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The occurrence of antibiotic resistance genes (ARGs) as emerging contaminants is of
continued concern for human health. Antibiotics used in aquaculture have promoted
the evolution and spread of ARGs. This study aimed to investigate the occurrence of
37 ARGs conferring resistance to six classes of antibiotics in 94 aquatic animals from
five cities in southeast coast of China. The results showed that floR, sulII, sulI, strB,
strA, aadA, and tetS were identified as the prominent ARGs with the high detection
frequencies ranging from 30.9 to 51.1% in total samples. Then relative expression
amount of seven prominent ARGs quantified by qPCR, ranging from 0.003 to 0.065.
The tetS was the most abundant ARG among the seven ARGs. Though aadA was
the second highest detection frequency of ARGs, it was the lowest expression amount
ARG. The occurrences and abundances of ARGs in freshwater aquatic animals were
greater than those in marine, reflecting the discrepancy of cultivation pattern between
the freshwater and marine aquaculture. Shanghai was considered as the most prevalent
site with 16 ARGs, and Ningbo merely contained 9 ARGs without of β-lactam ARGs and
quinolone ARGs, showing variations of ARGs with geographical location. Eight kinds of
sulfonamides and one chloramphenicol residues were further measured in samples from
Shanghai. Interestingly, no target antibiotics were found, but sulfonamides resistance
genes (sulI, sulII) and chloramphenicol resistance genes (floR) persisted at aquatic
animals in the absence of selection pressure. Our research firstly shows comprehensive
information on the ARGs in skin microbiota of aquatic animals, which could provide
useful information and a new insight for better understanding on the ARGs dissemination
in aquatic animals.

Keywords: aquatic animals, antibiotic resistance genes, skin microbiota, southeast coast of China, sulfonamides,
chloramphenicol

INTRODUCTION

Antibiotic resistance genes (ARGs), emerging environmental contaminants, draw an increasingly
attention due to their huge risk to human health (Pruden et al., 2006). ARGs encoding resistance
to a broad range of antibiotics have been found to be able to spread among bacteria via
horizontal gene transfer (HGT), thus aggravating ARGs dissemination (Thomas and Nielsen, 2005;

Frontiers in Microbiology | www.frontiersin.org 1 July 2018 | Volume 9 | Article 1617

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.01617
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2018.01617
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.01617&domain=pdf&date_stamp=2018-07-26
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01617/full
http://loop.frontiersin.org/people/587808/overview
http://loop.frontiersin.org/people/268882/overview
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-01617 July 24, 2018 Time: 19:0 # 2

Hong et al. ARGs in Five China’s Cities

Bellanger et al., 2014). In addition, antibiotic-resistance bacteria
that are associated with wild animals is correlated with
the proximity of the animals (and the bacteria) to human
populations. Migratory animals are important contributors to the
widespread dissemination of ARGs (Allen et al., 2010). Many
bacteria, especially human commensal bacteria and pathogens,
have been reported to be multi-drug resistant (Hatha et al.,
2005) and capable of transferring their resistance determinants
among environmental bacteria of different genera (Agersø and
Petersen, 2007; Guglielmetti et al., 2010), which results in a
huge adverse effect to human health. Also, the World Health
Organization (WHO) pointed out that antibiotic resistance
already had become one of the greatest threats to aquatic
food and, consequently, global public health through the food
chain1.

In 2016, the total number of aquatic products was nearly 70
million tons in China, an increase of 3.69% than last year, of
which aquaculture products accounted for 73% (CAP, 2016).
To sustain the rapid and steady growth of this industry, it’s
necessary to obtain the profit of aquaculture by using antibiotics
to ensure high animal growth and low infectious diseases. The
broad-spectrum antibiotics had been vastly used in aquaculture
and husbandry since they were found that they could be used
not only for the prevention and treatment of infectious diseases,
but also for promotion of animal growth and feed efficiency
(Gustafson and Bowen, 1997). In China, the annual usage of
raw antibiotic ingredients for both human and agriculture is
up to 180,000 t (Zheng et al., 2012). Approximately 70% of
these antibiotics are excreted in the unaltered forms, which
are eventually discharged into the water environment in a
variety of ways, such as through the disposal of sewage, hospital
wastewater and animal waste (Kümmerer and Henninger, 2003;
Yang et al., 2011). All these scenarios and the artificially added
antibiotics posed a great threat to both freshwater and marine
aquaculture.

Southeast coast of China, typical subtropical climate, is one
of the fastest developing and most highly urbanized regions
in China. However, to our knowledge, most studies to date
have focused on antibiotic contamination in one area alone,
like Shanghai, Hangzhou, Ningbo, Fuzhou, and Xiamen (Jiang
et al., 2011; Li et al., 2011; Ji-Bing and Hu, 2012; Shen et al.,
2014; Tang et al., 2017), very few comprehensive researches on
ARGs in microbiota of aquatic animals have been paid attention
to in these area together (Xu et al., 2007). In addition, many
reports were available on the occurrence and abundance of ARGs
and antibiotic residues in water and sediment in aquaculture
environment (Gao et al., 2012; Cheng et al., 2013; Chen et al.,
2017; Nakayama et al., 2017). However, there are very few reports
on ARGs and antibiotic residues in aquatic animals, therefore, it
is necessary to investigate ARGs and antibiotic residues in aquatic
animals of this area.

Compared to many previous researches on aquatic animal
gut microbiota (Xiong et al., 2015; Muziasari et al., 2016b;
Fu et al., 2017), to the best of our knowledge, this is a first
comprehensive study on antibiotics in aquatic animal skin

1http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/

microbiota. The purpose of this study aimed to investigate the
occurrence of 37 ARGs conferring resistance to six classes of
antibiotics in 94 aquatic animals from five cities (Shanghai,
Hangzhou, Ningbo, Fuzhou, Xiamen) located in southeast
coastal area of China. Eight kinds of sulfonamides and one
chloramphenicol residues were further measured in samples
from Shanghai. This investigation would give us a new insight
on the ARGs dissemination in aquatic animals, which might be
paid attention to.

MATERIALS AND METHODS

Sample Sites and Sample Collection
Sixteen species of 94 aquatic animals were collected in
August to October 2015 from five southeast coastal cities
of China including Shanghai, Hangzhou, Ningbo, Fuzhou,
Xiamen. The samples were obtained from local markets. After
sampling, they were stored at −80◦C for further analysis.
A summary of the sampling and reference sites is shown in
Table 1.

DNA Extraction
All aquatic animals were dissected under aseptic conditions.
The DNA of skin bacteria was extracted by using TIANamp
Bacteria DNA Kit (Tiangen Biotech Beijing Co., Ltd., China)
according to the manufacturer’s instructions. There was a slight
modification in extraction method, where the incubation time
in lysozyme was increased to 1 h and the incubation time
in proteinase K was increased to 2 h (Ye et al., 2013). The
quality of extracted DNA was verified by 2% agarose gel
electrophoresis, and the concentrations of DNA were measured
by multifunction enzyme labeling instrument (BioTek Synergy2,
American). At last, the DNA was stored at −20◦C prior to PCR
analysis.

Detection of ARGs
The presence of 37 ARGs were identified by PCR, including
β-lactam ARGs (CARB, SHV, SHV-5, ampC, mecA), tetracycline
ARGs (tetA, tetB, tetM, tetO, tetQ, tetS, tetW, tetK),
aminoglycoside ARGs (aph(2′)-Ib, strA, strB, aadA, aadE,
aac(6′)-Ib, armA, rmtB), quinolone ARGs (qnrS, aac(6′)-Ib-cr,
qnrA, qnrC, qnrD, parC, qnrB), chloramphenicol ARGs (catI,
catII, catIII, catIV, floR), and sulfonamide ARGs (sulI, sulII,
sulIII, sulA). Primers of all target ARGs (Supplementary Table
S1) were synthesized based on our previous study (Lou et al.,
2015; Li et al., 2017). PCR results were sequenced by Sangon
Biotech (Sangon Biotech, Shanghai, China) and analyzed by
the National Center for Biotechnology Information website
(NCBI)2.

Quantification of 16S rRNA and ARGs
Identified prominent ARGs (tetS, strA, strB, aadA, sulI, and
sulII) were further quantified by using SYBR Green quantitative

2http://www.ncbi.nlm.nih.gov/BLAST
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TABLE 1 | The sites and species of 94 samples collected in this study.

Species The number of samples

Shanghai Hangzhou Ningbo Fuzhou Xiamen Total

Freshwater aquatic animals (62) Largemouth bass (Micropterus salmoides) 3 3 2 1 3 12

Bighead carp (Hypophthalmichthys nobilis) 1 1 3 2 1 8

Common carp (Cyprinus carpio) 2 – – – – 2

Mandarin fish (Siniperca chuatsi) 3 2 1 1 1 8

Crucian carp (Carassius carassius) 8 2 1 3 1 15

Snakehead (Channa argus) 3 1 1 – – 5

Yellowhead catfish (Pelteobagrus fulvidraco) 2 1 – 1 – 4

Grass carp (Ctenopharyngodon idella) 2 2 2 2 – 8

Marine aquatic animals (32) Turbot (Scophthalmus maximus) 4 1 1 1 1 8

Pompano (Trachinotus ovatus) – – – – 3 3

Large yellow croaker (Larimichthys crocea) 3 1 – – – 4

Yellow grouper (Epinephelus awoara) – – 2 2 3 7

Japanese sea bream (Pagrus major) – – 2 – 1 3

Red drum (Sciaenops ocellatus) – – – 1 1 2

Pacific white shrimp (Litopenaeus vannamei) 1 1 – 1 – 3

Giant tiger prawn (Penaeus monodon) 1 – – 1 – 2

Total 33 15 15 16 15 94

real-time PCR (qPCR). The qPCR assays were performed on
ABI7500 (Applied Biosystems, United States), and the reaction
system (20 µL) included 10 µL SYBR Green Premix (Sangon
Biotech, Shanghai, China), 0.3 µL of each primer and 2 µL of
template DNA. The detail qPCR program was as follows: 1 min
at 95◦C, followed by 40 cycles of 15 s at 95◦C, 30 s at annealing
temperature (Supplementary Table S2), 30 s at 72◦C. Resistance
genes (tetS, strA, strB, aadA, sulI, and sulII) and reference gene
(16S rDNA) were cloned into TA vector and then transfected into
Escherichia coli DH5α (Tiangen Biotech Beijing Co., Ltd., China).
Plasmids carrying target genes were used to generate calibration
curves, and negative controls were performed for each run. The
qPCR efficiencies ranged from 90 to 110% with R2-values greater
than 0.99 for all calibration curves, and the analytical conditions
were described in previous study (Chen et al., 2017).

Antibiotic Residues Analysis
The antibiotic standards, including eight kinds of
sulfonamides (sulfadiazine, sulfathiazole, sulfamethyldiazine,
sulfamethazine, sulfamethoxazole, sulfadoxine, sulfisoxazole,
and sulfaquinoxaline) and chloramphenicol, were obtained from
ALADDIN Chemical Co., Ltd. (Shanghai, China). The antibiotic
solutions were prepared at a concentration of 500 µg/ml in
methyl alcohol and stored at−80◦C for further experiment.

Thirty-three aquatic samples from Shanghai were selected
to analyze antibiotic residues. All aquatic animals were
dissected under aseptic conditions and muscles were used to
detect antibiotic residues. Ten grams of aquatic animals were
selected, and the experimental samples were placed in 50 ml
centrifuge tubes and extracted by Mellvmince-EDTA buffer.
The concentration of target antibiotics in aquatic animals
was measured by high performance liquid chromatography-
tandem mass spectrometry (HPLC-MS/MS) system (Manchester,

United Kingdom). The analytical conditions were described in
previous study (Hon et al., 2016).

Data Analysis
The occurrences and abundances of ARGs were performed
with OriginPro 9.1 (OriginLab, United States). The average
values were calculated by Excel 2016 (Microsoft, United States),
Heatmap analysis was conducted by HemI version 1.0 (Heatmap
Illustrator, China).

RESULTS

ARGs Diversity in Aquatic Animals
Nineteen of thirty-seven target ARGs were found with detection
frequencies ranging from 2.1 to 51.1% in total aquatic animals
(CARB, SHV, SHV-5, mecA, tetA, tetS, tetK, strA, strB, aadA,
aadE, aac(6′)-Ib, armA, aac(6′)-Ib-cr, qnrA, qnrD, floR, sulI, and
sulII) (Figure 1). The floR, sulII, sulI, strB, strA, aadA, and tetS
were identified as the prominent ARGs with the high detection
frequencies ranging from 30.9 to 51.1%, suggesting a serious
condition conferring resistance to tetracyclines, aminoglycosides,
chloramphenicol, and sulfonamides in aquatic animals. All
categories were detected in the six categories ARGs. For β-lactam
ARGs, four encoding β-lactamase genes, CARB, SHV, SHV-5 and
mecA, were detected with low detection frequencies ranging from
3.2 to 20.2%. Three (tetA, tetS, tetK) of eight tetracycline ARGs
were found with the detection frequency ranging from 8.5 to
51.1%. It is noteworthy that tetS exhibited the highest frequently
detection of the 37 ARGs in our study (51.1%, n = 94). Six
of eight aminoglycoside ARGs were found ranging from 2.1 to
47.9%. The qnrD was the predominant ARG detected in seven
quinolone ARGs, with the detection frequency of 27.7%, followed
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FIGURE 1 | The frequencies of 37 antibiotic resistance genes (ARGs) conferring resistance to six classes of antibiotics in total aquatic animals. (The dotted line
shows seven major genes with a detection rate of more than 30%).

by aac(6′)-Ib-cr and qnrA (20.2 and 3.2%). The floR was the
only chloramphenicol ARGs with the high detection frequency
(30.9%, n = 94). In sulfonamides ARGs, sulI, and sulII exhibited
the high detection frequencies of 41.5 and 40.4%, but sulIII and
sulA were not observed in any samples.

The Seven Prominent ARGs Relative
Expression Amount Analysis
The average relative expression (to internal reference gene 16S
rDNA) of seven prominent ARGs in total aquatic animals
decreased as: tetS > strA > strB > sulI > sulII > floR > aadA,
ranging from 0.003 to 0.065 (Figure 2). The tetS was the
highest abundant ARG in aquatic animals among the seven
prominent ARGs, with the average relative expression in tetS
positive samples 1.27 × 10−1/16S rDNA (the relative abundance
ranged from 2.00 × 10−4 to 9.46 × 10−1/16S rDNA, n = 48).
Slight gaps were observed in the average relative expression of
strB, floR, sulI, and sulII. Though aadA was the second highest
detection frequency of 37 ARGs, it was the lowest abundant ARG.
The average relative expression in aadA positive samples was
6.30× 10−3/16S rDNA (n = 45). Overall, tetS was also the highest
frequently detection of 37 ARGs.

Comparison ARGs Diversity Between
Freshwater and Marine Aquatic Animals
Eighteen of thirty-seven target ARGs were found in freshwater
aquatic animals with detection frequencies ranging from 3.2 to
59.7%, also, 18 genes were found in marine aquatic animals with
detection frequencies ranging from 3.1 to 43.8% (Figure 3). The

FIGURE 2 | The average relative expression (to internal reference gene 16S
rDNA) of seven prominent ARGs (tetS, strA, strB, aadA, sulI, and sulII) in total
aquatic samples.

tetS was the highest detection of the 37 ARGs in freshwater
aquatic animals (59.7%, n = 62), but the aadA was the highest
detection of the 37 ARGs in marine aquatic animals (43.8%,
n = 32). Interestingly, the SHV (4.8%, n = 62) of β-lactam ARGs
was the only one existed in freshwater aquatic animals, and the
armA (6.3%, n = 32) of aminoglycoside ARGs was the only one
existed in marine aquatic animals.
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FIGURE 3 | The frequencies of 37 ARGs detected in freshwater aquatic animals and marine aquatic animals.

FIGURE 4 | The average relative expression of seven prominent ARGs (tetS,
strA, strB, aadA, sulI, and sulII) in freshwater aquatic animals and marine
aquatic animals.

The relative expression amount of seven prominent ARGs in
freshwater aquatic animals also were higher than those in marine
aquatic animals (Figure 4). The average relative abundance of
freshwater aquatic animals was 0.025, being approximately 1.73
times greater than those in marine aquatic animals. The tetS
was the highest abundant ARG in freshwater aquatic animals,
but the strA was the highest abundant ARG in marine aquatic
animals. Overall, the occurrences and abundances of ARGs in
freshwater aquatic animals were greater than those in marine
aquatic animals.

ARGs Diversity With Geographical
Location
Considering ARGs presence in different cities (Figure 5),
Shanghai was considered the most prevalent site with sixteen
ARGs (CARB, SHV, mecA, tetA, tetS, tetK, strA, strB, aadA, aadE,
aac(6′)-Ib, aac(6′)-Ib-cr, qnrD, floR, sulI, and sulII), whereas

Ningbo contained nine ARGs (tetS, strA, strB, aadA, aac(6′)-
Ib, armA, floR, sulI, and sulII), with only nine ARGs and none
of β-lactam ARGs and quinolone ARGs, showing variations of
ARGs with geographical location (Figure 6). All the prominent
seven resistance genes tetS, strA, strB, aadA, floR, sulI, and sulII
were observed in five cities samples.

The average relative expression of tetS was the most abundant
ARG in Shanghai (0.066), Fuzhou (0.13), and Xiamen (0.038),
but the strA was the most abundant ARG in Hangzhou (0.11)
and Ningbo (0.11). The total concentration of seven ARGs in
Hangzhou is the highest abundant in five cities followed by
Fuzhou, Shanghai, Ningbo, and Xiamen (Figure 7). This result
reflected a fact that aquatic animals in the southeast coastal area
of China contained various ARGs, furthermore, tetS, strA, strB,
aadA, floR, sulI, and sulII posed a leading position in ARG
contaminations.

Relationship Between Antibiotic
Residues and ARGs
Shanghai was considered as the most prevalent site with 16
ARGs in five cities, so thirty-three samples from Shanghai
were chosen to analyze antibiotic residues, including
sulfadiazine, sulfathiazole, sulfamethyldiazine, sulfamethazine,
sulfamethoxazole, sulfadoxine, sulfisoxazole, sulfaquinoxaline,
and chloramphenicol. Though chloramphenicol ARGs (floR)
and sulfonamide ARGs (sulI and sulII) were dominant ARGs in
aquatic animals in our study, it was worth noting that no target
antibiotics were detected (the detection limit of target antibiotics
were 1.0 µg/kg). Result showed that floR, sulI, and sulII persist at
aquatic animals in the absence of selection pressure (Table 2).

DISCUSSION

Antibiotic resistance genes can pose a threat to food security and
human health via various pathways (Cabello, 2004; Liu et al.,
2014; Aydin et al., 2015; Amandine et al., 2016). Most ARGs
acquired through HGT had been originated in environmental
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FIGURE 5 | The sites of total aquatic animals collected in five southeast coastal cities of China (Shanghai, Hangzhou, Ningbo, Fuzhou, and Xiamen) and ARGs
diversity distribution.

microbiota (Martínez, 2008; Wang et al., 2012), and ARGs
disseminated from farming source to reared organisms (Su
et al., 2017). In addition, many previous studies mainly focused
on sediments, water and aquatic animal gut microbiota (Khan
et al., 2013; Fu et al., 2017; Gao et al., 2018), this study
firstly reflected the occurrence of 37 ARGs conferring resistance
to six classes of antibiotics in skin microbiota of aquatic
animals from southeast coastal area of China, which provides
a comprehensive profile on ARGs in microbiota of aquatic
animals.

In our study, occurrence of 37 ARGs were investigated in 94
aquatic animals from five cities in southeast coast of China. The
tetA, tetK, and tetS were found with the detection frequencies
ranging from 8.5 to 51.1%, since wide usage of tetracyclines
in environment might address this case (Cheesanford et al.,
2001; Heuer et al., 2009; Yan et al., 2018a,b). In addition, the
strA, strB, sulI, and sulII were prevalent in this study, which
was consistent with the previous findings about the occurrence
of ARGs obtained from aquaculture sediment and aquaculture
water (Gao et al., 2012; Xiong et al., 2015; Muziasari et al.,
2016a), and also similar to previous reports in swine farms,
broiler feedlots and domestic sewage (Zhu et al., 2013; Chen
et al., 2016; He et al., 2017). Results suggest that antibiotic usage

pose a serious threat to the aquaculture and water environment,
consequently, to public health through the food chain. The tetB,
tetM, tetO, tetQ, and tetW were negative, this result is different
from those observed in aquaculture farms, where the tetM, tetW,
tetQ, tetO were found in aquaculture farm sediments and water
(Ma et al., 2014; Su et al., 2014). The occurrence of ARGs obtained
from aquatic animal skin microbiota is inconsistent with the
sediments, water and aquatic animal gut (Khan et al., 2013; Fu
et al., 2017; Gao et al., 2018). In this study, aquatic animal skin
microbiota may be another important niche for dissemination
of ARGs. And the mobility of aquatic animal may facilitate the
proliferation and propagation of ARGs in water environment.

A previous study have investigated the heavy metal in
marine aquatic animal and freshwater aquatic animal in south
China (Cheung et al., 2008), however, no study focused on
ARGs differences between freshwater aquatic animals and
marine aquatic animals. Results showed that occurrences and
abundances of ARGs in freshwater animals were greater than
those in marine aquatic animals, reflecting the importance
of freshwater aquaculture environment in ARGs emergence.
The discrepancy of cultivation pattern might address this
phenomenon. Compared to marine aquatic animals, aquatic
animals in freshwater aquaculture environment could easily
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FIGURE 6 | The detection frequencies of 37 ARGs in five southeast coastal cities of China (Shanghai, Hangzhou, Ningbo, Fuzhou, and Xiamen).

TABLE 2 | Relationship between antibiotic residues and ARGs in Shanghai samples.

Species Numbers Sulfonamides Chloramphenicol sulI sulII floR

Freshwater aquatic animals Largemouth bass (Micropterus salmoides) 3 − − + + +

Bighead carp (Hypophthalmichthys nobilis) 1 − − + + +

Common carp (Cyprinus carpio) 2 − − − − +

Mandarin fish (Siniperca chuatsi) 3 − − + + +

Crucian carp (Carassius carassius) 8 − − + + +

Snakehead (Channa argus) 3 − − + + +

Yellowhead catfish (Pelteobagrus fulvidraco) 2 − − + + −

Grass carp (Ctenopharyngodon idella) 2 − − − − +

Marine aquatic animals Turbot (Scophthalmus maximus) 4 − − + + +

Large yellow croaker (Larimichthys crocea) 3 − − + + +

Pacific white shrimp (Litopenaeus vannamei) 1 − − + + +

Giant tiger prawn (Penaeus monodon) 1 − − − + −

+Detected. −Not detected.
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FIGURE 7 | The average relative expression of seven prominent ARGs (tetS, strA, strB, aadA, sulI, and sulII) in five southeast coastal cities of China.

receive more antibiotic residues from hospital effluents, plant
sewage, urban wastewater and so on. Thus, freshwater animals
harbored more ARGs.

We also analyzed the occurrence and abundance of ARGs
in five cities. Distinctly, the detection frequencies of ARGs
among various geographical locations were different. Shanghai
was considered as the most prevalent site with 16 ARGs. Since
Shanghai is one of the most urbanized and developed cities in
China, and the usage of antibiotics in Shanghai is more than
the other four cities (Jiang et al., 2011; Liu et al., 2017). When
come to the geographical location differences, anthropogenic
activity could address the situation, which might reflect diversity
in antibiotic usage in five cities.

The application of antibiotics in aquaculture was one of
the important reasons for improving the antibiotics resistance
and enhancing the concentration of ARGs in the aquaculture
environment (Cesare et al., 2013; Liu et al., 2017). Wide usage
of chloramphenicol and sulfonamides in aquaculture has been
reported (Li et al., 2006; Heuer et al., 2009; Liu et al., 2017).
So, our study simultaneously investigated the concentrations of
chloramphenicol and sulfonamides in aquatic animals by HPLC-
MS/MS. The prominent sulfonamide ARGs, sulI, and sulII were
present in aquatic animals but no sulfonamides were detected,
this result suggested that sulfonamide-resistance genes sulI and
sulII persisted at aquatic animals in the absence of selection
pressure. Tetracycline resistance genes and aminoglycoside
resistance genes were present at fish farms without presence of
the respective antibiotics (Tamminen et al., 2011; Muziasari et al.,
2014). The floR was the only one chloramphenicol resistance
gene detected, but chloramphenicol was not detected in this
study, because the Ministry of Agriculture in People’s Republic
of China banned the use of chloramphenicol in food producing
animals in 2002 (No. 193 Bulletin, 2002). Our results suggest that
chloramphenicol resistance gene are highly persistent and do not

disappear from aquaculture environment, even after several years
without chloramphenicol use.

CONCLUSION

Overall, our study is a first comprehensive research on the
occurrences and abundances of 37 ARGs conferring resistance
to six classes of antibiotics in skin microbiota of aquatic animals
from five cities (Shanghai, Hangzhou, Ningbo, Fuzhou, and
Xiamen) located in southeast coastal area of China. Shanghai
was considered as the most prevalent site with 16 ARGs, and
the geographical location differences could be contributed to
anthropogenic activity. The occurrences and abundances of
ARGs in freshwater animals were greater than those in marine
aquatic animals, which reflect the discrepancy of cultivation
pattern between freshwater and marine aquaculture pattern.
Interestingly, no target antibiotics were found, sulfonamides
resistance genes (sulI, sulII) and chloramphenicol resistance
genes (floR) persisted at aquatic animals in the absence of
selection pressure. Our study suggests that aquatic animal
skin microbiota contribute to the spread of ARGs in water
environments, which could provide useful information for better
understanding of the contamination caused by ARGs and
antibiotics. Results show that ARGs pose an alarmingly serious
risk in aquatic animals, which should be paid more attention to
by local government.
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