
sensors

Article

One-Stage Anchor-Free 3D Vehicle Detection from
LiDAR Sensors

Hao Li 1 , Sanyuan Zhao 1,*, Wenjun Zhao 2, Libin Zhang 2 and Jianbing Shen 1

����������
�������

Citation: Li, H.; Zhao, S.; Zhao, W.;

Zhang, L.; Shen, J. One-Stage

Anchor-Free 3D Vehicle Detection

from LiDAR Sensors. Sensors 2021, 21,

2651. https://doi.org/10.3390/

s21082651

Academic Editor: Cosimo Distante

Received: 3 February 2021

Accepted: 30 March 2021

Published: 9 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Beijing Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of
Technology, Beijing 100081, China; lih627@bit.edu.cn (H.L.); shenjianbing@bit.edu.cn (J.S.)

2 State Key Laboratory of Smart Manufacturing for Special Vehicles and Transmission System, Inner Mongolia
No.2 Mailbox, Baotou City 014030, China; zhaowenjun9930@126.com (W.Z.); Z18686168230@163.com (L.Z.)

* Correspondence: zhaosanyuan@bit.edu.cn

Abstract: Recent one-stage 3D detection methods generate anchor boxes with various sizes and
orientations in the ground plane, then determine whether these anchor boxes contain any region of
interest and adjust the edges of them for accurate object bounding boxes. The anchor-based algorithm
calculates the classification and regression label for each anchor box during the training process,
which is inefficient and complicated. We propose a one-stage, anchor-free 3D vehicle detection
algorithm based on LiDAR point clouds. The object position is encoded as a set of keypoints in the
bird’s-eye view (BEV) of point clouds. We apply the voxel/pillar feature extractor and convolutional
blocks to map an unstructured point cloud to a single-channel 2D heatmap. The vehicle’s Z-axis
position, dimension, and orientation angle are regressed as additional attributes of the keypoints. Our
method combines SmoothL1 loss and IoU (Intersection over Union) loss, and we apply (cos θ, sin θ)

as angle regression labels, which achieve high average orientation similarity (AOS) without any
direction classification tricks. During the target assignment and bounding box decoding process, our
framework completely avoids any calculations related to anchor boxes. Our framework is end-to-end
training and stands at the same performance level as the other one-stage anchor-based detectors.

Keywords: 3D detection; anchor-free detector; one-stage detector

1. Introduction

Object detection is one of the basic but challenging tasks in the field of computer vision.
It promotes the development of a series of other tasks, such as instance segmentation
and person re-identification and tracking. The task of 3D detection is to detect the 3D
information of an object in the world coordinate system, including the position, size and
orientation of the object. To get accurate 3D information, additional sensor data, such as
RGB-D images or LiDAR point clouds, are used as input access object detection framework.
Recent methods such as RoarNet [1] and Frustum ConvNet [2] first detect the 2D bounding
box of the vehicle in the image, then extract the point cloud features in the bounding box
through projection relationship to obtain 3D information of the object. Other methods,
such as VoxelNet [3], SECOND [4] and PointPillars [5], are based on LiDAR point clouds
and implement detection algorithms from a set of 3D bounding boxes on the ground plane.
Of the two categories of method, the former focuses on multi-sensor information fusion,
while the latter focuses on analyzing and processing point cloud information. There are
two key differences between images and LiDAR points: (1) The 3D object projected into
a monocular image will lose a dimension, which will cause scale variety, occlusion and
deformation. The shape of the object on the image varies according to the viewing direction.
It is difficult to recover 3D information from a monocular RGB image. However, in the
LiDAR coordinate system, since the specific (x, y, z) for each point is known, there is no
scale diversity problem for the same object. Generally, LiDAR is deployed from above
the autonomous vehicle. There is less of an occlusion problem from the bird’s-eye view

Sensors 2021, 21, 2651. https://doi.org/10.3390/s21082651 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9132-5027
https://doi.org/10.3390/s21082651
https://doi.org/10.3390/s21082651
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21082651
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21082651?type=check_update&version=2


Sensors 2021, 21, 2651 2 of 19

(BEV). A neural network based on the point cloud can infer the 3D information of the
vehicle through the partial LiDAR-points information of the vehicle [3,6]. Since vehicle 2D
detection results will not overlap from a BEV, it is helpful for the design of the training
label. (2) The image is stored in a densely structured format. Experience has shown that
traditional 2D convolution is suitable for processing such data. LiDAR points are non-
uniformly sampled over the entire 3D space. An unstructured and unordered data format
stores the point cloud, which cannot be processed directly by convolutional networks.

However, whether the above detection algorithms are 2D pre-detection or 3D detection
based on point clouds, a series of anchor boxes need to be predefined. The anchor box
is generally the average size of the same kind of object and has a fixed interval for the
orientation angle. The output of the detection algorithm is tightly coupled to the parameters
of the anchor boxes. Hence, for different kinds of objects or different data sources, these
methods have to redesign the anchor boxes and fine-tune the output of the network, which
is cumbersome and inefficient. Moreover, due to the anchor boxes, it is necessary to assign
a label to each anchor box during the training process, which causes a large computational
burden. For instance, given a point cloud corresponding to the horizontal 80 m × 60 m,
the algorithm usually generates feature maps with the size of 400× 300 and computes the
similarity between 240,000 anchor boxes and about 3 to 10 ground truth 3D boxes.

In recent years, the anchor-free 2D detectors have developed rapidly. Anchor-free
methods model the detection problem as keypoints matching or image segmentation,
which is different from the anchor-based method. For example, the anchor-based methods
employ multi-class dense classification to avoid occlusion problems. On the contrary, the
anchor-free methods, such as FCOS [7], perform complex judgment logic for each pixel in
the training process to assign a correct category label. There are currently artificial deep
neural networks, such as PointNet [8] and SqueezeSeg [9], that are capable of extracting
point cloud features and structured storage. In that way, we can learn a fixed size feature
map from the point cloud, and draw on the ideas of 2D detection methods.

In this paper, we we propose an anchor-free, one-stage 3D detector. Our method fo-
cuses on detecting the other vehicles’ 3D information from the point clouds. We redesigned
the target assignment and inference process, which completely avoids complex calculations
involving anchor boxes. The network structure contains three modules, i.e., a point cloud
feature extractor, the backbone network and the anchor-free detection head, which are
tightly coupled. Since the vehicles are rigid and distributed on the ground plane, we detect
objects from a BEV, which mitigates the adverse effects of occlusion and deformation. We
firstly group LiDAR points from the raw point cloud, and extract their features with a
parameterless voxel feature extractor or pillar feature extractor. The features are stored into
a structured feature map. Then we apply fully convolutional networks in order to generate
the heatmap and other regression parameters. The heatmap is encoded by the center points
of the objects. Pixels with higher response values in the heatmap are more likely to be
the target objects. The absolute offsets, Z-axis information, size and rotation angle of the
object are calculated in regression branches, which are in parallel to the heatmap branch.
We combine the SmoothL1 loss and IoU loss for training and redesigning the labels for
regression. Compared with other methods, our contributions are listed as follows:

• We apply (cos θ, sin θ) for rotation regression as PIXOR [10]. Without any pivot angle
prior and auxiliary angle classification branches in anchor-based methods, the unique
orientation angle can be decoded by the result of our regression branch and achieve
high average orientation similarity results.

• We combine SmoothL1 and high-level IoU loss for training. The SmoothL1 loss
trains each regression branch separately, while IoU loss uniformly trains all regression
parameters. The experimental results show that our detector achieves nearly the
same performance level as the other anchor-based detectors. We also analyze the
performance between the anchor-based and the anchor-free methods.



Sensors 2021, 21, 2651 3 of 19

2. Related Work

3D object detection. The Mono3D [11], Deep3DBox [12] and 3DOP [13] focus on
the front view RGB imagery, but the front view-based methods are easily susceptible to
occlusion, which leads to missed detection. LiDAR point clouds provide more accurate
position information than front view-based RGB images. Due to the sparse and unstruc-
tured data format of the LiDAR point clouds, learning features from point clouds is still a
research hotspot. PointNet [8] uses a shared multi-layer perceptron to extract the features
of each LiDAR point. PointNet++ [14] selects LiDAR points by the farthest point sampling
method, and then uses ball center querying based on the selected LiDAR points to get
the grouped point clouds. Finally, the classification and segmentation results were com-
puted by PointNet layers. The current 3D detection methods are based on the point cloud
learning algorithm from a bird’s eye view. The MV3D [15] encoded the sparse 3D point
clouds with a compact, multi-view, hand-crafted feature representation for 3D proposal
generation. Zhou and Tuzel [3] proposed VoxelNet for 3D object detection. It groups
LiDAR points with voxels for 3D object detection. However, the voxel feature extractor
suffers from a high computational burden because of the fully connected network and
the cascading operation. The SECOND [4] applied sparse convolutional operation for the
LiDAR point cloud feature extraction, to improve the speed of inference. Lang et al. [5]
introduced a pillar-based 3D encoder, which converted a point cloud to a sparse pseudo
image. Then, they removed the 3D convolutional module and processed the pseudo-image
to high-level representation merely with 2D convolutional blocks. The PointPainting [16]
was an effective sequential fusion method, which used a semantic segmentation network
prediction from RGB images to enhance the point cloud features. These one-stage 3D
detection heads adopted a set of predefined 3D anchor boxes. Jason et al. [17] proposed
an aggregate view object detection architecture. They proposed the RGB image feature
and BEV point cloud feature fusion method and geometric constraints to the bounding
box regression process. It was cumbersome to calculate the label for each anchor box
during training and pre-processing. There are many two-stage 3D detectors. Inspired by
Faster R-CNN [18], Shi et al. [19] proposed a two-stage 3D detection method based on
point clouds, PointRCNN. It first achieved foreground and background segmentation from
point clouds by PointNet++ [14]. Then for each foreground point, it predicted a 3D object.
The second-stage sub-network refined the proposals and generated the final 3D bounding
boxes. F-PointNet [20] applies a 2D-driven 3D object detection method. It generates the 2D
region proposal on the RGB-D image through Mask R-CNN [21], and combines the depth
of the region to get the frustum proposals. The LiDAR points in a frustum proposal are
used to generate the instance segmentation and 3D bounding boxes by PointNet++ [14].
PI-RCNN [22] uses a point-based attentive contfuse module to fuse features from multiple
sensors. Pseudo-LiDAR++ [23] uses stereo camera images with LiDAR points to generate
dense pseudo point clouds and enhance the performance of 3D detectors. Two-stage 3D
detectors still cannot be trained end-to-end. AFDet [24] and CenterNet3D [25] were 3D
anchor-free detectors that treated objects as keypoints for detection. AFDet [24] used a
Euclidean distance transform for target assignment and a multi-bin method for orientation
regression. CenterNet3D [26] was trained through an auxiliary corner attention branch and
balanced L1 loss to improve average precision (AP).

Anchor-free detectors. The anchor-free algorithms took advantage of the methodology
in related tasks of computer vision, such as segmentation [27–29] and pose
estimation [30,31]. A famous anchor-free detector, YOLOv1 [32], predicts categories for
each cell on the RGB image and regresses the bounding boxes. DenseBox [33] crops training
samples from the raw image. The positive classification label of a target is encoded as a
filled circle in the center of the bounding box. FCOS [7] classifies each pixel in the object’s
bounding box and regresses the distance between the pixel location and the bounding
box, which produces intensive prediction results for a target. FoevaBox [34] proposes the
object fovea for the target assignment. All these methods effectuate approximately the
same performance as anchor-based methods in a segmentation-like way. CornerNet [35]



Sensors 2021, 21, 2651 4 of 19

and CenterNet [26] use keypoint estimation for object detection. They got the heatmap of
keypoints from fully convolutional networks and regressed the object size information as
an additional attribute of the keypoints. The main difference between anchor-based and
anchor-free methods is how to define the samples with corresponding ground truth labels
during the training process.

3. Our Approach

Our method consists of three modules, i.e., the point cloud feature extractor, the
backbone network and the anchor-free detection head. Figure 1 shows our network
architecture. We introduce our method in the following subsections. In Section 3.1, we
generate the structured feature map in the bird’s-eye view from the point clouds. Then, the
backbone network for processing point cloud feature map is described in Section 3.2. We
explain the specially designed anchor-free detector in Section 3.3.

Fe
at
ur
e
Ex
tr
ac
to
r

Ba
ck
bo

ne

An
ch
or
-F
re
e

De
te
ct
io
n
He

ad
Voxel Feature

𝑧(𝐷)
𝑥(𝐻)

𝑦(𝑊)

Pillar Feature

FC

1D
Te
ns
or

2D
Fe
at
ur
e
M
ap

Arithmetic Mean

3D Feature Map

3D CNN

𝑊

𝐻
𝐷

2D
Fe
at
ur
e
M
ap

feature map

conv and ReLU
down-sample
up-sample

concatenated feature map

ex
p

ta
nh

si
gm

oi
d

Parallel 1x1 Conv Branches

heatmap offset dimension rotation
(𝑝) (𝛿𝑥, 𝛿𝑦, 𝑧) (𝑤, ℎ, 𝑙) (cos 𝜃 , sin 𝜃)

(�̅�, ?𝑦)

Pooling

(a) (b) (c)

Figure 1. Our network architecture contains three modules. (a) We generate a 2D point cloud feature
map with the pillar/voxel feature extractor. (b) Our backbone network consists of convolutional and
deconvolutional blocks to extract multi-level semantic information. Note that the down-sampling
factor can be one in application. (c) Our anchor-free detection head obtains the heatmap and absolute
3D additional information of the target through the fully convolutional network.

3.1. Point Cloud Feature Extractor

The point cloud data form an Np × 4 matrix which contains Np points with 3D
locations (x, y, z) and reflection r. According to the spatial information, the point cloud is
divided into a fixed number of groups by clustering. Then all the LiDAR points in each
group are mapped into a feature vector in the same dimensions. In that way, we generate a
structured representation of the point cloud. To build a structured 2D feature map from the
point cloud, we test two types of point cloud feature extractors, the pillar feature extractor
and the voxel feature extractor, as depicted in Sections 3.1.2 and 3.1.3.

3.1.1. Viewpoint Selection

Our goal is to format the point cloud into a 2D feature map similar to the image
array. Reasonable selection of viewpoint is helpful for subsequent processing. There are
two viewpoints regarding the formatting of the point cloud data. One is to generate a
front-view point cloud array through spherical projection [9] or parallel projection, and the
other is to process the point cloud directly from a bird’s-eye view. The spherical projection
generates a front-view image-like data structure from the point cloud. In SqueezeSeg [9],
the front view area of 90◦ is divided into 512 grids. The pixel distance represents the angle
between the LiDAR beams, which has no correlation with the real distance of the LiDAR
points in the world coordinate system. The front-view projections can cause multiple
instances to be projected in to the same area in the feature map. It should be noted that



Sensors 2021, 21, 2651 5 of 19

in the 3D vehicle detection task, the vehicle is modeled with a position, size and heading
angle. According to the physical constraints, the vehicle is located on the ground plane,
and the pitch and roll angles are always zero. Meanwhile, the vehicles will not overlap
in the bird’s-eye view, because the parallel projection discards the z coordinate. These
characteristics are conducive to our target assignment process in Section 3.3.

3.1.2. Pillar Feature Extractor

For the pillar feature extractor [5], we set pillars in the x,y-plane to group the point
clouds in the detection range [0, 70.4]× [−40, 40]× [−3, 1] on the X, Y, Z axes. If the pillar
size (vx, vy) in the x,y-plane is 0.2 m × 0.2 m, all LiDAR points in the detection range
are clustered into a map with a resolution of 352 × 400 from a bird’s-eye view. Each
non-empty pillar constitutes a set of sub-point clouds Sx∈W,y∈H = {Pi i = 1, 2, ..., nx,y},
where each point Pi represents a vector of (x, y, z, r), and nx,y is the number of points in the
corresponding set. (W, H) is the range of pillar number along the X, Y axes accordingly.
Since LiDAR points are non-uniformly distributed in space, the pillars contain different
numbers of LiDAR points. As a result, the sub-point cloud in a pillar forms an unordered
and irregular structure. We adopt a simplified version of PointNet [8] which embeds
such data into a fixed-length vector by a symmetric function. For a point Pi in a set Sx,y,
we augment its vector (x, y, z) to (x, y, z, r, xc, yc, zc, xp, yp), just as in [5]. Let (xc, yc, zc)
represent the component-wise distances from the current point to the arithmetic mean of
all points in the pillar. (xp, yp) denote the component-wise distances between the current
LiDAR point and the pillar pixel’s center to which they belong. In this manner, the entire
information of a set can be defined by a tensor of size nx,y × 9, where nx,y is the point
number in a sub-point cloud Sx,y. Inspired by PointNet [8], we employ a shared multi-layer
preceptron with ReLU for each point in the set, resulting in a tensor of shape nx,y × C,
where C is the feature channel. Then, the sub-point set feature is finally embedded into
a 1× C tensor by a maximum pooling operation. Similarly, the original point cloud can
be mapped to a W × H × C-dimensional tensor feature. For meshes which do not contain
LiDAR points, we set 0 in all channels to make it meet the requirements.

3.1.3. Parameterless Voxel Feature Extractor

According to the previous literature [3,4], a point cloud can be divided by a W×H×D
voxel grid in space, along the X, Y, Z axes respectively. The traditional voxel feature
extractor (VFE) [3] was implemented by a multi-layer perceptron, which contains two
fully connection layers significantly increasing the difficulty of training. We apply a
parameterless voxel feature extractor instead of VFE. Each non-empty voxel is represented
by the arithmetic mean of its internal LiDAR points. The output of the feature extractor is a
4D tensor of size W × H × D× 4. The voxel is defined as being size 5 cm × 5 cm × 10 cm.
Then we apply 3D sparse convolutional blocks with a donsampling factor of k to extract
features. The shape of the output feature map is bW

k c × b
H
k c × b

D
k c × C. We flatten the 3D

feature map to bW
k c × b

H
k c × b

D
k c · C.

3.1.4. Projection Relationship

From the bird’s eye view, the size of the vehicle’s footprint is invariant under changes
of the heading angle. Assuming that in the x,y-plane, the detection range is [x0, x1]× [y0, y1]
and the cell size in the feature map is vx × vy; then the pixel located at (u, v) can be
transferred to the position (x, y) in the LiDAR coordinate system, as Equation (1) shows:x

y
1

 =

vx 0 x0 +
1
2 vx

0 vy y0 +
1
2 vy

0 0 1

u
v
1

 (1)

Compared with the RGB images, the pixel position of the point cloud feature map
includes the spatial position prior. Figure 2 shows the correspondence between the feature
map and the grid that divides the point cloud regularly in the LiDAR coordinate system.



Sensors 2021, 21, 2651 6 of 19

For the pillar feature extractor, the pixel size of the feature map is the size of the projection
of the pillar on the X, Y-plane in the LiDAR coordinate system. For the voxel feature
extractor, the pixel size of the point cloud feature map is the voxel’s size multiplied by the
down-sampling factor of the convolutional layers. With the projection relationship, we
map the location from the pixel coordinate system to LiDAR coordinate system easily. We
designed an anchor-free detector via the feature character, which will be described in detail
in Section 3.3.

𝑧

𝑥
𝑦

Pillar Feature

FC Pooling

1D
Te
ns
or

𝑢

𝑣
Coordinate MappingLiDAR Feature Map

Figure 2. Coordinate mapping relationship between the feature map and LiDAR coordinate system,
taking a pillar feature extractor as an example.

3.2. Backbone Network

Our 3D anchor-free vehicle detector treats objects as keypoints [26] for detection.
Generally, in 2D object detection task, the object occupies a large pixel region in an image,
so that the 2D anchor-free detectors [7,26,35] set the down-sampling factor in the backbone
networks as 32 or even larger. However, for a point cloud feature map, if the cell size is
0.2 m× 0.2 m along the X, Y axes, a vehicle object can be distributed in a circle with a radius
of 8 pixels. Due to the dense arrangement of the vehicles, a large down-sampling factor may
cause the target position confusion of multiple targets in the final feature map. In this work,
we use a network architecture with a limited down-sampling factor similar to [3,5]. Our
backbone network, as shown in Figure 1b, consists of two sub-networks: a down-sampling
network and an up-sampling network. The down-sampling network is composed of a
series of network blocks, which can be denoted as ConvBlock (Cin, Cout, Sd, Nb). C is the
number of feature channels, and Sd is the down-sampling factor of the input point cloud
feature map. Nb represents the number of convolutional layers in each block. The filter size
is 3× 3 in our method. We select the padding size and the step size of the first convolutional
layer in each block to match the down-sampling factor Sd. For example, given Sd = 2, we
set the zero-padding size as 1 and the step size as 2 for the 3× 3 convolution. The other
convolutional layers do not change the feature map size. Note that the down-sampling
factor can be 1 in the applications. The output tensor of a down-sampling block is sent to a
consequent up-sampling block DeconvBlock (Cin, Cout, Su), where Su is the up-sampling
factor of the 2D transpose convolution. Each convolutional and deconvolutional layer is
equipped with a BatchNorm and a ReLU activation operation. We cascade the outputs of
DeconvBlocks as the final feature map. Figure 1b shows our backbone network, in which
the DeconvBlock corresponds to the up-sampling part.

Although the input feature map generated by the pillar/voxel feature extractor is
sparse, it is not necessary to adopt a sub-manifold sparse convolution operation like [4] in
our backbone network. Considering that the LiDAR points are distributed on the object’s
surface, it is expected that there are no points falling onto the center of an object, and
the element values of the corresponding feature channel are zeros. These elements are
treated as non-active sites in the sub-manifold sparse convolutional operation, unable to
communicate with the surrounding nodes. We apply a 1× 1 convolution without bias
for the detection classifier, while for the non-active sites, the response values after the



Sensors 2021, 21, 2651 7 of 19

convolution are all zeros. As a result, we leverage a traditional 2D convolutional layer
as the backbone network, encouraging the non-active sites to communicate with their
surrounding sites to aggregate efficient information.

3.3. Anchor-Free Detector

The ground truth for 3D object detection is defined as (x, y, z, w, l, h, θ), where (x, y, z),
(w, h, l) and (θ) respectively correspond to the object’s location, dimension, and orientation.
Inspired by the 2D detector CenterNet [26], we define the 3D object detection as a keypoint
detection task in BEV. We get a keypoint heatmap on the X, Y-plane via a fully convolutional
network, and adjust the other additional 3D information by parallel regression branches.

3.3.1. Heatmap for Classification

For a 3D vehicle object detection task, given a keypoint heatmap Y ∈ [0, 1]W×H , it is
necessary to calculate the pixel center position (x̄, ȳ) where the target is located. Yuv ∈ [0, 1]
represents the probability of a vehicle being located at the point (u, v) on the heatmap
Y. We assume the vehicle center is at position (x, y) in the LiDAR coordinate system,
the cell size is (vx, vy), the detection range on the X, Y-plane is [x0, x1]× [y0, y1] and the
overall down-sampling factor of the backbone network is S. We transform the coordinate
position of the vehicle center point from the LiDAR coordinate system to the heatmap
coordinate system by (ū, v̄) = (b x−x0

s·vx
c, b y−y0

s·vy
c). Like [26], we set the Gaussian kernel

function at the center point of our heatmap as the classification ground truth during

training: Yuv = exp
(
− (u−ū)2+(v−v̄)2

2ρ2

)
, where ρ is the adaptive parameter reflecting the

vehicle area on the heatmap [35].
The vehicles are rigid and distributed on the ground plane; there is no overlap between

vehicles from the bird’s eye view; therefore, we do not consider the overlapping of multiple
Gaussian distributions for our task. Figure 3 illustrates the ground truth of a point cloud
and our classification heatmap for training the detector. Unlike the anchor-based target
assignment process, our method has a constant memory space occupation when generating
a heatmap. Table 1 shows the comparison results. Given a training heatmap, we take the
focal loss [36] for training:

Lheat = −
1

Ns
∑
uv


α(1− Ŷuv)γ log(Ŷuv) if Yuv ≥ σ1

(1− α)Ŷγ
uv log(1− Ŷuv) if Yuv < σ2

0 otherwise

(2)

We assign α = 0.25 and γ = 2 as the hyper-parameters of the focal loss. Ŷuv is the
network prediction and Yuv is the ground truth heatmap. σ1 and σ2 are the artificially set
positive and negative sample cutoff values according to our soft labels. Ns denotes the
number of pixels in the keypoint heatmap satisfying Yuv ≥ σ1 or Yuv < σ2. Note that
Yuv ∈ (σ2, σ1) is ignored as 0 for the classification loss. Differently from the hard labels
Yu,v ∈ {0, 1} that anchor-based methods [3,4] adopt, our method introduces non-maximum
suppression in training procedure when σ1 = σ2 = 1.

Table 1. Tensor size comparison of our method with the anchor-based algorithms in terms of target
assignment. We generated classification labels directly from the ground truth bounding boxes, which
completely avoided the complicated IoU calculations using the anchor boxes and the ground truth
bounding boxes. H ×W denotes the heatmap size, Na is the number of anchors per location and M
is the number of ground truth 3D boxes in a LiDAR point cloud.

Target Assignment Similarity Matrix Training Label

Anchor-based Na ×W × H ×M Na ×W × H
Ours W × H W × H



Sensors 2021, 21, 2651 8 of 19

At the inference stage, we extract a set of high-value-response locations
{(ui, vi)i = 0, 1, . . . , k} from the heatmap. Unlike [26], we apply Equation (1) to restore the
center positions {(x̂i, ŷi)i = 0, 1, . . . , k} of the pixels where the objects probably belong.

(a) Ground Truth (b) Classification Heatmap

Figure 3. We generate classification heatmap labels (b) from a ground truth dataset (a). Labels are
calculated via adaptive Gaussian distribution.

3.3.2. 3D Information Regression

Although we obtain the pixel center (x̂, ŷ) for locating the objects, (x̂, ŷ) is merely an
inaccurate estimation of an object’s center point. Besides, we should regress the accurate
object center location (x, y, z), the object dimensions (w, l, h) and the orientation θ. These
3D parameters are regressed by multiple branches that are parallel to the classification
branch. For the object center location, we regress an offset map Yo f f ∈ RW×H×3. The first
two channels represent the offset between an object center and the pixel center (δx, δy) in
the LiDAR coordinate system. The third channel directly regresses the object location on
the Z-axis. We use Npos to represent the number of the positive samples in the ground
truth heatmap. The localization regression residual for each positive sample in the offset
map is defined by:

∆x = δx − δ̂x, ∆y = δy − δ̂y, ∆z = z− ẑ (3)

We use the SmoothL1 loss with the same setting as [4]:

Lo f f =
1

Npos
∑

b∈(x,y,z)
SmoothL1(∆b), (4)

where ∆b denotes the location residual. We regress a dimension map Ydim ∈ R+W×H×3,
whose channels correspond to the dimensional information (w, l, h) of the object. Since the
elements in Ydim are always positive, the exp(·) is employed after the 1× 1 convolution
layer to map real numbers to (0, ∞).

For the orientation angle, the anchor-based methods [3,4] regress the sinusoidal
minimum error sin(θ − θ̂) between the ground truth angle and the anchor box angles.
However, the sinusoidal minimum error between the angle θ and θ ± π is always 0. For
the methods based on sinusoidal error [4], it is necessary to apply additional direction
information to correct the prediction angle. We redesign the regression labels for rotation
and regress a rotation map Yrot ∈ RW×H×2. The two channels correspond to the rotation
information (cos θ, sin θ). In this way, our network is capable to decode the unique rotation
angle directly. The regression residuals for the positive samples are defined by:

∆w = w− ŵ, ∆l = l − l̂, ∆h = h− ĥ,

∆ cos θ = cos θ − ĉos θ,

∆ sin θ = sin θ − ŝin θ

(5)



Sensors 2021, 21, 2651 9 of 19

Similarly to the location offset loss function, we define dimension loss and rotation
loss as:

Ldim =
1

Npos
∑

b∈(w,l,h)
SmoothL1(∆b), (6)

Lrot =
1

Npos
∑

b∈(cosθ,sinθ)

SmoothL1(∆b), (7)

where ∆b denotes the residuals for dimension and rotation.

3.3.3. Auxiliary Loss and Joint Training

To jointly train the regression branches, we introduce the IoU layer in the detector and
calculate the auxiliary loss. After decoding the bounding box (x, y, z, w, l, h, θ) of the target
from the regression branches, the network applies Equation (8) to measure the 3D IoU [37]:

IoU3D =
Areaoverlap × hoverlap

Areag × hg + Aread × hd − Areaoverlap × hoverlap
(8)

The subscripts d and g denote the predicted bounding box and the ground truth
respectively. The subscript overlap represents the intersection of them. Area represents the
area of the bounding box projected on the X, Y-plane, whose value is related to (x, y, w, h, θ).
The auxiliary 3D IoU loss is defined as:

LIoU = 1− IoU3D (9)

Merely training with the 3D IoU loss leads to an acceptable AP performance. However,
it cannot determine the heading angle of the vehicle. For example, the IoU between a
bounding box and itself after rotating angle π is always 1. We conducted experiments
and proved that only with IoU loss, the detector performs poorly on the criterion of
average orientation similarity (AOS) (about 0.45). Therefore, the 3D IoU loss should be
jointly adopted with other regression loss functions for training. The overall training is to
optimize a multi-task loss function as Equation (10), where λ denotes the hyper-parameter
scaling the loss term.

L = λheatLheat + λo f f Lo f f + λdimLdim + λrotLrot + λIoU LIoU (10)

In the inference stage, we predict (x̂, ŷ, ẑ, ŵ, l̂, ĥ, θ̂) by our anchor-free detector. Given a
keypoint heatmap, our network firstly extracts the pixel center position (x̄, ȳ) by
Equation (1) to determine where the object locates. Then it recovers the object 3D lo-
cation (x̄ + δ̂x, ȳ + δ̂y, ẑ) in the LiDAR coordinate system by the offset map. Meanwhile,
the dimensional information (ŵ, l̂, ĥ) is inferred according to the dimension map. For
rotation regression, it decodes the unique angle θ by a 2-argument arc tangent function. We
screen the overlapped 3D bounding boxes with the non-maximum suppression operation.

4. Experiments

We evaluated the performance of our 3D detector on the KITTI dataset [38]. The KITTI
training set, which contains 7481 examples, was split into a training set of 3712 samples and
a validation set of 3769 samples [3]. We trained our detector for the Car class and analyzed
its prediction results on three evaluation levels, i.e., the easy, moderate and hard levels.
The difficulty assessment was based on the occlusion and truncation level of the objects.
In the experiments, we only adopted the LiDAR point clouds within the camera’s field of
view. The data augmenting the in training process was conducted with SECOND [4].

Metrics. We evaluated our method according to KITTI official metrics. The average
precision (AP) was used to measure detection performance in KITTI dataset. AP was
calculated using 11 recall sampling points in the validation set and 40 recall sampling points



Sensors 2021, 21, 2651 10 of 19

in the test set. The IoU threshold was 0.7 for both 3D and BEV evaluation. The average
orientation similarity (AOS) was used to estimate orientation prediction performance. The
AOS value ranged from 0 to 1, and 1 represents a perfect match between the orientation
prediction and the ground truth.

4.1. Implementation Details

We set the detection range [0, 70.4]× [−40, 40]× [−3, 1] in the X, Y, Z axes in LiDAR
coordinate system, and the cell size in heatmap was 0.4 m × 0.4 m for all experiments.
We tested two types of point cloud feature extractors for evaluation, i.e., the pillar feature
extractor and the parameterless voxel feature extractor.

The network with pillar feature extractor is denoted as PP model, and the one with a
voxel feature extractor is represented as VFE model. In PP model, we use one fully con-
nected layer with ReLU and map input 9-channel to 64-channel output. After maximum
pooling operation in each pillar, the feature extractor outputs 64-channel structured point
cloud feature map. A pillar is of size 0.2 m × 0.2 m. The consecutive backbone network
has three pairs of blocks: ConvBlock1(64, 64, 2, 3), ConvBlock2(64, 128, 2, 5), and Con-
vBlock3(128, 256, 2, 5). The outputs of the 3 blocks are up-sampled by their corresponding
transpose convolutional blocks, namely, DeConvBlock1(64, 128, 1), DeConvBlock2(128,
128, 2), and DeConvBlock3(256, 128, 4). The overall down-sampling factor of the backbone
network is 2. For our multi-task loss function, we set all λ = 1, which means the loss
function of each part has the same weight. We set σ1 = σ2 = 0.6 for training. The network is
trained for 160 epochs by a single Titan X GPU with 2 samples per batch. The Adam optimizer
and one cycle learning rate are adopted. The maximum learning rate is 1.5 × 10 −3, the divide
factor is 10.0, and the momentum range is [0.85, 0.95].

In the VFE model, the voxel size is 5 cm× 5 cm× 10 cm. After 3D sparse convolutional
layers and reshape operation with down-sampling factor 8, the point cloud feature map
becomes a 176 × 200 × 128 tensor. We apply three pairs of blocks: ConvBlock1(128, 64,
1, 3), ConvBlock2(64, 128, 2, 5), ConvBlock3(128, 256, 2, 5), DeconvBlock1(64, 128, 1),
DeconvBolck2(128, 128, 2), DeconvBlock3(256, 128, 4). The overall down-sampling factor
of the backbone is 1. We set all λ = 1, σ1 = 0.8 and σ2 = 0.4. The network is trained for
50 epochs with 8 samples per batch. The training policy is the same with the PP model
network.

In the PP model, the amount number of parameters is approximately 2.47 M. In the
VFE model, the amount number of parameters is approximately 3.57 M, and about 0.99 M
parameters is the 3D sparse convolution parameter. Compared with PointPillars [5], our
PP model has reduced the parameter amount by about 0.08 M because of the streamlined
detection head. Compared with SECOND [4], our VFE model has reduced the parameter
amount by aboud 0.14 M. The inference speed of the network is related to the hardware.
The official PointPillars inference time is 70 ms in our environment. For the PP model,
point cloud feature extracting time is 22 ms, backbone inference time is 25 ms and the post
processing time is 13 ms. For the BFE model, point cloud feature extracting time is 129 ms,
backbone inference time is 41 ms and the post processing time is 18 ms.

4.2. Experiments on the KITTI Validation Set

We compare the proposed one-stage, anchor-free 3D detection network with other
methods using the KITTI validation set. The evaluation results are shown in Table 2. Point-
Pillars [5] did not provide an evaluation result on the KITTI validation set. Accordingly,
we ran their code with the same configurations.



Sensors 2021, 21, 2651 11 of 19

From Table 2, it can be found that the voxel feature extractor (in the VFE model)
performs better than the pillar feature extractor (in the PP model) as our anchor-free
detection head. Compared with the method of extracting features from pillars using multi-
layer perceptron, the feature extractor working on small voxels with 3D convolutional
layers can get more fine-grained features. For the Cars class, our VFE model achieved
(88.31, 77.97, 76.17) on the easy, moderate and hard levels in terms of AP3d, outperforming
the other methods. It should be noted that our model directly generates the final prediction
result from the regression branch without direction classification.

We also compare our method with other anchor-free one-stage detectors. Compared
with PIXOR [10], our VFE model improved the APbev by (+3.05%,+6.68%,+10.03%). The
PIXOR [10] directly projected the point cloud from BEV into a 2D feature map. On the
contrary, we use a more refined voxel/pillar feature extractor to process the point clouds.
It should be noted that our VFE model has improved performance compared to another
CenterNet-based method AFDet [24]. Unlike AFDet [24], we use a novel angle labeling
method. For example, AFDet [24] regressed an 8-dimensional tensor, as it uses the 4-bin
angle labeling method, while our method regresses 2-dimensional tensors for any situation.
The AP3d of hard samples in our method is increased by +6.86% compared with AFDet [24].
Section 4.4 shows our experiment results on the regression branch. Our method is also
different from CenterNet3D [25]. For example, we use an IoU loss layer by joint training
and make additional improvements to the angle regression branch. Besides, we manually
set the cutoff value and apply RetinaNet focal loss to deal with the imbalance of positive
and negative samples. CenterNet3D added an additional corner classification branch to
improve network performance, but the designing is complex. Trained by the Smooth L1
loss function, our method performs slightly better than CenterNet3D [25].

Our method is at the same level of performance as the two-stage detector PI-RCNN [22]
and the one-stage anchor-based detector SCNet [39]. We visualize the detect results in
Figure 4. It can be observed from the visualization results that the algorithm has a high
recall rate, but the false positive prediction results are also relatively high.

Table 2. Performance comparison with state-of-the-art methods. We set IoU as 0.7 for AP3d and
APbev on KITTI validation set for Car detection.

Method Input
AP3d APbev

Easy Moderate Hard Easy Moderate Hard

MV3D [15] RGB&LiDAR 71.29 62.68 56.56 86.55 78.10 76.67

AVOD [17] RGB&LiDAR 84.41 74.44 68.65 N/A N/A N/A

F-PointNet [20] RGB&LiDAR 83.76 70.91 67.47 88.16 84.02 74.44

PointPainting [16] RGB&LiDAR 86.26 76.77 70.25 90.01 87.65 85.56

PL++ [23] RGB&LiDAR 75.10 63.80 57.40 88.20 76.90 73.40

PI-RCNN [22] RGB&LiDAR 88.27 78.53 77.75 N/A N/A N/A

PIXOR [10] LiDAR N/A N/A N/A 86.79 80.75 76.60

VoxelNet [3] LiDAR 81.97 65.46 62.85 89.60 84.81 78.57

SECOND [4] LiDAR 87.43 76.48 69.10 89.79 87.07 79.66

PointPillars [5] LiDAR 86.53 77.20 70.93 89.93 87.16 85.03

SCNet [39] LiDAR 87.83 77.77 75.97 90.35 88.09 87.30

AFDet [24] LiDAR 85.68 75.57 69.31 89.42 85.45 80.56

CenterNet3D-SL1 [25] LiDAR 87.92 76.84 75.74 89.97 86.81 85.85

3DSSD [40] LiDAR 89.71 79.45 78.67 N/A N/A N/A

CIA-SSD [41] LiDAR 90.04 79.81 78.80 N/A N/A N/A

Ours (PP) LiDAR 82.55 75.14 72.70 89.79 86.73 84.91
Ours (VFE) LiDAR 88.31 77.97 76.17 89.84 87.43 86.63



Sensors 2021, 21, 2651 12 of 19

Figure 4. Visualization of the detection results in the KITTI validation set. The ground truth is shown
in green bounding boxes. The predictions of our detector are outputs in the red bounding boxes.

4.3. Experiments on the KITTI Test Set

There are 7518 test samples in the KITTI 3D detection benchmark. We evaluated
our VFE model on the KITTI test server. Table 3 illustrates the prediction results on
the KITTI test set. For the AP3d criterion, our VFE model reports (84.41, 75.39, 69.89)
for the easy, moderate and hard levels, respectively. In the bird’s eye view evaluation,
the VFE detection results achieved (91.58, 85.83, 80.54) for the three levels, respectively.
Although our one-stage anchor-free network does not need any prior information about the
anchor boxes during the training and prediction process, it acquires the same performance
as other anchor-based, one-stage 3D detectors, such as SCNet [39], SECOND [4] and
PointPainting [16].

Table 3. Comparison to the state-of-the-art methods. We set IoU to 0.7 for AP3d and APbev results on
the KITTI test set for Car detection.

Method Input
AP3d APbev

Easy Moderate Hard Easy Moderate Hard

MV3D [15] RGB&LiDAR 74.97 63.63 54.00 86.62 78.93 69.80

AVOD [17] RGB&LiDAR 76.39 66.47 60.23 89.75 84.95 78.32

F-PointNet [20] RGB&LiDAR 82.19 69.79 60.59 91.17 84.67 74.77

PointPainting [16] RGB&LiDAR 82.11 71.70 67.08 92.45 88.11 83.36

PL++ [23] RGB&LiDAR 68.38 54.88 49.16 84.61 73.80 65.59

PI-RCNN [22] RGB&LiDAR 84.37 74.82 70.03 91.44 85.81 81.00

PIXOR [10] LiDAR N/A N/A N/A 81.70 77.05 72.95

VoxelNet [3] LiDAR 77.47 65.11 57.73 89.35 79.26 77.39

SECOND [4] LiDAR 83.13 73.66 66.20 88.01 79.37 77.95

PointPillars [5] LiDAR 82.58 74.31 68.99 90.07 86.56 82.81

SCNet [39] LiDAR 83.34 73.17 67.93 90.07 86.48 81.30

CenterNet3D [25] LiDAR 86.20 77.90 73.03 91.08 88.46 83.62

3DSSD [40] LiDAR 88.36 79.57 74.55 92.66 89.02 85.86

CIA-SSD [41] LiDAR 89.59 80.28 72.87 93.74 89.84 82.39

Ours (VFE) LiDAR 84.41 75.39 69.89 91.58 85.83 80.54

4.4. Experiments on the Average Orientation Similarity

Generally, in 2D object detection task, we pay more attention to the AP evaluation.
However, for 3D object detection, an accurate estimation of the orientation of the vehicle
should be applied to optimize the prediction in 3D spatial domain, such as trajectory



Sensors 2021, 21, 2651 13 of 19

prediction, pose estimation, and so on. In this section, we apply the KITTI validation set
to analyze the impact of 4 different regression loss function strategies on AOS estimation.
The performance results are demonstrated in Table 4

We firstly use the IoU loss function for regression. After training, the network demon-
strated poor AOS performance on the validation set, i.e., 44.54 on the moderate level of
difficultly. Then we added a direction classification branch based on the IoU loss. The range
of the vehicle orientation is divided into two intervals, and is predicted by a 0–1 classifier to
correct the regression results. For example, if the regression result is not consistent with the
quadrant where the classified angle is located, we correct it with a +π operation. Although
this method achieves acceptable AOS results, it changes the original training label settings
and adds another classification branch. The multi-bin method adds the orientation priors,
identically to the anchor boxes. Moreover, it introduces more parameters to regress. We do
not apply it in the fourth combined strategy. The third regression loss function is to add a
regular term with a small weight constraint to the IoU loss function:

LRIoU = LIoU + λ ∑
a∈(cos θ,sin θ)

SmoothL1(∆a), (11)

where we set λ = 0.1 for training. The last one is the loss function shown in Equation (10),
referred to as combined loss, and it performs the best.

Table 4. Average orientation similarity performance with four loss function strategies.

Loss Function
Average Orientation Similarity (%)

Easy Moderate Hard

IoU 45.23 44.54 43.97
IoU + Cls 90.59 89.02 87.83

RIoU 90.49 88.57 87.02
Combined 90.65 89.13 88.07

From Table 4, it should be noted that although the RIoU did not perform badly
according to the AOS indicator, its AP3d values, (86.87, 76.91, 74.81) on the easy, moderate
and hard levels, were much worse than for the combined loss function.

Table 5 shows AP3d results of different regression loss functions on the KITTI valida-
tion set. The experimental results show that IoU loss with direction classification branch
and the combined loss performed best in terms of AOS and AP3d indicators. It should be
noted that the additional direction classification branch changes the network head’s struc-
ture. It requires additional classification loss to be designed during the training process,
and increases the complexity of training label design process. Therefore, we selected the
combined loss for regression, which can keep the network and training labels streamlined,
and achieve an acceptable experimental effect.

Table 5. AP3d with four loss function strategies on the validation set.

Loss Function
AP3d

Easy Moderate Hard

IoU 86.31 76.88 74.98
IoU + Cls 88.18 78.15 76.82

RIoU 86.87 76.91 74.81
Combined 87.94 77.74 76.39

4.5. Experiments on the Training Sample

In order to verify the impact of training sample cutoff value, we applied our detec-
tion method with different cutoff values. In these experiments, the detection range was



Sensors 2021, 21, 2651 14 of 19

[0, 52.8]× [−32, 32]× [−3, 1] in the LiDAR coordinate system. The voxel size was set to
5 cm × 5 cm × 10 cm. After 3D sparse convolutional layers and the reshaping operation
with down-sampling factor 8, the point cloud feature map was 132× 160. The backbone
contained one pair of blocks: ConvBlock(128, 128, 1, 5) and DeConvBlock(128, 128, 1). The
overall down-sampling factor of the backbone was 1. We trained the network with the loss
function defined in Equation (10). The training procedure contained 50 epochs, 12 samples
per batch and a one-cycle training policy. We set the maximum learning rate to 0.00225, the
dividing factor to 10.0 and the momentum range to [0.85, 0.95]. For Equation (2), σ1 and σ2
denote the artificially set cutoff values of positive and negative samples, respectively. They
can directly change the numbers of positive and negative samples during training.

We set σ1 = σ2 as σ in Equation (2). In this case, all pixels of the heatmap are divided
into two categories. From Table 6, with the cutoff value σ decreasing, the performance of
our detector is significantly improved in AP3d and APbev. In the case of a high cutoff value,
there are to many low-quality negative samples in the classification branch; for example,
pixels around the ground-truth Gaussian peak are also marked as negative samples. In
addition, since the Gaussian peak is at the center of the vehicle in x-y axis, only a few LiDAR
points are distributed on the surface of the vehicle for hard samples, the pixels around the
Gaussian peak should be marked as positive samples for classification. Therefore, we show
additional experiments in Table 7. We filtered low-quality negative samples by setting
σ2 = 0.45, and studied the influence of the number of positive samples on the detector.

Table 6. Results for hyper-parameters. σ controls the numbers of positive and negative samples
during training. When σ = 1, each ground truth corresponds to the peak of the Gaussian label, i.e.,
only one positive sample.

Param.
AP3d

Param.
APbev

Easy Moderate Hard Easy Moderate Hard

σ = 1.0 80.69 65.36 58.37 σ = 1.0 87.21 77.81 69.95
σ = 0.8 81.89 72.99 66.44 σ = 0.8 87.52 84.56 78.05
σ = 0.6 87.45 76.75 74.44 σ = 0.6 89.96 86.01 85.94

From Table 7, we find that the cutoff setting of the positive sample number has a great
influence on the detection results of hard-level objects. Obviously, a smaller cutoff value
σ1 setting can generate more positive samples for classification and regression. The hard
targets always have fewer LiDAR points on their surface, while a lower cutoff value helps
improve the recall of hard samples of our detector. Table 7 shows that when the cutoff
value reduces from 1.0 to 0.6, the AP3d value of hard samples improves by +5.75%, and
the APbev for hard samples improves by +6.02%.

Setting a reasonable cutoff value manually helps to improve the performance of the
detector. In order to obtain better 3D detection performance, we set σ1 = 0.8 in the final
submitted detector, and a lower σ2 appropriately to reduce the number of negative samples.

Table 7. Results for the number of positive samples. σ1 controls the number of positive samples
during training. We set σ2 = 0.45 in this experiment.

Param.
AP3d

Param.
APbev

Easy Moderate Hard Easy Moderate Hard

σ1 = 1.0 86.38 75.42 68.40 σ1 = 1.0 90.17 87.36 79.80
σ1 = 0.8 87.14 76.68 74.84 σ1 = 0.8 89.99 86.30 79.77
σ1 = 0.6 86.84 76.46 74.15 σ1 = 0.6 90.08 86.18 85.82

4.6. Influence of Classification Loss Function

Like the other one-stage detectors, there is an extreme imbalance problem between
the positive and negative samples for classification in the 3D object detection task. For
the revised SECOND-lite network with our detection head, there are about 3–10 cars in
a point cloud with data augmentation, and the same number of Gaussian distributions
are present during training. However, the heatmap is of size 132× 160, leading to easy



Sensors 2021, 21, 2651 15 of 19

negative samples accumulating too much of a noisy gradient for loss function optimization.
To prevent the influence of the sample imbalance problem, we compare the focal loss shown
in Equation (2) (RetainNet loss [36]) and the focal loss defined in Equation (12) (CenterNet
loss [35]). Table 8 shows the evaluation results for the two types of loss function.

Lheat = −
1
N ∑

uv


(1− Ŷuv)α log(Ŷuv) if Yuv = 1
(1−Yuv)β(Ŷuv)α

log(1− Ŷuv)
otherwise

(12)

α = 2 and β = 4 are applied for CornerNet loss function settings. We verify the ef-
fect of the two loss functions with SECOND-lite adjusted by our detection head. Like
Section 4.5, there are not anchor-related parameters used in both the training and inference
stages. The CenterNet loss exploits only the Gaussian peaks’ positions as positive samples.
For RetinaNet loss, we set σ1 = σ2 = 0.8 in Equation (2).

Table 8 demonstrates that, differently from CornerNet [35] and CenterNet [26], the
RetainNet [36] focal loss (Equation (2)) performs better for our task. Compared with
setting the negative sample weight directly, utilizing the cutoff value can generate more
positive samples, which is more conducive to balancing the numbers of positive and
negative samples. Finally, we apply soft labels combined with cutoff values to calculate the
classification loss in our network.

Table 8. Experiments on the loss function. For the focal loss of RetinaNet, we set the cutoff value to 0.8.

Loss Function
AP3d

Loss Function
APbev

Easy Moderate Hard Easy Moderate Hard

RetinaNet (Equation (2)) 87.17 77.05 75.66 RetinaNet (Equation (2)) 89.84 87.38 86.72
CornerNet (Equation (12)) 81.54 72.67 72.28 CornerNet (Equation (12)) 87.92 84.67 85.19

4.7. From Anchor-Based to Anchor-Free

In 3D object detection, anchor boxes represent a set of predefined bounding boxes of a
certain location, dimension and rotation. The network predicts the classification probabili-
ties and offsets that correspond to the tiled anchor boxes. During the training process, each
anchor box is assigned with a label through a similarity function. Generally, the similarity is
given by two-dimensionally-rotated IoU between the anchor box and the ground truth from
the bird’s eye view. For the anchor-based method SECOND-lite [4], the anchor size for vehi-
cle detection is w = 1.6 m, l = 3.9 m, h = 1.56 m. Each anchor is located at z =−1.0 m with two
rotations: 0 and π/2. The network output is (∆x/da, ∆y/da, ∆z/za.w/wa, h/ha, l/la, θ− θa)
and has an auxiliary direction classification value.

We firstly change the IoU-based similarity function to the Gaussian similarity function.
The anchor’s x,y center is set at the center of the heatmap cell. Then each value in the
ground truth heatmap can be adopted as a soft label of the anchor in the same position. We
set the cutoff value as 0.6 to generate hard labels for anchors. Figure 5 demonstrates the
training labels from different target assigners. The IoU-based target assigner is sensitive to
the rotation of the anchor. In order to compare the effects of different similarity functions,
we do not modify the training strategy of the regression branch, and retain the auxiliary
direction classification branch. In this version of the network (Modifiedv1 in Table 9), there
are no anchor-related parameters used in the classification branch.



Sensors 2021, 21, 2651 16 of 19

Table 9. From anchor-based to anchor-free methods. SECOND-lite is an anchor-based 3D detector.
Our method (v1) uses Gaussian labeling for the target assigner and keeps the same regression
branch and auxiliary direction classification branch. The v2 model does not use any anchor-related
parameters during training and inference.

Method
Anchor-Aware Param.

Aux. Cls.
AP3d APbev

Cls. Reg. Easy Moderate Hard Easy Moderate Hard

SECOND-lite X X X 88.10 77.68 75.35 90.18 87.34 86.38
Modified(v1) X X 86.84 75.98 68.63 89.88 85.71 79.35
Modified(v2) 86.84 76.46 74.15 90.08 86.18 85.82

In order to achieve a fully anchor-free network, we modify the regression branch,
and remove the auxiliary direction classification branch. We directly regress the target
center Z-axis location and the (w, h, l) information. For the rotation regression, we exploit
(cos θ, sin θ) to decode the unique rotation orientation. All of the network inference results
do not correspond to the anchor-aware parameters.

Based on the model configurations described above, we apply the same Adam op-
timizer and training steps. For the anchor-free classification branch, we apply the loss
function as Equation (2) with σ = 0.6. For the anchor-free regression branch, we set all
λ = 2 during training.

We show the evaluation result in Table 9. Compared with the SECOND-lite, the
Modifiedv1 has decreased performance across all detection indicators. Figure 5 shows the
difference between Modifiedv1 and SECOND-lite in target assignment. The green anchor
boxes are positive samples for classification and regression. For the Modifiedv1, we mark
all anchor boxes with the same pixel positions as positive samples from Gaussian labels.
The low-quality anchor boxes, such as the anchor boxes which have large differences in
orientation from the ground truth bounding boxes, will be used for classification and
regression branch training. This increases the difficulty of the training process, and exper-
imental results show that there is a greater decline in the performance on hard samples.
The Gaussian similarity function has an antagonistic effect on regression and classification
branches based on anchor boxes.

Figure 5. Target assigner for two rotation bin anchors from IoU labels (left) and Gaussian labels
(right). Black, green and red bounding boxes correspond to ground truth, and positive and nega-
tive samples.

For the Modifiedv2, we redesigned the classification and regression targets. The
regression target changes from multi-bin labels to sine and cosine values. As a result, the
angle prior of the anchor boxes and the additional direction classification branch can be
removed. The size and position of the regression target are replaced from the anchor box
residual value to the ground truth of the object. It can be found that even if the anchor-
related parameters were removed, the model still performs well. The AOS results of our
Modifiedv2 model is (90.50, 88.29, 86.91) on easy, moderate and hard levels respectively. The
APbev and AP3d performance is close to the anchor-based version.



Sensors 2021, 21, 2651 17 of 19

5. Conclusions

In this paper, we introduced an anchor-free one-stage 3D detector based on LiDAR
point clouds. It prevents the complex comparison procedure between the anchor boxes and
ground truth, and the IoU calculation. There is no need to analyze the sample distribution
of the dataset to obtain the optimal setting of a priori anchor boxes. Firstly, we generate
the classification ground truth labels directly from target center locations. The regression
branches predict the absolute dimensional and rotation information of the object, which is
completely independent from anchor boxes. We utilize the translation matrix to convert the
position from the heatmap coordinate system to the LiDAR coordinate system. Therefore,
the location and size information of the massive anchor boxes will not be stored both
in training and inference. Inspired by PIXOR [10], we use sine and cosine values of the
ground truth to decode the unique rotation. Compared with anchor-based methods, our
rotation prediction branch does not require an a priori pivot angle or an auxiliary direction
classification. To deal with the imbalance of positive and negative samples, we propose the
cutoff values to manually balance the ratio. We also apply the focal loss as the 2D anchor-
free method CornerNet in 3D detection.To improve the performance of the regression
branch, we applied IoU loss to assist in training. Finally we combined SmoothL1 and IoU
loss to train the regression branch, improving both AP and AOS without any additional
angle classification branch. In conclusion, we proposed a completely anchor-free method
for 3D object detection, and achieved the same performance level as the anchor-based
methods through a well-designed training strategy.

Author Contributions: Conceptualization, H.L.; methodology, H.L. and S.Z.; validation, J.S. and
S.Z.; formal analysis, H.L. and S.Z.; funding acquisition, W.Z. and L.Z.; project administration, S.Z.;
software, H.L.; visualization, H.L.; writing—original draft preparation, H.L. and S.Z.; writing—
review and editing, S.Z. and J.S.; All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (61902027).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: http://www.cvlibs.net/datasets/kitti/eval_3dobject.php, accessed on 9 April 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shin, K.; Kwon, Y.P.; Tomizuka, M. Roarnet: A robust 3d object detection based on region approximation refinement. In

Proceedings of the 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, 9–12 June 2019; pp. 2510–2515. [CrossRef]
2. Wang, Z.; Jia, K. Frustum convnet: Sliding frustums to aggregate local point-wise features for amodal 3d object detection. arXiv

2019, arXiv:1903.01864.
3. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.
4. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
5. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. PointPillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp.
12697–12705.

6. Shi, S.; Wang, Z.; Wang, X.; Li, H. Part-Aˆ 2 Net: 3D Part-Aware and Aggregation Neural Network for Object Detection from
Point Cloud. arXiv 2019, arXiv:1907.03670.

7. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9627–9636.

8. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

9. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent crf for real-time road-object
segmentation from 3d lidar point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–25 May 2018; pp. 1887–1893.

http://www.cvlibs.net/datasets/kitti/eval_3dobject.php
http://doi.org/10.1109/IVS.2019.8813895
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196


Sensors 2021, 21, 2651 18 of 19

10. Yang, B.; Luo, W.; Urtasun, R. Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7652–7660.

11. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3d object detection for autonomous driving. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp.
2147–2156.

12. Mousavian, A.; Anguelov, D.; Flynn, J.; Kosecka, J. 3d bounding box estimation using deep learning and geometry. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7074–7082.

13. Chen, X.; Kundu, K.; Zhu, Y.; Ma, H.; Fidler, S.; Urtasun, R. 3d object proposals using stereo imagery for accurate object class
detection. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1259–1272. [CrossRef] [PubMed]

14. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the 31st Conference on Neural Information Processing System, Long Beach, CA, USA, 4–9 December 2017; pp. 5105–5114.

15. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-view 3d object detection network for autonomous driving. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1907–1915.

16. Vora, S.; Lang, A.H.; Helou, B.; Beijbom, O. PointPainting: Sequential Fusion for 3D Object Detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4603–4611.

17. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3d proposal generation and object detection from view aggregation.
In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018; pp. 1–8.

18. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 91–99. [CrossRef] [PubMed]

19. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–21 June 2019; pp. 770–779.

20. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 918–927.

21. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969.

22. Xie, L.; Xiang, C.; Yu, Z.; Xu, G.; Yang, Z.; Cai, D.; He, X. PI-RCNN: An Efficient Multi-Sensor 3D Object Detector with Point-Based
Attentive Cont-Conv Fusion Module. AAAI 2020, 34, 12460–12467. [CrossRef]

23. You, Y.; Wang, Y.; Chao, W.L.; Garg, D.; Pleiss, G.; Hariharan, B.; Campbell, M.; Weinberger, K.Q. Pseudo-LiDAR++: Accu-
rate Depth for 3D Object Detection in Autonomous Driving. In Proceedings of the International Conference on Learning
Representations, Addis Ababa, Ethiopia, 26–30 April 2020.

24. Ge, R.; Ding, Z.; Hu, Y.; Wang, Y.; Chen, S.; Huang, L.; Li, Y. Afdet: Anchor free one stage 3d object detection. arXiv 2020,
arXiv:2006.12671.

25. Wang, G.; Tian, B.; Ai, Y.; Xu, T.; Chen, L.; Cao, D. CenterNet3D: An Anchor free Object Detector for Autonomous Driving. arXiv
2020, arXiv:2007.07214.

26. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as Points. arXiv 2019, arXiv:1904.07850.
27. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890.
28. Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 3146–3154.
29. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image

segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

30. Cao, Z.; Martinez, G.H.; Simon, T.; Wei, S.E.; Sheikh, Y.A. OpenPose: Realtime multi-person 2D pose estimation using Part
Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [CrossRef] [PubMed]

31. Toshev, A.; Szegedy, C. Deeppose: Human pose estimation via deep neural networks. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 25 September 2014; pp. 1653–1660.

32. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

33. Huang, L.; Yang, Y.; Deng, Y.; Yu, Y. Densebox: Unifying landmark localization with end to end object detection. arXiv 2015,
arXiv:1509.04874.

34. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process.
2020, 29, 7389–7398. [CrossRef]

35. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

36. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

37. Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; Yang, R. Iou loss for 2D/3D object detection. In Proceedings of the 2019
International Conference on 3D Vision (3DV), Quebec City, QC, Canada, 31 October 2019; pp. 85–94.

http://dx.doi.org/10.1109/TPAMI.2017.2706685
http://www.ncbi.nlm.nih.gov/pubmed/28541196
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1609/aaai.v34i07.6933
http://dx.doi.org/10.1109/TPAMI.2019.2929257
http://www.ncbi.nlm.nih.gov/pubmed/31331883
http://dx.doi.org/10.1109/TIP.2020.3002345


Sensors 2021, 21, 2651 19 of 19

38. Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237.
[CrossRef]

39. Wang, Z.; Fu, H.; Wang, L.; Xiao, L.; Dai, B. SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud.
IEEE Access 2019, 7, 120449–120462. [CrossRef]

40. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3dssd: Point-based 3d single stage object detector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11040–11048.

41. Zheng, W.; Tang, W.; Chen, S.; Jiang, L.; Fu, C.W. CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud;
AAAI: Menlo Park, CA, USA, 2021.

http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1109/ACCESS.2019.2937676

	Introduction
	Related Work
	Our Approach
	Point Cloud Feature Extractor
	Viewpoint Selection
	Pillar Feature Extractor
	Parameterless Voxel Feature Extractor
	Projection Relationship

	Backbone Network
	Anchor-Free Detector
	Heatmap for Classification
	3D Information Regression
	Auxiliary Loss and Joint Training


	Experiments
	Implementation Details
	Experiments on the KITTI Validation Set
	Experiments on the KITTI Test Set
	Experiments on the Average Orientation Similarity
	Experiments on the Training Sample
	Influence of Classification Loss Function
	From Anchor-Based to Anchor-Free

	Conclusions
	References

