPD. Further, ID has been linked to increased pulmonary
artery pressure in a group of 75 non-anaemic outpatients with
COPD (subjects with COPD—41%).126 There are also data from
the study of a prospective sample of 70 non-anaemic patients
with COPD where iron-deficient subjects (48%) demonstrated
lower pre-training aerobic capacity and reduced training-
induced response in comparison with those with normal iron
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status.127 Concerning T2DM, there is a scarcity of data on the
prevalence of ID. In general, a deranged iron metabolism
seems to play an important role in the pathophysiology of
diabetes.128,129 Many studies have shown that iron overload
contributes to diabetes mellitus,130–132 but there are also data
from a large cohort study indicating that ID is not protective
against T2DM.133 Furthermore, ID is highly prevalent (about
39%) in obese and overweight children and adolescents134 as
well as in adult men and women.135–137 Indeed, ID is associated
with the major risk factor for diabetes, obesity, which is caus-
ally related to the decrease in the ability of effective fat catab-
olism.136,138,139 Further, ID has been proposed to participate in
obesity-related inflammation.129 Importantly, there is an ongo-
ing randomized placebo-controlled clinical trial investigating
the hypothesis that i.v. substitution with ferric carboxymaltose
reduces HbA1c levels in patients with type 2 diabetes and ID,
thereby improving metabolic status and quality of life.140

The mechanism of development of iron deficiency
in patients with chronic diseases

The mechanism in which patients with chronic diseases
develop ID is not fully understood. Regarding chronic
illnesses assisted by inflammation, such as CKD, infections,
cancer, and autoimmune diseases, the prevalent literature
emphasizes the role of inflammatory-driven up-regulation of
hepcidin, which presumably leads to functional ID or anae-
mia.141–146 However, in case of HF, the mechanism seems to
be different, because the level of hepcidin in patients with
systolic HF is reported to be associated with low circulating
pro-inflammatory markers, being related neither to the
presence of anaemia nor to haemoglobin level.147 Therefore,
it has been proposed that in the initial phase of HF, hepcidin
is high, which is probably related to its protective role against
iron excess manifested by elevated serum ferritin.147 How-
ever, the prolonged up-regulation of hepcidin inhibits iron ab-
sorption and release, thus leads to the development of ID
with manifestation of its deleterious clinical consequences.
In the end, ID represses hepcidin production to the blood-
stream.147 It is worth noting that although the aforemen-
tioned mechanism has been postulated, it has been tested
neither in the context of other factors influencing hepcidin
expression nor in terms of time course or risk factors of ID
development. In case of COPD and T2DM, there is lack of
data proposing mechanism and indicating the time course
of ID development.

Iron deficiency as a potential cause of impaired
skeletal muscle energetics in chronic diseases

According to the so-called muscle hypothesis, abnormalities
occurring in structure and functioning of skeletal muscles

include significant metabolic derangements and are to be
directly responsible for impaired exercise capacity in
patients with HF.148 Similar intrinsic metabolic alterations
within skeletal muscle with possible important impact on ex-
ercise capacity are observed in COPD and T2DM [see above].
Physiologically, metaboreceptors (the kind of muscle affer-
ents) are stimulated by products of skeletal muscle work,
which in turn inform the brain stem on the level of muscle
activity. The response to such metaboreflex involves sympa-
thetic activation and consequent ventilatory, haemodynamic,
and physiological adaptations to meet the muscle nutritional
requirements.149–151 Abnormally large metaboreceptor re-
sponse, however, contributes to the experience of dyspnoea
and leads to the disordered exercise physiology. Such phe-
nomenon has already been demonstrated in HF,152,153 and
it has been postulated in COPD154 where it needs further
in-depth investigation. Although the excessive activation of
ergoreceptors has not been evaluated in T2DM, its contribu-
tion to exercise intolerance may be hypothesized as skeletal
muscle in diabetes has the oxidative capacity limited with
the accumulation of anaerobic metabolites.

It is worth noting that ID has been postulated as an
important causative factor that can significantly contribute
to the loss of skeletal muscle oxidative capacity seen in
patients with HF, COPD, or T2DM.11 Therefore, it is possible
that ID exerts its detrimental effects by limiting the oxidative
metabolism and consequent accumulation of anaerobic
metabolites, which in turn contributes to the exaggerated
ergoreflex response, thus to exercise limitation. Skeletal
myopathy that occurs in response to ID and resultant
energetic impasse may constitute a potential pathophysiolog-
ical link between disturbed iron status and diminished
exercise capacity in patients with aforementioned chronic
diseases. It is worth noting that ID predominantly damages
skeletal muscle energetics, which is reported to be disturbed
at similar points in certain chronic syndromes (Figure 3).
However, there is still a lack of direct experimental or clinical
evidence to support this hypothesis.

To date, mechanistic studies on ID and resultant decreased
exercise performance have been performed predominantly in
animal models, while data regarding the relationship
between ID and skeletal muscle dysfunction in iron-deficient
anaemic human subjects are limited and inconsistent (for a
detailed review, see Stugiewicz et al.16). With regard to
oxidative capacity, although there is lack of mechanistic
studies investigating the effects of iron supplementation
on skeletal muscle energetics, clinical findings show that
iron administration to iron-deficient both untrained subjects
and athletes improves muscle energetic efficiency.155,156

Therefore, further studies are needed to establish the path-
ophysiological links between ID and skeletal muscle dysfunc-
tion observed in HF, COPD, and T2DM, to step forward in
co-targeting of muscle abnormalities in a therapeutic
process.
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Iron therapy in chronic diseases

It is worth noting that to date iron therapy has already been
tested in anaemic and/or iron-deficient patients. Particularly,
i.v. iron replacement, as compared with oral iron or inactive
controls, is reported to be effective in improving both
haemoglobin levels together with reduction in blood transfu-
sion rates and quality of life in anaemic adults without
CKD.157With regard to iron-deficient patients with HF, irre-
spective of concomitant anaemia, i.v. iron is associated with
an improvement in exercise capacity, clinical status, quality
of life, and significant reduction in the risk of hospitalizations
for worsening HF.158,159 Based on two clinical trials (FAIR-HF
and CONFIRM-HF), i.v. ferric carboxymaltose has been recom-
mended for treatment of ID in symptomatic patients with
HF and left ventricular ejection fraction <45%.159–161 Impor-
tantly, in acutely decompensated HF, ID has been also recog-
nized as a highly prevalent comorbidity that should be
monitored (especially regarding not stationary character of
iron status in those patients) and managed.162 Considering
other therapeutic approaches, because myocardium of HF
patients has decreased iron content, which may significantly
contribute to the existing mitochondrial dysfunction,163 novel
myocardial-targeted therapies should be designed and

developed. In case of COPD, data on iron therapy are lim-
ited.164 In a small retrospective study, i.v. iron together with
erythropoiesis-stimulating agents has been reported to im-
prove anaemia and ID and that has been associated with a
significant improvement in self-assessed shortness of
breath.164 Regarding T2DM, in the ongoing clinical trial, i.v.
iron is tested in the context of metabolic status and quality
of life in iron-deficient patients with T2DM.140 Apparently,
iron therapy has been investigated more deeply in HF pa-
tients, and there is a need of more in-depth studies on iron
replacement in other diseases, such as COPD or T2DM.

Of note, several current therapeutic strategies aim to tar-
get muscle mitochondrial energetics in order to enhance
metabolic efficiency, and an optimal iron supply may play
an important role in an adequate response to such at-
tempts. For example, the utilization of trimetazidine as a
metabolic modulator that acts by re-programming muscle
metabolism towards the enhanced glucose oxidative
catabolism has been tested in animal models.165,166 Impor-
tantly, the aforementioned agent is reported to induce a
fast-to-slow shift in fibre composition and to restore oxida-
tive phenotype of muscle.165,166 Similarly, another muscle-
targeted compound, namely, acylated-ghrelin, is proposed
to normalize mitochondrial oxidative capacity.167 Thus, both

Figure 3 Common molecular energetic impairments seen in skeletal muscle in heart failure (HF), chronic obstructive pulmonary disease (COPD), and
type 2 diabetes mellitus (T2DM). ETC, electron transport chain; KC, Krebs cycle; I–IV, mitochondrial enzymatic complexes.

810 M. Dziegala et al.

Journal of Cachexia, Sarcopenia and Muscle 2018; 9: 802–815
DOI: 10.1002/jcsm.12314



the two molecules mentioned earlier are meant to increase
muscle oxidative capacity, which in turn is crucially depen-
dent on optimal iron availability. In case of other experimen-
tal attempt, Inoue et al. has reported beneficial effects of
exercise train on ageing mice skeletal muscle in the context
of improvement metabolic and mitochondrial impair-
ments.168 Taking into consideration the fundamental role
of iron in both exercise capacity16 and mitochondrial
functioning, it may be hypothesized that undisturbed iron
metabolism may be of particular importance for the ade-
quate response to the therapy.

Conclusions

Evidence gathered from animal and in vitro studies indicates
that ID damages skeletal muscle energetics at different levels.
Skeletal muscle dysfunction causally linked to the impaired
cellular energy metabolism has been recognized as an impor-
tant pathophysiological feature in chronic diseases, such as
HF, COPD, and T2DM. Although the unfavourable influence of
ID on the energy metabolism has been postulated in the syn-
dromes mentioned earlier, the hypothesis of whether abnormal
iron homoeostasis contributes to the skeletal muscle derange-
ments still needs to be verified. Therefore, further studies are

indispensable to investigate the clinical correlations between
ID and skeletal muscle dysfunction in chronic diseases.
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