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Abstract: Indoor positioning and localization have been regarded as some of the most widely
researched areas during the last decade. The wide proliferation of smartphones and the availability
of fast-speed internet have initiated several location-based services. Concerning the importance of
precise location information, many sensors are embedded into modern smartphones. Besides Wi-Fi
positioning, a rich variety of technologies have been introduced or adopted for indoor positioning
such as ultrawideband, infrared, radio frequency identification, Bluetooth beacons, pedestrian dead
reckoning, and magnetic field, etc. However, special emphasis is put on infrastructureless approaches
like Wi-Fi and magnetic field-based positioning, as they do not require additional infrastructure.
Magnetic field positioning is an attractive solution for indoors; yet lack of public benchmarks
and selection of suitable benchmarks are among the big challenges. While several benchmarks
have been introduced over time, the selection criteria of a benchmark are not properly defined,
which leads to positioning results that lack generalization. This study aims at analyzing various
public benchmarks for magnetic field positioning and highlights their pros and cons for evaluation
positioning algorithms. The concept of DUST (device, user, space, time) and DOWTS (dynamicity,
orientation, walk, trajectory, and sensor fusion) is introduced which divides the characteristics of
the magnetic field dataset into basic and advanced groups and discusses the publicly available
datasets accordingly.

Keywords: magnetic field data benchmarks; indoor positioning; smartphone sensors; benchmark
analysis; magnetic field positioning

1. Introduction

Indoor positioning and localization have been regarded as important research areas
during the last decade. In 2020, the projected number of smartphone users reached
approximately 3.5 billion, indicating a 9.3% increase from 2019 [1]. The wide proliferation of
smartphone and internet usage paved the way for a large number of online services which
are collectively called location-based services (LBS). To offer precise location information
for LBS using smartphones, a rich variety of sensors are embedded in modern smartphones
like accelerometer, gyroscope, magnetometer, barometer, Wi-Fi, lux meter, and Bluetooth,
etc. Besides providing the necessary information for various user-oriented operations
like optimal display, phone orientation change, and user-specific profile management,
these sensors’ generated data can be used to categorize user movements, estimate user’s
location and track user’s walking trajectory, etc. Smartphones are used to provide location
information both outdoor and indoor, of course, the use of positioning technology varies.
For example, for outdoor positioning global positioning system (GPS) meets the positioning
requirement [2]. Conversely, the indoor environment poses several physical barriers for
GPS to work properly such as roofs, walls, and other similar interference sources, signal
absorption, and reflection, etc. Consequently, various positioning technologies have been
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specifically devised or implemented to provide accurate and robust location information
for indoor environments.

Human spent a large portion of their time indoors and 80% to 90% of our time involve
indoor activities at places like offices, train stations, shopping malls, and university, etc.
which makes indoor positioning a potential research area [3,4]. Concerning the importance
of indoor positioning for rescue and emergency services as declared by E911 calls, several
positioning technologies have been introduced over the years such as like Wi-Fi [5,6], radio
frequency identification (RFID) [7], infrared [8], ultra-wideband [9], Bluetooth [10], and
geomagnetic field-based positioning [11], etc. Despite the availability of several above-
mentioned technologies, infrastructureless approaches have been focused on their working
principle that does not involve additional infrastructure. Besides Wi-Fi, the geomagnetic
field has been widely investigated for indoor positioning over the last few years.

Using the geomagnetic field data (referred to as magnetic field for simplicity in the
rest of the paper) has several advantages over other approaches. First of all, it uses
the subsisting infrastructure like the Wi-Fi and (commercial-off-the-shelf) applications
to estimate the current position of the user. However, the Wi-Fi positioning has several
limitations. For example, intrinsic limitations of radio wave propagation cause a substantial
change in the received signal strength (RSS) which degrades the performance of Wi-Fi-
based fingerprinting solutions [12]. Additionally, signal absorption, multipath shadowing,
and shading during dynamic environments cause signal fluctuation and affect positioning
accuracy. Human mobility, human body loss, and diversity in antenna and hardware also
affect the RSS value [13]. Secondly, unlike the Wi-Fi, UWB, Bluetooth, IR, and RFID-based
positioning, the magnetic field-based positioning does not require access points (APs),
beacons, structured lights, and tags for locating a user indoors. The magnetic field data
is a natural phenomenon and its value can be measure both indoors and outdoors using
only a magnetometer which is present in smartphones. Thirdly, the magnetic field data
has shown long-term stability and been reported in several works [14,15]. Its behavior is
more stable and less affected than Wi-Fi, Bluetooth, and RFID technologies, etc. Similarly,
the mutation of the magnetic field data is minimal than radio frequency-based approaches
which increase its suitability in dynamic environments.

Despite the advantageous properties of magnetic field-based indoor positioning,
it has several challenges that require attention. First, changes in indoor infrastructure
involving ferromagnetic materials like steel, iron, nickel, etc., and paramagnetic materials
like aluminum cause a substantial change in the magnetic field intensity leading to large
positioning error. Secondly, the complex behavior of the user during the positioning
process such as call listening, phone in the pockets (front or back), texting, and navigation,
etc. changes the magnetic field intensity and affects the positioning accuracy if device
orientation is not tracked properly. It also makes it very difficult to model all possible
orientations of the smartphone as such activities change from user to user. Similarly,
although not substantial, the height of the user affects the magnetic field data. Thirdly, the
diversity of the smartphone is one of the big challenges for magnetic field-based indoor
positioning. Various smartphone companies use magnetic sensors from different vendors.
These sensors show different intensities concerning their accuracy, noise tolerance, and
specificity, and sensitivity. Even various brands of the same smartphone tend to show
variation in the magnetic field data. Additionally, the embedded magnetic sensor may
lose configuration in the proximity of ferromagnetic materials like large speakers and
show very different magnetic field data if not reconfigured. Last but the most important
is the benchmark dataset used for evaluating the positioning algorithm. The magnetic
field-based positioning is in its infancy and lacks good benchmarks. Often, the training
and testing data are collected by individual researchers and are not made public. The lack
of proper and public benchmark leads to positioning results specific to the data used in a
given environment and produces very different results when used elsewhere. This study
discusses the magnetic field data benchmarks that are used for positioning. In brief, this
study makes the following contributions
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• Important characteristics of a benchmark are spotlighted concerning the magnetic
field data. Such characteristics are divided into two groups DUST (device, user,
space, and time diversity) and DOWTS (dynamicity, orientation, walking speed, the
trajectory of the path, and sensor fusion) and highlighted for their importance to
perform positioning in the indoor environment.

• The importance and necessity of each element of DUST and DOWTS are discussed
by visualizing the magnetic field data collected during extensive experiments over a
longer period. Furthermore, the influence of DUST and DOWTS is analyzed concern-
ing indoor positioning accuracy with the magnetic field data.

• A brief description of the magnetic field data benchmark is given where various
aspects of the benchmark are elaborated. These benchmarks are analyzed in the light
of drawn elements of the magnetic field benchmark.

• A comprehensive overview of limitations, potential of the benchmark datasets is
given and the prospects of a good benchmark dataset for evaluating the magnetic
field-based indoor positioning approaches are outlined.

The current study focuses on the description of the available magnetic field data
benchmarks and is organized in the following manner. Several important research works
on geomagnetic field data are discussed in Section 2. Section 3 points out important charac-
teristics required for a magnetic field benchmark. A brief overview of the benchmarks is
described in Section 4 which analyzes their importance concerning the defined elements
of the magnetic field data benchmarks. Section 5 contains the discussion of the prospects
for a good magnetic field data benchmark and how it can be achieved. In the end, the
conclusion is given in Section 6.

2. Related Work

Due to the ubiquity, simplicity of implementation, and availability of embedded
magnetic sensors in smartphones, a large body of research works can be found in the
literature that uses magnetic field data. The magnetic field-based indoor positioning
approaches can be categorized as a magnetic field only positioning and hybrid approaches.
The former employs the magnetic field data alone and conventionally a fingerprinting
approach is used for the positioning. The latter on the other hand utilizes the data from
multiple smartphone sensors, as well as, different technologies such as Wi-Fi, vision,
Bluetooth, and PDR, etc.

Initial research works on the magnetic field data focus on the magnetic field data alone
and validate the use of indoor magnetic field anomalies for positioning. The research [16],
for example, investigates the use of magnetic field data alone for indoor positioning and
shows that it provides low positioning accuracy. Furthermore, the more the number of
magnetic field elements, the higher the positioning accuracy. However, to ensure high
accuracy, the data from other technologies is advised. Similarly, the research [17] studies the
influence of walking speed on the positioning performance of the magnetic field data and
uses the dynamic time warping for matching the magnetic signatures of various lengths.

Several approaches utilize magnetic field data from multiple smartphone sensors
and multiple technologies to refine the positioning accuracy. For example, For example,
the authors adopt a multi-sensor approach in [15] for indoor positioning and use inertial
measurement unit (IMU) sensor data like the gyroscope, accelerometer along with the
magnetic field and Wi-Fi data to provide refined location information of the user. Similarly,
the use of vision along with the machine and deep learning approaches tend to show
superior results than the conventional fingerprinting approaches. The authors provide
a multi-sensor approach in [18] that utilizes smartphone camera images for initial scene
identification which is later used to restrict the search space for the magnetic field database.
Opportunistic Wi-Fi data are also used to correct the position periodically. Along the same
lines, a hybrid approach is used for multi-floor indoor positioning with a smartphone
camera, magnetic field, and data from IMU sensors in [19]. Later, the use of smartphone
heterogeneity is investigated in a few research works. For example, research works [14,20]
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analyze the positioning performance of magnetic field data using different smartphones.
Different positioning accuracy is reported for different smartphones suggesting that the
influence of smartphone heterogeneity can not be ignored.

The use of the machine and deep learning approaches are made in several research
works that utilize magnetic field data to train and later predict the user’s position. For
example, [11] uses an ensemble classifier to predict the user’s current position. Several
convolutional neural networks (CNNs) are trained on a set of features extracted from the
magnetic field data. The output from each CNN is used to make the final prediction through
an ensemble approach which incorporates the IMU data to find the best solution. Similarly,
the use of magnetic field patterns is investigated in [21] where the CNNs are trained on
the image of the magnetic field data patterns. Each of the magnetic field components is
combined into an image which serves as the fingerprint for each location. Results suggest
high accuracy and low smartphone dependency for this approach. Recently, an augmented
magnetic field vector is used in [22] where the augmented magnetic field data are produced
for different locations. Experiments show that using the augmented magnetic field vector
minimizes the drift error and increases the positioning accuracy.

The above-discussed research works investigate different aspects of the magnetic field
data concerning indoor positioning accuracy. However, the experiments are not extensive
and the data collected or used during the experimentation are not provided.

3. Important Elements of Magnetic Field Benchmark Dataset

Two types of applications are found for using the magnetic field data for indoor
positioning: artificially generated magnetic field and the natural magnetic field is also
known as the earth’s magnetic field. This study focuses on the benchmarks used for
the latter category. The earth’s magnetic field is a natural phenomenon caused by the
convection currents in the outer layer of the earth. For a given point p at the earth’s surface,
the magnetic field vector can be represented by x, y and z components or F, D and I where x,
Y and z denotes the north, east and downward elements of the magnetic field while D and
I are declination and inclination angles and F represents the total magnetic field intensity.
These components are shown in Figure 1 and calculated using the following formulas

F =
√

X2 + Y2 + Z2 (1)

D = arctan
Y
Z

(2)

I = arctan
Z
H

(3)

where H given in Equation (3) is the horizontal magnetic field intensity and calculated using

H =
√

X2 + Y2 (4)

The point p is assumed to be at the center of a Cartesian coordinate system. For further
details on the magnetic field components and related formulas, the readers are referred
to [23,24].

The intensity of the magnetic field does not change abruptly in a natural outdoor envi-
ronment within a small area. However, man-made constructions involving ferromagnetic
materials interfere with the natural distribution of the magnetic field and cause distur-
bances also called anomalies as they introduce errors in direction sensing. However, such
anomalies are reported to show the unique spatial distribution for indoor environments
and used as fingerprints for indoor positioning by several works [16,17,25]. While the
magnetic field data is pervasive, inexpensive, and does not require additional sensors or
hardware for positioning, it has several inherent challenges that require extensive research.
For this purpose, the benchmarks used for evaluating the magnetic field-based positioning
approaches should have several important characteristics. For this purpose, eight impor-
tant features are spotlighted for the magnetic field benchmark which is essential to evaluate
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a positioning approach to generalize its results. These characteristics are categorized under
two groups called primary characteristics and advanced characteristics. Primary charac-
teristics are termed DUST (device, user, space, and time diversity) while the advanced
characteristics are named DOWTS (dynamicity, orientation, walking speed, trajectory, and
sensor fusion).

X

I

D H

F

Z

Y
p

Magnetic North

North

East

Figure 1. The components of the magnetic field at a given point p on earths surface.

3.1. Device Diversity

Predominantly, smartphones are used for magnetic field-based indoor positioning, and
the diversity of the magnetometer used in various smartphones substantially changes the
performance of the positioning approach. Several research works report the change in the
magnetic field intensity when heterogeneous devices are used for data collection [15,26,27].
The difference in the measured intensity may be attributed to one or more of these factors.
First, smartphone embedded magnetometers are based on microelectromechanical systems
(MEMS) which are tiny but inexpensive sensors and data precision is not their primary
attribute. Such sensors are famous for their small size to be used in smartphones and
cost only a few dollars. Secondly, various smartphone companies like Samsung, Apple,
Nokia, and Huawei, etc. use the magnetometer from various vendors and their data
collection procedure, as well as, the hardware may vary. Even various brands of the same
smartphone company use various magnetometer concerning their version, price, and size,
etc. [27,28]. Such diversity makes it necessary to test the positioning approach from the data
collected using various companies’ smartphones, as well as, various brands of the same
smartphone company. For illustration, Figure 2 shows the magnetic field data collected
at the same location using three different smartphones such as Samsung Galaxy S8, LG
G7, and Samsung Galaxy A8. The smartphones have different embedded magnetometers
which result in different measured values for the magnetic field data. Samsung Galaxy S8
has Asahi Kasei AK09916C, Samsung Galaxy A8 has Asahi Kasei AK09918C, and LG G7
has Asahi Kasei AK09915C. While the change in the measured values is comparable, the
difference is visible for different smartphones.

To show the importance of data collection from multiple smartphones, experiments
are performed for the magnetic field data. For this purpose, a state-of-the-art indoor
positioning approach is implemented [14] using two different smartphones including
Samsung Galaxy S8 and LG G6. Several runs are performed to calculate the position while
the user walks along a dedicated path in the indoor using the navigation mode. Positioning
results are shown in Figure 3.
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Figure 2. Magnetic field data from three different smartphones. Variation in the data can be seen for
different devices. The variation may increase or decrease for other smartphones.

Figure 3. The CDF graph for magnetic field data based positioning using two different smartphones.

Results indicate that the influence of device heterogeneity can not be ignored. The
performance of the Galaxy S8 is superior to that of the LG G6. Of many reasons for the
performance difference, the two most probable reasons are the changing magnetic field
data from different smartphones and the choice of a smartphone to make the fingerprint
database. Equipped with different magnetometers, different smartphones show different
values for the measured data which affects the positioning results even when the same
positioning algorithm is used. Secondly, it is not possible to make separate databases
for each smartphone, and conventionally only a single database is built using one of the
smartphones which are later used with all the smartphones. For current experiments, the
database is made using the Galaxy S8 while positioning is carried using both smartphones.
Consequently, the performance of the positioning algorithm is affected. Results prove that
the data collection from multiple smartphones is of significant importance when making a
magnetic field benchmark dataset.
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3.2. User Diversity

Different users hold the smartphone at different heights that vary the magnetic field
data intensity even different users collect the data at the same location with similar smart-
phone holding position, as reported in [21,29]. The variations in the collected magnetic
field data are caused by the height of the user and the altitude of the held smartphone as
altitude tends to change the intensity of the magnetic field data [30]. Similarly, the device
holding style of users may vary leading to changes in the data and different positioning
accuracy even when the same positioning approach is used. Figure 4 shows the data
involving two male and two female surveyors of different heights. It can be observed that
both the magnetic field data intensity, as well as, the sequence of magnetic patterns change
for different users. From Figure 4, we can see that the difference in the measured values
from different users is higher than what is observed in Figure 2. There are two reasons
for this difference: location change and user change. The data in Figure 2 are measured at
the same location for 20 s and portray the influence of various smartphones. On the other
hand, Figure 4 shows the data collected on different locations while walking. Consequently,
the change may be different at different locations. Secondly, different users collect the data
for Figure 4 and the difference in the data may be the user’s height and change due to the
smartphone magnetometer.

Data points (Locations)

Figure 4. Impact of the users’ heights on the magnetic field data. The data collection scenario is the
same where the data is collected during the same hour of the day. The x-axis shows the data points at
different locations when the user is walking along the path.

While the magnetic field data varies concerning different users, its influence on the
positioning performance is not studied very well. Experiments are performed to study
the influence of different users on the positioning performance of magnetic field data.
Two users participated in the experiments for this purpose using the same positioning
algorithm. Samsung Galaxy S8 is used in an indoor environment to conduct experiments.
Figure 5 shows the positioning performance with users of different heights. Results show
that the influence of users’ height is minimal for the magnetic field data as the positioning
performance is marginally different for two users. However, the performance is almost
similar for the two users because the mean error for users 1 and 2 are 0.8599 m and
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0.7964 m, respectively. Similarly, the values for median error and standard deviation are
also very close.

Figure 5. The CDF graph for positioning results involving two users with different heights. The
heights of the users are 165 cm and 171 cm for user 1 and user 2, respectively.

3.3. Space Diversity

For the most part, magnetic field-based positioning utilizes the fingerprinting ap-
proaches where fingerprints are collected at specific marked locations during the offline
phase or training phase. Determining the suitability of a fingerprint is of significant impor-
tance as it directly affects the positioning accuracy. The two most important characteristics
of a fingerprint are spatial differentiation and temporal stability [31,32]. Spatial differentia-
tion refers to the notion that at various locations in an indoor environment the magnetic
field data is unique to identify that location. However, it is not entirely true for magnetic
field data as similar intensity may appear at several locations. Space diversity for the
magnetic field data refers to that the magnetic field benchmark should contain the data col-
lected in different buildings. Since the indoor setting/infrastructure of a building interferes
differently with the magnetic field, the distribution of the magnetic field data may be very
different for different buildings. Besides, this distribution may vary for the construction
material used for the building, as reported in [28] that buildings of old materials or stones
may show a smooth magnetic field with no disturbances.

A good magnetic field benchmark should contain the data for various building types,
as well as, geographically well-separated buildings. Besides, the magnetic field data is
used for floor identification, so the data from multiple floors of the same building would
hold extra benefit for floor identification problem [33]. Analogous to the Wi-Fi positioning
that has different positioning errors for different size indoor places, the magnetic field
positioning varies concerning the indoor space. To corroborate this hypothesis, several
experiments are conducted in three different buildings of a university campus. The build-
ings are geographically well separated from each other and have different indoor settings
and available areas for positioning. The dimensions of three buildings are 90 × 32 m2,
88 × 32 m2, and 50 × 35 m2 for building 1, 2 and 3, respectively.

Figure 6 shows the positioning results for three buildings. It can be seen that the
positioning performance is different for different buildings. It may be argued that the
performance is affected due to different path geometries used during the experiments. It is
a strong point and can not be ignored completely. However, during the experiments, we
found that due to the indoor environment, these buildings have different distributions of
the magnetic field data where building 3 has more unique fingerprints than buildings 1
and 2. Similarly, a higher number of similar fingerprints are found for different locations
which are well separated for building 2. Consequently, the positioning performance for
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building 2 is poor than other buildings. For example, the mean error for buildings 1, and
2 is 1.5909 m, 1.9802 m, respectively, while building 3 has a mean error of 0.9047 m only.
Keeping in view the results presented here, the data from multiple buildings are highly
desirable to analyze the performance of the magnetic field data-based indoor positioning.

Figure 6. Results for magnetic field-based positioning in three buildings with different indoor
environment and dimensions.

3.4. Time Diversity

As previously pointed out that temporal stability is one of the two important charac-
teristics of a good fingerprint. Several research works suggest that the magnetic field data
exhibit temporal stable signatures to be used as location fingerprints [17,34]. Time diversity
characteristics of a benchmark imply that the data should be collected over a longer period
of time during different intervals so that the performance of the positioning approach can
be extensively evaluated [35].

It is also important to study the long-term behavior of the magnetic field data as it is
reported to mutate over time [15,20]. The world magnetic model (WMM) is modified every
five years to incorporate the magnetic field data mutations [36]. While the mutation of the
magnetic field data is very low than Wi-Fi signals, several studies report the mutation of the
magnetic field data over time [20,37]. Such mutations represent the natural change in the
magnetic field intensity, given there is no infrastructure change in the indoor environment
involving ferromagnetic materials.

The data shown in Figure 7 have been collected over 6 to 8 months using the same
smartphone, i.e., Samsung Galaxy S8. As displayed in the figure, the intensity of the
magnetic field data varies over time. The change in the magnetic field data may be abrupt
at certain points as indicated in black circles in Figure 7. Similarly, changes in the magnetic
field data may be attributed to the varying speed of the user. For example, the magenta
circled are shows the data where the change in the data is due to the walking speed of the
user. Besides the influence of time, the effect of a smartphone embedded magnetometer
can not be ignored completely as it tends to show slightly different data when collected
over different times even using the same smartphone.
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Figure 7. Time related mutation of the magnetic field data. The circled portions of the figure highlight
the points with abnormal changes.

3.5. Dynamic Behavior of Magnetic Field for Temporary Indoor Changes

One important factor for the benchmark dataset is the inclusion of the data showing
dynamic changes. Such dynamic changes can occur by temporary infrastructure changes
indoors such as the presence of a refrigerator, industrial fans, furniture, or a vending
machine as pointed out in [28,38]. Despite that several works have regarded the magnetic
anomalies as stable over time, the data collected in the presence of various items alongside
the data collection path helps to evaluate its impact on the localization algorithms [39–41].
The influence of such changes depends on the type of materials placed indoors and their
mass. For example, wood cupboards and furniture do not affect the magnetic field data. On
the contrary, placing the ferromagnetic materials would greatly interfere with the magnetic
field data and affect the positioning performance. For example, the impact of placing a
chair with steel legs and a vending machine is shown in Figure 8.

(a) (b)
Figure 8. The impact of ferromagnetic materials’ proximity, (a) Influence of furniture, and (b) Vending machine [28].

3.6. Orientations of Device

Despite the large number of positioning approaches focusing on the magnetic field
data, only a few investigated the impact of device orientation on positioning accuracy.
Predominantly, the magnetic x, y, and z are used to make fingerprints, and change in
smartphone orientation substantially changes the value of these elements [24]. So the
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common assumption for the majority of the magnetic field-based positioning approaches
is to work with a fixed orientation where the user can walk in either direction but can not
change orientation [42,43]. The user walks in various directions with a fixed orientation,
traditionally, the smartphone is put in his hand called navigation mode. The data collected
using a smartphone magnetometer contains noise, the user changing the orientation of the
smartphone requires the transformation of the data to global coordinates which introduces
both complexity and error. Additionally, it is not possible to model all the possible actions
of the user while walking, such as call listening, texting, phone in the pocket (front or
back), swinging in the hand and hold in right or left hand, etc. However, the benchmarks
should contain the data of most common orientations at least such as navigation, call
listening and phone swinging to analyze the impact on the positioning accuracy to model
the real-life situations. Various orientations substantially affect the magnetic field data
and even the sub-orientations for one category of orientation cause a huge change in the
data. For example, the phone in the front pocket of pants is one orientation but the phone
in the front pocket may have three possible orientations: upside down with LCD facing
the user, upside down with LCD facing outward, and downside up with LCD facing the
user. Figure 9 shows the magnetic field data for the above-mentioned three scenarios and
represents the change in the magnetic field.

(a) (b)

(c) (d)

Figure 9. The magnetic field data for three orientations as described, (a) Magnetic F, (b) Magnetic x, (c) Magnetic y, and (d)
Magnetic z.

Smartphone orientation influences the positioning accuracy of a magnetic field-based
approach substantially. Predominantly, the navigation mode is used for evaluating the
performance of the magnetic field data-based positioning, and the user does not change
the orientation of the smartphone during the test. However, change in the smartphone ori-
entation is possible for the user but it requires the transformation of the data. The magnetic
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field fingerprint database is made using the earth coordinate system. The readings from
the smartphone need to be transformed into an earth coordinate system for localization.
Let M = [mx, my, mz]T be the magnetic field vector, Ms be magnetic field readings at smart-
phone coordinate system, Me be the data at the earth coordinate system, the relationship
between the smartphone and earth coordinate system can be defined as [44,45]

Ms = Rx(φ)Ry(θ)Rz(ψ)Me (5)

where ψ, θ and φ represents the yaw, pitch and roll, respectively, while Rx(φ), Ry(θ), and
Rz(ψ) show their corresponding rotation matrices.

Due to the noise in the readings, the rotation matrices are not exactly correct which
affects the transformation process as well. Consequently, the positioning results vary
significantly while using different smartphone orientations. For further verification, three
smartphone orientations are used to conduct experiments such as ‘navigation’, ‘call listen-
ing and ‘phone swinging’. During the call listening mode, the user places the smartphone
by his right ear in an upward position making an angle of approximately 45◦ while the
phone swinging mode includes moving the smartphone in the right hand while walking.
Results for the above-mentioned three orientations are given in Figure 10. Results suggest
that the positioning performance is slightly degraded when switching from navigation
to call listening while substantially reduced when swinging the smartphone during the
positioning process. Consequently, the magnetic field data from multiple smartphone
orientations are required for magnetic field benchmark datasets.

Figure 10. The CDF graphs for three orientations of the smartphone including ‘nvaigation’, ‘call
listening’, and ‘phone swinging’.

3.7. Walking Speed Variation

Conversely to the Wi-Fi data which is slightly affected by the walking speed of the
user, the magnetic field data has a substantial impact when the users walk at various
speeds [28,46]. While the sequence or the pattern formed by the magnetic field data
remains similar, its length varies with the walking speed of the user, and matching the
pattern with the pre-built database leads to singularity problem [47]. Often, dynamic time
warping (DTW) is used to resolve the issue where two sequences of different lengths are
compared. However, it adds computational complexity when matching longer sequences
of the data. Despite that, the data with a varying walking speed of the user is required in
the benchmark to analyze the performance of the positioning approach.

The users walking speed, as well as, the walking style varies from one user to another.
So, the influence of users’ walking speed can be analyzed when the magnetic field data
benchmarks provide the data for various walking speeds. Walking speed influences the
positioning performance of magnetic field-based positioning approaches. To analyze this
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impact, two users participated in several experiments in an indoor building using Galaxy S8.
The walking speed is measured using the accelerometer data of the smartphone. Positioning
results are given in Figure 11 where the walking speed 1 and 2 are 0.98 m/s and 1.43 m/s,
respectively. Results show that the performance of the positioning approach is affected
when the walking speed is increased. During fast walking, smartphone shaking may be
higher due to the hand movement leading to noise in the measured data which ultimately
affects the positioning performance. At a slower speed, the user movement is consistent
and data are smooth than at a fast speed. So, the data collected at different walking
speeds have different positioning performances. So, for evaluating the performance of the
magnetic field-based positioning approaches, the benchmark datasets should provide the
data from the users walking at different speeds.

Figure 11. Performance of magnetic field-based indoor positioning approach involving various
walking speeds.

3.8. Trajectory of Path Used for Experiments

The trajectory of the path used for experiments is an important characteristic that needs
to be considered for the magnetic field benchmarks. Initial works on using the magnetic
field data followed simple path trajectories for feasibility studies for both handheld devices
and robot navigation [16,32,48]. Magnetic field-based positioning show higher accuracy
with simple path trajectories, however, for deployment in real-life scenarios, experimenta-
tion with complex path trajectories is required. Complex path trajectories include turns
in various directions, as well as, the data from various indoor set up such as large spaces,
rooms, and corridors, etc. Complex path trajectories involving turns and frequently varying
directions show reduced accuracy with magnetic field-based positioning [15,20,47,49].

Generally, it would appear that path geometry has no impact on the positioning
performance of the magnetic field data, however, it is not completely true. It is possible
that multiple simple paths may have the same positioning performance but the same is
not true between a simple and complex path geometry. Complex paths tend to affect the
positioning performance of the magnetic field-based positioning approach. To analyze the
need for the magnetic field data from multiple path geometries, experiments are performed
using three paths with different levels of complexity. The paths used for the experiments
using Galaxy S8 are shown in Figure 12. Path 1 is simple as compared to both path 2 and
path 3. Path 3 is more complex than path 1 and path 2 and involves several turns at short
places. Experimental results are shown in Figure 13. Results show that the positioning
results vary concerning the path geometry used for positioning. Even though the same
positioning approach is used with a single smartphone for the same indoor place, the
positioning performance is different for different paths. Hence, the data from different
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path geometry can be very useful to analyze the positioning performance of state-of-the-art
magnetic field-based indoor positioning approaches.

Figure 12. Path geometry used to analyze the impact of path complexity on magnetic field-based indoor positioning [14].

Figure 13. The CDF graphs for various path geometries used to evaluate the performance of magnetic
field-based indoor positioning [14].

3.9. Sensor Fusion

The positioning accuracy of the magnetic field-based approaches is limited when the
magnetic field data is used alone as the same fingerprints may exist at several distant
locations in large buildings or big halls. For this reason, the data from multiple sensors are
combined to enhance the positioning accuracy [19]. For the most part, the data from the
inertial measurement unit (IMU) of the smartphone are used with the magnetic field data.
The smartphone IMU contains several sensors such as an accelerometer, gyroscope, and
barometer, etc. which helps to increase the positioning accuracy. In addition, using Wi-Fi
or Bluetooth data helps to narrow down the search space in the magnetic field database
and increases the accuracy [18]. For sensor fusion, the benchmark should contain the
data from several sensors at each location [50]. Additionally, data from the accelerometer
and gyroscope contains noise which leads to uncertainty and error in the position called
drift. The drift is accumulated as the user continues walking and needs to be recorrected.
Periodic position updates using complementing technology such as Bluetooth and Wi-Fi
helps to resolve this issue.

4. Overview of Magnetic Field Benchmark Datasets

Wide research interest for the magnetic field data for indoor positioning led to the intro-
duction of several datasets that are used as benchmarks in many research papers. Despite
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that, the number of available benchmarks is still few and lacks important characteristics
of a good benchmark. This study includes all the datasets that have been used for indoor
positioning using the magnetic field data and discusses them concerning the outlined char-
acteristics of DUST-DOWTS for the magnetic field. The magnetic field benchmark datasets
have been utilized in a plethora of indoor positioning approaches including traditional
fingerprinting and statistical approaches. Kalman filter, extended Kalman filter, particle
filter have been implemented for enhanced position accuracy on these datasets. Similarly,
statistical approaches, Bayesian models, and Markov chain models are also reported.

4.1. Barsocchi et al.

This research focuses on the data collection for Wi-Fi and magnetic field using the
same location points [51]. The dataset is publicly available at http://archive.ics.uci.edu/
ml/datasets/UJIIndoorLoc-Mag and accessed on 3 May 2021. The data are recorded using
a smartphone, as well as, the smartwatch taken at the same time from a human surveyor.
The smartphone used for the data collection is Sony Xperia M2 while LG W110G Watch
R is used as the smartwatch. The dataset is collected over a single place which contains
offices, corridors, and connected corridors through turns. Besides the magnetic field data,
the IMU data are collected including accelerometers and orientation sensors. Figure 14
shows the path trajectory that is used for the data collection.

Figure 14. Map and trajectory of the path used for the data collection in [51].

The path trajectory is complex containing several turns and the area is large but several
limitations are associated with the dataset. The data is collected over a short time and the
impact of magnetic field mutation can not be tested using the dataset. Besides, although
the data collected using the smartwatch is important to analyze the change in the magnetic
field data concerning user’s movement, only a single smartphone is used and device
dependence can not be investigated. Space diversity, i.e., data at various geographically
separated buildings, is not used either. The advantage is that the Wi-Fi and IMU sensors
data can be used for sensor fusion.

4.2. MagPIE

MagPIE is a magnetic field dataset introduced in an international conference on indoor
positioning and indoor navigation (IPIN) in 2017 [38]. The dataset is publicly available
at http://bretl.csl.illinois.edu/magpie and accessed on 3 May 2021. It records magnetic
anomalies in the indoor environment using the smartphone IMU sensors. The data are

http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-Mag
http://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-Mag
http://bretl.csl.illinois.edu/magpie
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collected in multiple buildings having different dimensions and indoor infrastructure.
Data collection is performed using two platforms: handheld smartphones and wheeled
robot-mounted smartphones. Motorola Moto Z Play and Lenovo Phab 2 Pro are used
for data collection. Ground truth measurements are calculated using Google’s Tange API
on Lenovo smartphone. Figure 15 shows the pipeline and data collection platform used
for MagPIE.

(a) (b)

Figure 15. Data collection procedure for MagPIE, (a) The pipeline for the data collection, and (b) wheeled platform and
handheld device for the data collection [38].

Despite involving two smartphones and multiple buildings for data collection, Mag-
PIE lacks several characteristics. First, although MagPIE contains the data collected by
putting several items beside the path, the long-term behavior of the magnetic field data
is overlooked. The path trajectory used to collect the data is not explained as well. In
addition, various orientations of the smartphone are not considered for data collection and
only one orientation is used with both the robot and handheld device. Furthermore, only
a single user collected the data with on walking speed, and the impact of change in user
heights and walking speed can not be investigated using the MagPIE.

4.3. Torres-Sospedra et al.

A dataset is presented in [52] where the Wi-Fi and the magnetic field data are collected
within the same indoor environment for evaluation of the magnetic field-based positioning
systems. The dataset also contains the IMU sensors data including the accelerometer and
orientation sensors. The collection area comprises corridors and intersections and data
are collected following two different directions. Data collecting smartphone is Google
Nexus 4 with Android 5.0.1 operating system. The dataset is publicly available at http:
//indoorloc.uji.es/ and accessed on 3 May 2021. Figure 16 shows the path trajectories used
for data collection in [52].

While the data are collected from April to September 2014, it does not cover the time
required to test the time diversity of the magnetic field data. Similarly, eight corridors and
19 intersections are used for the data collection but they all reside in the same building.
The walking speed of the user remains almost the same where the impact of the varying
walking speed is analyzed through the resampling using the interpolation. Only a single
smartphone with a fixed orientation is used for the data collection.

http://indoorloc.uji.es/
http://indoorloc.uji.es/
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Figure 16. Various paths and trajectories adopted for the data collection in [52].

4.4. Miskolc IIS Hybrid IPS

The dataset aims at providing the data from several technologies to perform hybrid
indoor positioning [53]. For this purpose, the data are collected for the Wi-Fi, RFID,
Bluetooth, and magnetic field using Samsung Galaxy Young GT-S5360 with Android 4.4.4.
However, the unavailability of RFID support on the client device results in an empty record
for RFID. A total of 30 Wi-Fi APs and 9 Bluetooth devices. Corridors and halls comprising
an area of 465.75 m2 are used for the data collection. ILONA system is used for the data
collection which is a client-server and contains the methods, storage, and other business
logic on the server-side. The client-side collects the data and sends it to the server for
processing and storage. Manually calculated location points are used for the data collection.
The dataset is publicly available at https://archive.ics.uci.edu/ml/datasets/Miskolc+IIS+
Hybrid+IPS and accessed on 3 May 2021. The area used for the data collection and the
schema of the database for Miskolc IIS hybrid dataset are shown in Figure 17.

The area for the data collection is large and wide with the multi-level collection,
however, the dataset does not contain the data from multiple buildings. The path trajectory
is provided for the dataset and the dataset does not cover the influence of the dynamic
behavior. Similarly, user diversity and device diversity are not used for the dataset. The
walking speed of the user is almost similar and the data for the user’s varying speeds are
not gathered. Moreover, the data are not collected over a longer period of time and spans
only a couple of weeks.

https://archive.ics.uci.edu/ml/datasets/Miskolc+IIS+Hybrid+IPS
https://archive.ics.uci.edu/ml/datasets/Miskolc+IIS+Hybrid+IPS
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Figure 17. The area for the data collection and the schema of the database. Greed color shows the covered area for the data
collection [53].

4.5. UJIIndoorLoc-Mag

UJIIndoorLoc-Mag is the magnetic field data which was presented at IPIN 2015 by [54].
The dataset is publicly available at https://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-
Mag and accessed on 3 May 2021. The dataset is collected in a laboratory environment
as shown in Figure 18 and the data are collected as continuous samples. The laboratory
consists of 8 corridors and 260 m2 space, separated by bookcases and desktop computers.
Space is divided into several smaller units for the data collection with a starting and ending
spot and the data are collected when the user walks between these points at each 0.1 s. The
data also stores the starting and ending position for each path, as well as, the coordinates
of path turns in case of corridor intersections. The data are collected separately for training
and testing where the test paths are claimed to be complex involving multiple turns in
the intersections. Moreover, two different smartphones are used for test data like Google
Nexus 4 and LG G3 both running on Android 5.0.

Figure 18. Data collection environment for UJIIndoorLoc-Mag. The Center figure shows the path trajectory used for the
data collection. The red area shows the desktop computer tables while the dotted lines indicate the data collection path.
Circles indicate the starting and ending points for each data collection path [54].

Since the user walking speed during the data collection varies, the IMU data are
gathered along with the magnetic field data to perform resampling. The data are gathered
over a short period of time within one laboratory environment and the impact of space and
time diversity can not be analyzed using the UJIIndoorLoc-Mag dataset. Multiple users
collect the data, yet the height information of the data surveyors is not made available.
There are no obstacles along the path used for the data collection and users can walk
freely without any interruption. The orientation of the smartphone is kept constant, i.e.,
navigation for the data collection, and the impact of various orientations is not reported.

https://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-Mag
https://archive.ics.uci.edu/ml/datasets/UJIIndoorLoc-Mag
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4.6. XJTLUIndoorLoc

A fingerprint dataset to perform indoor localization and trajectory estimation is
presented in [55]. The dataset is collected in a multi-story building of Xi’an Jiatong-
Liverpool University, Suzhou, China. The dataset contains the data for the magnetic field
and Wi-Fi. For data collection, an Android application is developed where the starting
location point and smartphone can be entered. The data collection is performed in corridors
of 30 × 3 m2 at different floors of the building while the resolution of the magnetic field
data is 60 cm. Single orientation of the smartphone is used for the data collection, however,
different postures are employed including normal navigation, phone tilting left and phone
placed in an upward direction vertically facing the data collector. Similarly, the data
collection is carried out facing the smartphone in different directions at each data collection
point. Two smartphones are used for data collection such as Huawei P9 and MiX2 that
collect the magnetic field data and Wi-Fi data from 515 APs.

The space structure used for the data collection in [55] is small and the path geom-
etry simple. Despite the data collection from various directions at each location point, a
single orientation is used. Similarly, a single user is involved in the data collection for
magnetic field and Wi-Fi data. Data are collected for a short period and time-related
mutation of the magnetic field data can not be investigated. Moreover, only the magnetic
field and Wi-Fi data are available and IMU sensors data are not recorded which helps to
track users’ walking direction and attitude. While the data are collected from multiple
floors, it does not involve a single building and spatial diversity is not available for the
XJTLUIndoorLoc dataset.

The benchmark dataset discussed in this section provides the magnetic field data for in-
door positioning. The data can be used for indoor positioning for both parametric approaches,
as well as, machine and deep learning techniques, as discussed in Section 2. Providing the
ground truth for each dataset instance, the data can be used to train the machine and deep
learning approaches with important features from these datasets.

5. Discussions and Future Directions

Magnetic field-based indoor positioning and localization is a research area that holds
great potential for the future market. With the wide proliferation of smartphones and the
availability of the fast internet, today a broad spectrum of applications provide customer
services that rely on the user’s position. In addition, emergency response services require
precise location information for rescue tasks. Due to the demand from these services, the
importance of an accurate position is elevated. Consequently, a broad range of positioning
technologies and approaches have been introduced and adopted for positioning, both
indoors and outdoors. Indoor environments pose more challenges concerning indoor
complex structures and dynamic activities. Also, human mobility in crowded indoor
environments poses an extra challenge that severely affects the performance of radio signal
propagation especially. As a result, the performance of the Wi-Fi, Bluetooth, and UWB
based indoor positioning is crippled in the dynamic environments found at high mobility
places like universities, shopping malls, train stations, and airports, etc.

To cope with such challenges, magnetic field-based positioning has emerged as a
prospective candidate recently. In addition to being ubiquitous, and easy to implement, it
does not require additional installment of APs, tags or beacons, etc. to perform the indoor
positioning. The embedding magnetic sensor in modern smartphones can be used to
collect the magnetic field anomalies and perform the indoor positioning without additional
infrastructure. However, the lack of publicly available benchmark datasets makes it very
difficult to compare the performance of the state-of-the-art positioning approaches that use
magnetic field anomalies. Over the past few years, several datasets have been presented
but they lack several important aspects that are necessary to test a magnetic field-based
positioning approach.

First of all, the major problem for magnetic field positioning approaches is to overcome
the data variation from magnetic sensors that are embedded in smartphones. A large
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number of companies with different brands and models makes it very difficult to devise an
approach that works seamlessly with all smartphones. However, an approach should be
tested with more than one smartphone company like Samsung, LG, Huawei, etc. Android
phones cover the major market of smartphones, so the data for android smartphones
should be available. Among the five publicly available datasets, only two provide the data
from more than one (i.e., two) devices. However, the data from two smartphones are not
enough to validate that a particular approach shows similar performance with various
smartphones in general. So, a strong course of action for the future dataset would be to
collect the magnetic field data, both from heterogeneous smartphones, as well as, various
brands of the same smartphone company. It will greatly help to devise intuitive solutions
that can work with heterogeneous devices.

Another equally important aspect of the magnetic field datasets required for testing
the positioning approaches is smartphone orientation. In real-life scenarios, users’ actions
with the smartphone are complex involving various orientations. For example, navigation,
call listening, phone swinging, and phone in the pockets are only a few activities that the
users carry out. Magnetic field data is highly sensitive to change in orientations, and its x,
y, and z components change substantially during such actions. It introduces large errors
during the real-time positioning if the change in phone orientation is not modeled properly.
To test such approaches the magnetic field dataset should include the data for various
smartphones orientations which none of the publicly available datasets currently do.

In addition to smartphone heterogeneity and orientation, two important interrelated
aspects that should be covered in the dataset are dynamicity and space diversity. They are
co-related because traditionally large spaces tend to be more dynamic than small spaces.
Large places with high mobility should be covered for the magnetic field data, such as
airports, shopping malls, and train stations, etc. Similarly, most of the testing paths used
for experiments are straight corridors with few turns where the user walks alongside the
set path. On the other hand, real-life scenarios are complex, do not follow straight paths,
and involves interruptions here and there during the walk. These scenarios should be
modeled for the magnetic field datasets.

One of the publicly available datasets includes the data where the surveyor speed
varies during the data collection. However, it is not enough and further data should
be provided for extensive testing of the magnetic field-based positioning. Traditionally,
dynamic time warping is used to compare two data sequences of varying lengths for the
positioning with the magnetic field data, but such solutions are not robust. Lacking the data
for varying walking speeds adds more difficulty for evaluating these systems. To check
alternative solutions, the magnetic field data from more users with various walking speeds
are desired. In the end, for providing the striking advantages and shortcomings of the
publicly available magnetic field datasets, Table 1 summarizes the above-discussed datasets.

Table 1. Analysis of the available magnetic field benchmark datasets.

Ref
Basic Characteristics Advanced Characteristics

Device User Space Time Dynamicity Orientation Walk Trajectory Sensor Fusion

[51] No No No No No No No Complex Yes
[38] Yes No Yes No Yes No No Simple Yes
[52] No No No Par No No No Complex Yes
[53] No No No No No No No Medium Par
[54] Yes Yes No No No No Yes Medium Par
[55] Yes No No No No No No Simple Par

6. Conclusions

With the increase in the use of smartphones, positioning specific services experi-
enced an escalating interest during the last few years. Precise position information of the
smartphone users serves as the key element for such services. Consequently, many new
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technologies have emerged to assist in the positioning task for indoor and outdoor posi-
tioning. The magnetic field-based indoor positioning has been investigated as a substitute
for Wi-Fi, UWB, and Bluetooth. It is well suited for indoor positioning due to its ubiquity,
infrastructure independence, and magnetic sensor availability in smartphones. However,
the lack of appropriate publicly available benchmark datasets makes it very difficult to
evaluate the performance of magnetic field-based positioning approaches.

This study determines the most important characteristics for magnetic field datasets
and divides them into basic and advanced characteristics. Two categories contain various
elements of the magnetic field dataset called DUST and DOWTS. The study finds that
none of the publicly available benchmarks cover these characteristics, neither basic nor
advanced. So, in the future, more datasets should be gathered to investigate the important
aspects of magnetic field positioning. The most important of these factors are smartphone
heterogeneity, orientation, data collection in large spaces with high mobility and complex
paths. The dataset that covers these characteristics would greatly help to propose and test
the novel positioning approaches that use the magnetic field data.
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