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Abstract

We investigated the effects of frequency of hemodialysis on nutritional status by analyzing the 

data in the Frequent Hemodialysis Network Trial. We compared changes in albumin, body weight 

and composition among 245 patients randomized to 6- or 3-times per week in-center hemodialysis 

(Daily Trial) and 87 patients randomized to 6-times per week nocturnal or 3-times per week 

conventional hemodialysis, performed largely at home (Nocturnal Trial). In the Daily Trial, there 

were no significant differences between groups in changes in serum albumin or the equilibrated 

protein catabolic rate by 12 months. There was a significant relative decrease in pre-dialysis body 

weight of 1.5 ± 0.2 kg in the 6 times per week group at one month, but this significantly 

rebounded by 1.3 ± 0.5 kg over the remaining 11 months. Extracellular water decreased in the 6 

times per week compared to the 3 per week hemodialysis group. There were no significant 

between-group differences in phase angle, intracellular water or body cell mass. In the Nocturnal 

Trial, there were no significant between-group differences in any study parameter. Any gain in 

“dry” body weight corresponded to increased adiposity rather than muscle mass but was not 

statistically significant. Thus, frequent in-center hemodialysis reduced extracellular water but did 
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not increase serum albumin or body cell mass while frequent nocturnal hemodialysis yielded no 

net effect on parameters of nutritional status or body composition.

Introduction

Chronic kidney disease is often accompanied by reductions in serum albumin and 

prealbumin and progressive loss of muscle and adipose tissue, likely due to inadequate 

macronutrient intake, inflammation (1), metabolic acidosis (2,3), reduced physical activity 

(4), or a combination of these processes (5,6,7). Protein-energy wasting (PEW) generally 

tends to progress slowly once dialysis is initiated (8,9). Although several putative causal 

factors may be corrected by better control of uremia, the Mortality and Morbidity in 

Hemodialysis (HEMO) Study showed no associations between increased dialysis dose 

administered thrice-weekly and biochemical proxies of PEW assessed by caliper 

anthropometry (10). Frequent (“daily”) hemodialysis has been reported to preserve 

nutritional status (11;12;13). Previous studies of frequent hemodialysis were not 

randomized, typically had small sample sizes, and utilized anthropometric measures of body 

composition.

The Frequent Hemodialysis Network (FHN) Trials aimed to examine the effects of 

increased hemodialysis frequency on multiple intermediate outcome measures, including 

nutritional status and body composition. Frequent (6x per week) hemodialysis provided as 

in-center daily or nocturnal at-home hemodialysis was compared to conventional thrice 

weekly hemodialysis. The objectives and protocol summaries of both trials have been 

previously published (14). Limited by sample size, the FHN Trials were not designed to 

assess mortality or major health events.

We have previously reported that in-center and nocturnal frequent hemodialysis 

interventions failed to increase the 12-month serum albumin concentration, which we 

stipulated as the primary outcome for the nutritional status domain. In this manuscript, we 

present treatment effects on equilibrated protein catabolic rate (ePCR), a proxy for dietary 

protein intake, and body composition, as reflected by bioimpedance-measured resistance, 

reactance, phase angle and vector length and derived estimates of intracellular (ICW) and 

extracellular water (ECW) and body cell mass (BCM).

RESULTS

A total of 245 subjects were randomized in the Daily Trial and 87 subjects were randomized 

in the Nocturnal Trial. Baseline characteristics are summarized in Table 1. Subjects 

participating in both trials were diverse in terms of age, sex, race/ethnicity and other clinical 

characteristics. While the two trials were not formally compared, ESRD vintage was shorter 

and residual kidney function higher in the Nocturnal Trial. While we had planned to 

evaluate the effects of frequent hemodialysis on multiple aspects of nutritional status and 

body composition, our primary outcome within the nutrition domain was the change in 

serum albumin concentration from baseline to end-of-treatment (12 months). There were 

significant treatment differences in weekly standard Kt/Vurea, and per-session and weekly 

ultrafiltration volume, as previously reported (15,16).
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Serum Albumin Concentration

In the Daily Trial, predialysis serum albumin increased one month after randomization in the 

frequent compared to conventional (3x/week) group (relative difference 0.06 g/dL, 95% CI 

(−0.01 to +0.13 g/dL)). This difference was statistically significant over months 3-5 but was 

not sustained at 12 months. The change in albumin from baseline to 12 months did not differ 

significantly between treatment arms in either trial (Table 2, Figure 1, A and B). Based on a 

regression of serum albumin on the preceding interdialytic interval, we estimated that the 

shorter average interdialytic interval in the 6x versus the 3x per week group contributed 

0.057 ± 0.013 g/dL to the treatment difference in serum albumin concentrations. Once this 

sampling bias is accounted for, the changes in serum albumin did not differ significantly 

between the treatment groups at any follow-up time. In the Nocturnal Trial, there were no 

significant between-group differences at any time, although in both groups combined, serum 

albumin increased by 0.19 ± 0.04 g/dL (p < 0.001) (Table 2, Figure 1B).

Equilibrated Protein Catabolic Rate (ePCR)

For both the Daily and Nocturnal and Trials, there were no significant differences in ePCR 

between the treatment groups at 1, 4 or 12 months (Figure 1, panels C and D). In the 

Nocturnal Trial, mean ePCR increased by 9.1 ± 2.6 g/day from baseline to 12 months in 

both treatment groups combined (Figure 1D). The increases in serum albumin and ePCR 

persisted and remained statistically significant compared to baseline when the Nocturnal 

Trial analysis was restricted to patients with baseline GFR < 1.70 ml/min, the median 

baseline GFR.

Body weight

In the Daily Trial, there was a significant relative decrease (frequent versus conventional) in 

predialysis body weight evident within one month (Figure 2A). Between one and 12 months, 

the relative change in predialysis body weight was 1.3 ± 0.5 kg (p=0.007) higher in the 6x 

per week group. Post-dialysis body weight changed in parallel in both treatment groups 

(Figure 2B). Between one and 12 months, the relative change in post-dialysis body weight 

was 1.1 ± 0.5 kg (p = 0.04) higher in the 6x per week group.

In the Nocturnal Trial (Table 2, Figures 2 C and D), pre and post-dialysis weights in both 

treatment groups combined decreased by one month after baseline, reaching a nadir at two 

months, with a slow increase toward and then beyond baseline by 12 months, but with no 

significant difference between treatment groups.

Measured Parameters: Reactance, Resistance, Phase Angle and Vector Length

In the Daily Trial, there were statistically significant relative increases in measured 

reactance and resistance in the 6x per week group at months 4 and 12. The vector length was 

relatively lengthened in the 6x per week group, reflecting reduced tissue hydration (Table 2).

In the Nocturnal Trial, none of the between-group comparisons reached statistical 

significance, with the exception of vector length at four months, where the vector length was 

significantly lengthened in the 6x per week group (Table 2).
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Derived Estimates of Body Composition

In the Daily Trial, there were large relative decreases (frequent versus conventional) in total 

body water (TBW) evident at one month, which remained statistically significant at four and 

12 months (Table 2, Figure 3A). The relative reduction in TBW was confirmed using an 

independent determination of the urea distribution volume from monthly urea kinetic 

modeling (Table 2, Figure 3B). Changes in estimates of extracellular water (ECW) mirrored 

those of TBW (Figure 3C), suggesting that the relative decline in TBW was driven by a 

change in ECW, an observation consistent with the changes in vector length described 

above. There were no significant relative changes in intracellular water (ICW) (Table 2, 

Figure 3D). Relative changes in TBW, ECW, and ICW during the Nocturnal Trial were 

small in magnitude and not statistically significant (Table 2, Figure 4).

There was a relative increase in estimated adiposity in the 6x per week group although these 

changes did not reach statistical significance in either trial (Table 2, Figures 5, A and C). 

Similarly, there were no statistically significant relative changes in ICW or body cell mass 

(BCM), the metabolically active component of lean body mass (LBM) (Table 2, Figures 5, 

B and D). Indeed, the relative decrease in LBM could be explained virtually entirely by the 

relative decrease in ECW. There was no evidence of enhanced ICW or BCM to reflect either 

anabolism or preservation of BCM (Table 2, Figure 5, B and D).

DISCUSSION

Frequent hemodialysis has been reported to preserve nutritional status and prevent or 

attenuate the anticipated decline in BCM (17,18,19) and has been associated with improved 

appetite, increased protein and caloric intake, and incremental increases in dry weight, 

muscle mass, and serum albumin in various studies (17,18,19,20). In contrast to most 

previous studies, the FHN Daily and Nocturnal Trials were randomized and utilized monthly 

measures of serum albumin, ePCR, and serial bioimpedance-based rather than 

anthropometric measures of body composition (14,19). The HEMO trial, a 2 × 2 factorial 

randomized trial of >1800 subjects dialyzed 3x per week at standard and high per session 

eKt/Vurea and with high and low flux dialyzers, showed a progressive decline in serum 

albumin, enPCR, and body weight (10) unaffected by dialysis dose or flux. No significant 

effect on weight was observed during the first year of HEMO, but over time there were 

decreases in both estimated muscle and fat mass in all groups (21).

The FHN trials showed no statistically significant between-group differences in serum 

albumin from baseline to 12 months. While serum albumin concentrations have been 

reported to increase during the first year of dialysis (22), possibly related to a reduction in 

proteinuria or improved nutritional status, the observed increases in serum albumin in both 

arms of the Nocturnal Trial were not associated with residual kidney function or proximity 

to the initiation of dialysis therapy (data not shown).

Body weight is an imprecise nutritional marker in patients on dialysis, as weight gain may 

reflect increases in ECW, BCM (reported by an increase in ICW), and/or fat mass. A 

biphasic pattern of change in body weight has previously been described after switching 

from 3x to 6x per week dialysis (23). Presumably the initial drop is due to a reduction in 
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ECW, and subsequent weight gain results from improved appetite and increased tissue 

weight. In the Daily Trial, the monthly predialysis body weights in subjects randomized to 

the 6x per week group followed such a pattern. BIA-derived data at one month confirmed a 

reduction in TBW and ECW with no significant change in ICW. At 12 months, the average 

predialysis body weight had returned to baseline levels, while the reduction in ECW 

persisted. There was no evidence of a gain in ICW and correspondingly, BCM. These results 

suggest that the body weight gain was in a non-hydrated body compartment, likely fat. 

Whether an increase in adiposity in patients on hemodialysis is beneficial or harmful is 

unknown; observational data suggest that higher body mass index is associated with 

enhanced survival (24).

We found no significant changes in ICW or phase angle with frequent as compared to 

conventional hemodialysis. In an adult population, changes in ICW and phase angle result 

predominantly from changes in muscle mass, since non-muscle organ mass should remain 

relatively constant over time. Acidosis (25,26), inflammation (27,28), and reduced physical 

activity, all common in the dialysis population, are associated with decline in muscle mass, 

while increased resistive training (29) or androgen replacement may be associated with 

increased muscle mass (3030,31). Thus, the expected effect of change in dialysis frequency 

might be one of protection from loss rather than an increase in muscle mass. Our 

observations suggest that factors responsible for the deterioration of nutritional status seen in 

other studies was attenuated or possibly prevented because of patient selection, “adequate” 

hemodialysis in the 3x per week group, or that the period of observation was too simply too 

short.

Our study is strengthened by data from two randomized clinical trials involving a relatively 

large sample of subjects reasonably representative of the North American hemodialysis 

population. We also included monthly measures of nutritional parameters, and used serial 

bioimpedance-based measures of body composition. This study also has limitations. We did 

not measure adiposity directly in this study. Our estimation of change in adiposity and 

difference in adiposity between the groups is based on subtraction of two relatively large 

values, body weight and TBW from one another. Each is accompanied by a measurement 

error, decreasing precision in our estimate of differences in body fat mass between treatment 

groups. We used single frequency BIA rather than isotope dilution methodology to 

determine body composition and calculated adiposity by assuming hydration of fat free mass 

(FFM) of 0.73. The relative expansion of ECW found in patients on hemodialysis might lead 

to an underestimation of the hydration of FFM. Nevertheless, ECW/ICW varies greatly in 

humans as a function of age, sex (32) and obesity (33) with no significant change in the 

hydration of FFM measured directly.

In conclusion, frequent in-center hemodialysis significantly reduced ECW but failed to 

anabolize (i.e., no increase in serum albumin or BCM). Any gain in “dry” body weight 

corresponded to increased adiposity rather than muscle mass. Frequent nocturnal 

hemodialysis yielded no net effect on parameters of nutritional status or body composition.
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Brief Methods

Study Design

The Frequent Hemodialysis Network (FHN) Daily Trial was a multicenter, prospective, 

randomized trial of frequent (6x per week), as compared with conventional (3x per week) in-

center hemodialysis. The FHN Nocturnal Trial was a multicenter, prospective, randomized 

trial of frequent (6x per week) nocturnal at-home hemodialysis, as compared with 

conventional hemodialysis (3x per week), with the majority of conventional subjects 

receiving home-based therapy. The study designs including specific inclusion and exclusion 

criteria, and data collection procedures have been described previously (14).

Study Population

Subjects with ESRD requiring maintenance hemodialysis who achieved mean eKt/Vurea 

>1.0 for the last two baseline dialysis sessions and weighed > 30 kg were eligible for 

inclusion. Major exclusion criteria included age <13 (Daily) or <18 (Nocturnal) years, 

residual kidney function >3 mL/min/35L (Daily) or mean of creatinine and urea clearance 

>10 mL/min/1.73m2 (Nocturnal). Informed consent was obtained from each subject. The 

study was approved by the Institutional Review Board at each participating study site.

Intervention, control and adherence

In the Daily Trial, subjects who were assigned to hemodialysis 6x per week (n=125) had a 

target equilibrated Kt/Vn (where Vn=3.271×V2/3) of 0.9 provided that each session length 

was between 1.5 and 2.75 hours. Subjects who were assigned to 3x per week hemodialysis 

(n=120) continued their usual dialysis prescriptions, which included a minimum target 

equilibrated Kt/Vurea (the ratio of the equilibrated urea clearance during each dialysis 

session (Kt) to the patient’s volume of urea distribution (V)) of 1.1 and a session length of 

2.5 to 4.0 hours.

In the Nocturnal Trial, subjects were assigned to dialyze either 3x per week (n=42) to a 

prescribed standardized Kt/Vurea of > 2.0/week and a session length of ≥ 2.5 hours or 6x per 

week (n=45) to a standardized Kt/Vurea of ≥ 4.0/week for ≥ 6 hours per session. For both 

Trials, we calculated adherence as the ratio of dialysis sessions attended to dialysis sessions 

prescribed, by month.

Outcome Measures

The pre-specified primary outcome for the “nutrition domain” was serum albumin 

concentration, measured monthly throughout the follow-up period. Additional outcomes 

with monthly measurements included pre- and postdialysis weight, urea kinetic volume (V), 

and protein catabolic rate (ePCR) calculated using the equilibrated post-dialysis BUN. We 

analyzed absolute ePCR in g/day without normalizing to V, to avoid confounding with 

projected changes in V.

Body composition was assessed by single frequency (50 kHz) (Quantum, RJL Systems, Inc.) 

bioelectrical impedance analysis (BIA) at baseline, 1 month, 4 months and 12 months in the 

Daily trial, and at baseline, 4 months, and 12 months in the Nocturnal trial. The protocol 
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instructed clinical centers to implement the BIA procedure before a mid-week hemodialysis 

session for subjects with at least one intact leg and arm when feasible; however, a minority 

of BIA assessments were performed on other days or after dialysis. We measured reactance 

(Xc) and resistance (R) and calculated phase angle, the arc tangent of the Xc to R ratio. We 

multiplied the arc tangent of Xc/R by 180/π to convert from radians to degrees. We used 

reactance to estimate total body potassium (TBK) by the method of Kotler, et al. (34). We 

estimated body cell mass (BCM) using the equation:

(35).

ICW was then calculated as 0.73 × BCM (36).

We estimated adiposity (fat mass) by subtracting FFM (estimated as TBW/0.73) from total 

(post-dialysis) body weight.

Statistical Analysis

Continuous variables were summarized using means and standard deviations (SD), and 

categorical variables were summarized using frequencies and proportions. Descriptive 

summaries of changes in treatment-related variables are provided for the constant cohort 

with non-missing values at baseline and at months 4 and 12 after randomization.

The effects of randomized treatment assignment on outcomes with monthly measurements 

(predialysis serum albumin, ePCR, pre and post dialysis weight and kinetic volume) were 

estimated using mixed effects analyses, with covariate adjustment for the baseline level of 

the outcome and clinical center in the Daily Trial, and the baseline level of the outcome in 

the Nocturnal Trial. We used a combined compound-symmetry first order auto-regressive 

covariance matrix to account for correlations in measurements over time (37). A 

heteroscedastic extension of the covariance model was used for the pre- and post-dialysis 

weights in the Daily Trial to account for a greater variability in weight at baseline than 

during follow-up. The analytic approach accounted for non-missing early measurements in 

the analysis of changes to later time points in cases for subjects who died or dropped out of 

the study during the follow-up period. Treatment effects were assessed primarily by 

comparisons between randomized groups of adjusted mean changes from baseline to the 

average level during months 10-12. Additional comparisons between randomized groups 

were defined for the mean changes from baseline to the average level during months 3-5 and 

for the mean changes from months 3-5 to the average level during months 10-12 to 

separately assess effects of the treatment interventions on early and later changes. In 

accordance with the study design, primary emphasis was given to comparisons between 

treatment groups; however, further contrasts were defined to estimate mean changes over 

each of these time intervals (baseline to months 10-12, baseline to months 3-5, and months 

3-5 to months 10-12) within each randomized group and for the average of the two groups 

combined. Finally, the same mixed effects models were used to provide adjusted mean 
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changes from baseline to each follow-up month for plots representing the pattern of change 

over the full 1-year follow-up period.

Similar mixed effects models were used to estimate treatment effects on changes in BIA 

measurements; only in this case an unstructured covariance model was used to account for 

serial correlation in repeated measurements within the same patients (baseline and months 1, 

4, and 12 in the Daily Trial; baseline and months 4 and 12 in the Nocturnal Trial). 

Analogous to monthly outcomes, we focused primarily on comparisons of changes to the 

end of follow-up (month 12), but also evaluated treatment effects on changes from baseline 

to month 4 and from month 4 to month 12. The mixed effects models for total body water 

and intracellular body water were extended in both trials by adding linear interaction terms 

to investigate if the treatment effects differed among subjects with lower and higher levels 

of the pre-specified baseline factors, age and BMI.

In sensitivity analyses the mixed effects analyses for the monthly outcomes were repeated 

for the Nocturnal Trial after excluding patients with baseline residual renal clearance 

(defined as the average of urea and creatinine clearance) < 1.70 ml/min, the median baseline 

value for the nocturnal trial. We estimated the effect of hemodilution associated with the 

interdialytic interval on the predialysis serum albumin concentrations by extending the 

mixed effects models in each trial to relate the predialysis albumin to the inter-dialytic 

interval preceding the blood draw after controlling for clinical center (Daily trial only) and 

treatment assignment, the interaction between treatment assignment and visit month, 

diabetes, age, baseline GFR and clinical center (both trials). We then applied the estimated 

regression coefficients from these models to the mean interdialytic intervals in the respective 

treatment groups to assess the influence of different average interval lengths on comparisons 

of serum albumin between the 6x per week and 3x per week treatment groups. All analyses 

were performed without formal adjustment for multiple comparisons using SAS version 9.2. 

Two-tailed P-values <0.05 were considered statistically significant.
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Figure 1. 
Adjusted mean changes in predialysis albumin in the daily trial (A) and the nocturnal trial 

(B) and mean changes in equilibrated protein catabolic rate (ePCR) in the daily trial (C) and 

in the nocturnal trial (D).
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Figure 2. 
Adjusted mean changes in predialysis weight (A) and post-dialysis weight (B) in the daily 

trial and in predialysis weight (C) and post-dialysis weight (D) in the nocturnal trial.
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Figure 3. 
Adjusted mean changes from baseline in total body water (TBW) measured by 

bioimpedance (A), in adjusted mean changes in the volume of distribution of urea measured 

by kinetic modeling (B), in adjusted mean changes from baseline in extracellular water (C) 

and in adjusted mean changes from baseline n intracellular water (D) in the daily trial
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Figure 4. 
Adjusted mean changes from baseline in total body water (TBW) measured by 

bioimpedance (A), in adjusted mean changes in the volume of distribution of urea measured 

by kinetic modeling (B), in adjusted mean changes from baseline in extracellular water (C) 

and in adjusted mean changes from baseline n intracellular water (D) in the nocturnal trial.
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Figure 5. 
Adjusted mean changes from baseline in percent adiposity (A) and in body cell mass (BCM) 

(kg) estimated by BIA in the daily trial, and adjusted mean changes from baseline in percent 

adiposity (C) and in body cell mass (BCM) (kg) estimated by BIA (D) in the nocturnal trial.
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