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Abstract
In biofeedback research, the debate on physiological versus psychological learning has a long tradition and is still relevant 
today, regarding new developments of biofeedback for behavior modification. Analyzing the role of these learning mecha-
nisms may help improving the protocols and answer the question, whether feedback of physiological functions is necessary to 
modify a target behavior. We explored the presence and impact of physiological (EEG changes) versus psychological learning 
(changes in somatic self-efficacy) in a recently developed EEG neurofeedback protocol for binge eating. The protocol targets 
a reduction of food-cue induced cortical arousal through regulation of EEG high beta activity. In an experimental study 
accompanying a randomized controlled trial, pre and post treatment EEG measurements were analyzed in a neurofeedback 
group (n = 18) and an active mental imagery control group without physiological feedback (n = 18). Physiological learning 
in terms of EEG high beta reduction only occurred in the neurofeedback group. Post treatment, participants with success-
fully reduced binge eating episodes (≥ 50% reduction) showed lower EEG high beta activity than unsuccessful participants 
(p = .02) after neurofeedback, but not after mental imagery. Further, lower EEG high beta activity at post-treatment predicted 
fewer binge eating episodes in neurofeedback only. In mental imagery, somatic self-efficacy predicted treatment success 
instead of EEG activity. Altogether, the results indicate that physiological changes serve as a specific treatment mechanism 
in neurofeedback against binge eating. Reducing cortical arousal may improve eating behaviors and corresponding neuro-
feedback techniques should therefore be considered in future treatments.

Keywords  Neurofeedback · Binge eating · Overeating · Treatment mechanisms · Electroencephalography

“The spirit is willing, but the flesh is weak.” This proverb is 
frequently quoted at dinner parties or cafeteria buffets—that 
is, in a context of unwanted food consumption. Although 
we often try to resist temptations of palatable food, vari-
ous factors, like stress, emotions or repeated food exposure, 
regularly boycott these intentions (Adam and Epel 2007; 
Haedt-Matt and Keel 2011; Swinburn et al. 2011). Under 
these circumstances, many people report food craving, a loss 
of control over eating restrictions, and binge eating episodes 
as a consequence (Boswell and Kober 2016; Stroebe et al. 
2008). Repeated occurrences of binge eating episodes can 
result in weight gain (Dulloo and Montani 2015; Ozier et al. 

2008) and are associated with body dissatisfaction, weight-
related shame and guilt, distress, or depressive symptoms 
(Craven and Fekete, 2019; Presnell et al. 2004; Skinner et al. 
2012). Providing individuals with enhanced capabilities 
to control bodily urges that facilitate dysfunctional eating 
behaviors is therefore an important objective in treatments 
for obesity, eating disorders, but also for general health 
behavior change.

Biofeedback (BF) treatments are traditional and well-
approved means with the goal to strengthen control over 
somatic activity (Epstein and Blanchard 1977). Here, psy-
chophysiological recordings are used to provide patients 
with external feedback on patterns in their physiological 
activity (Bagdasaryan and Le Van Quyen, 2013; Schwartz, 
1976). Through the implemented feedback, it is possible 
to enable a person to control bodily responses by reinforc-
ing individual strategies that result in desired physiological 
changes (Shapiro et al. 1964; Siniatchkin et al. 2000).
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Given the relevance of loss of control in dysfunctional 
eating and the focus on control-processes in BF, it is not 
surprising that BF applications have recently emerged as 
promising treatments for dysfunctional eating behaviors, 
especially those that target neural activity (neurofeedback: 
NF) (for reviews, see: Bartholdy et al., 2013; Dalton et al., 
2017; Imperatori et al. 2018). In their review, Imperatori 
et al. (2018) provided an overview of 13 studies (5 BF, 8 NF) 
that targeted eating disorders and related symptoms with 
feedback-based treatments. The review showed promising 
effects of these treatments and that recent studies increas-
ingly reported physiological learning (i.e., treatment-related 
changes in physiological activity), for example in electroen-
cephalographic (EEG) activity.

Despite of these observations on promising changes in 
eating-related outcome measures as well as physiological 
activity, one prominent old question is yet not satisfactorily 
answered in these BF-applications: Which role do physi-
ological changes (i.e., changes in EEG activity) play in BF 
compared to psychological changes (i.e., increased self-effi-
cacy and subjective self-control)? Moreover, which one of 
these two postulated mechanisms contributes more to target 
outcomes, such as changes in symptoms or behaviors via 
BF?

While physiological learning constitutes the central 
assumption of treatment mechanisms in BF (e.g., Schwartz 
1976; Shapiro et al. 1964), the aforementioned psycho-
logical changes have become strongly advocated treatment 
mechanisms in this approach (Holroyd et al. 1984; Wick-
ramasekera, 1999). Today, the analysis and comparison of 
physiological versus psychological learning in BF is still 
crucial to identify key treatment mechanisms, especially 
in novel applications and protocols (Gruzelier 2014a; La 
Vaque et al. 2002; Schwartz and Andrasik 2003; Sitaram 
et al., 2017). This is especially valid regarding the upcoming 
application field of dysfunctional eating, where physiologi-
cal mechanisms and the contribution of changes in neural 
underpinnings still have to be explored (Dalton et al., 2017).

A detailed look at eating-related BF studies shows, 
that evidence for relevant physiological changes is mixed 
and dependent on the physiological target parameter. For 
example, Meule and colleagues (2012) used heart rate 
variability (HRV) BF and did not observe significant 
changes in HRV, despite of beneficial treatment effects 
on subjective food craving. Teufel and colleagues (2013) 
found an increase in eating-related self-efficacy and a 
reduction of sympathetic activity using electrodermal 
BF combined with food cue exposure. In real time fMRI-
NF, Frank et al. (2012) observed changes in obese par-
ticipants’ physiological regulatory abilities, yet without 
beneficial effects on eating behavior. Ihssen et al. (2017) 
found reduced reward-related brain activation in a food 
cue-exposure real time fMRI-NF, but no effects on food 

craving. With regard to EEG-NF, Lackner et al. (2016) 
reported changes in resting-state EEG theta activity in 
a NF treatment targeting alpha activity in patients with 
anorexia nervosa. They also reported improvements in 
eating-related variables (e.g., dietary restrictions) but not 
in weight status or body image. Imperatori et al. (2017) 
observed increased EEG alpha activity after alpha/theta 
NF against food craving, as well as reductions in subjec-
tive food craving. Finally, Leong et al. (2018) reported 
reductions in food craving and physiological learning in 
an infraslow EEG-NF treatment.

In two randomized controlled trials (RCTs), we evalu-
ated a ten-session NF treatment to reduce overeating and 
binge eating episodes (Schmidt and Martin, 2015; 2016). 
The rationale of these studies based on cue exposure with 
palatable food cues and subsequent down-regulation of 
dysfunctional EEG high beta activity (23–28 Hz) that is 
associated with tense arousal, craving, disinhibition, and 
dysfunctional eating behaviors. Changes in this brain 
activity range have been shown to be associated with 
exposure to appealing cues in eating behavior and addic-
tion research (for reviews, see: Blume et al., 2019; Parvaz 
et al. 2011). While EEG high beta activity has been added 
as a supplementary spectral range to control hyperarousal 
(e.g., Egner and Gruzelier, 2001; Keith et al. 2015; Ros-
tami et al. 2012), it has seldom been the main target of 
regulation in NF protocols. The few studies using EEG 
high beta as a target range found positive results regard-
ing the presence and influence of physiological learning 
in this spectral range (Paquette et al. 2009; Zotev et al. 
2014). Still, none of these studies so far had targeted eat-
ing behavior.

While both of our studies on clinical outcomes 
(Schmidt and Martin, 2015; 2016) showed efficacy of NF 
in reducing overeating and binge eating, the NF-training 
system used in the two studies did not allow for a post-
hoc analysis of changes in EEG activity associated with 
the treatment. Therefore, the second RCT (Schmidt & 
Martin, 2016) was accompanied by an experimental psy-
chophysiological laboratory study. The experiment served 
to assess NF-associated EEG changes from pre to post 
treatment in a high beta protocol and their associations 
with self-reported treatment-outcomes. In the present 
study, we assessed EEG activity prior to the first treat-
ment and the last treatment session in a separate assess-
ment, using experimental food cue exposure followed by 
self-regulation without feedback to shed light on potential 
mechanisms involved in treatment outcomes. The follow-
ing research questions are addressed:

Does the NF treatment result in physiological learning?
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H1:  Does physiological learning differ between successful 
(≥ 50% binge eating reduction) and unsuccessful (< 50% 
binge eating reduction) participants in NF at post-treatment?

H2:  At post-treatment, successful participants in NF show 
lower levels of EEG high beta activity during self-regulation 
phases after cue exposure than unsuccessful participants.

Does physiological learning show stronger relations to 
post-treatment outcomes than psychological learning in NF?

H3:  Post-treatment EEG high beta activity predicts binge 
eating episodes more strongly than subjective somatic self-
efficacy in NF.

For a comparison of possible effects that might have 
been caused by unspecific treatment effects (e.g., relaxa-
tion, therapeutic relationship, and general repeated partici-
pation in a treatment) we additionally investigated changes 
of the physiological and psychological variables in an active 
control group, training with a mental imagery (MI) proto-
col, without any feedback on their physiological activity. 
This analysis bases on a merged-groups-sample of the RCT 
(Schmidt and Martin 2016).

Method

Study Design

The study is based on a pre-post design in two active inter-
vention groups. Data were obtained in an additional experi-
mental study during an RCT that examined the specific 
efficacy of a NF training to reduce binge eating episodes 
in female restrained eaters compared to two control groups 
(Schmidt and Martin 2016). In contrast to the published 
study, the present study based on the additional experimental 
study in the merged-groups-sample of the RCT. This sample 
includes participants from the original NF and MI groups 
as well as former waitlist-participants, who participated in 
NF or MI treatments after the waiting period. All of them 
participated in sessions of this experimental study prior to 
the first and last session of their active treatment phases.

We assessed EEG activity and self-reports on binge eat-
ing episodes, as well as somatic self-efficacy prior to the 
first (T0) and final (T1) treatment sessions. Before partici-
pation, all participants were informed on the experimental 
procedures, including randomization, physiological meas-
urement, data handling, and treatment protocols. All par-
ticipants included in the study provided written informed 
consent. The ethics committee at the University of Wup-
pertal approved the research protocol.

Sample

The sample consisted of adult female participants, screened 
as restrained eaters (values ≥ 12; German version of the 
Restraint Scale, Dinkel et al. 2005) who reported regular 
occurrences of binge eating episodes. Women priorly diag-
nosed with (or positively screened for) clinical eating disor-
ders, insulin-dependent diabetes mellitus, any neurological 
or severe mental disorders were excluded from the study. 
Further exclusion criteria encompassed regular use of medi-
cation associated with weight fluctuations, alcohol depend-
ency, pregnancy, and adherence to a time limited weight-
loss diet (e.g., formula diets). We recruited participants with 
media reports and flyers in medical practices. Eligibility for 
participation was assessed via online questionnaire during 
recruitment.

A total of 123 persons were screened for eligibility, 
whereof 48 were either not eligible to participate (n = 17) 
or did not respond our invitation to an information session 
on the study (n = 31). A blinded and uninvolved person then 
randomly assigned the remaining 75 subjects to either NF 
treatment, MI treatment, or a waitlist group (n = 25 each). 
Throughout the first study phase, 16 women discontinued 
the study (see also Schmidt and Martin 2016).

Waitlist participants were randomly assigned to one of the 
two active treatments after an 8 week waiting period (n = 11 
each). In the second study phase, n = 7 women dropped out. 
The resulting merged groups sample (n = 26 in NF and MI 
resp.) served as the target sample for the present EEG study. 
Here, some participants (n = 8 in NF and MI respectively) 
had to be excluded from statistical analyses due to storage 
problems, bad signal quality, or heavy artifacts in EEG 
recording, resulting in a final sample of n = 18 for each group 
(for participant flow, see Fig. 1).

Procedure

We conducted experimental and treatment sessions between 
April and October 2014. Two calm and highly comparable 
training rooms, as well as the NF equipment and psycho-
physiological recordings devices were provided by psyrecon 
GmbH (Wuppertal, Germany). According to the scope of 
this study, descriptions will focus on the experimental study 
and only give a brief overview on the treatments from T0 to 
T1. For a more detailed description of the treatment proce-
dures, see Schmidt and Martin (2016).

Experimental Sessions

At T0 and T1, all women attended the individual experimen-
tal sessions, including psychophysiological recording during 
food cue exposure and in subsequent self-regulation. They 
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were asked not to eat for three hours prior to the sessions, to 
ensure appeal of the selected food cues. During the sessions, 
participants sat in a comfortable armchair in 1 m distance 
of a 22″ flat screen. The screen displayed the experimental 
presentations by using standardized presentations, yet with 
personalized food cues in MS PowerPoint.

All women first filled in a questionnaire booklet contain-
ing the target instruments (see “Assessment instruments” 

section). Experimenters then attached EEG electrodes after 
corresponding preparation (see “Physiological recording and 
analysis” section). When signal quality was satisfactory, the 
presentation was started, displaying a standard instruction 
in black letters on a white background. Participants were 
informed about the procedure and duration of alternating cue 
exposure and self-regulation phases. They were instructed to 
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• Received allocated

interven�on (n = 18)

• Drop Out a�er alloca�on
(n = 2)
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(n = 5)
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interven�on (n = 19)
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(n = 2)
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(n = 4)

Wai�ng List (n = 25)
• Received allocated

interven�on (n = 22)

• Drop Out a�er alloca�on
(n = 2)

• Drop Out a�er invita�on for
reassessment (n = 1)

Excluded (n = 17)
• Not mee�ng inclusion criteria

(n = 7)
• Gender (n = 6)
• RS < 12 (n = 1)

• Mee�ng exclusion criteria
(n = 10)

• Ea�ng disorders (n = 3)
• BMI < 20 (n = 2)
• Medica�on (n = 2)
• Mental disorder (n = 2)
• Diabetes (n = 1)

Drop Out (n = 31)
• Declined to par�cipate (n = 8)
• No more response (n = 23)

Assessed for eligibility
(N = 123)

Neurofeedback (n = 11)
• Received allocated

interven�on (n = 8)

• Discon�nued interven�on
(n = 3)

Mental Imagery (n = 11)
• Received allocated

interven�on (n = 7)

• Discon�nued interven�on
(n = 4)

Enrollment

Randomiza�on (n = 75)

Fi
rs

t A
llo

ca
�o

n
M

er
ge

d
Gr

ou
ps

 
An

al
ys

is

NF Analyzed (n = 18)

• Received allocated
interven�on (n = 26)

• Excluded from analyses due 
to missing data, storage
problems, or heavy  EEG 
ar�facts (n = 8)

MI Analyzed (n = 18)

• Received allocated
interven�on (n = 26)

• Excluded from analyses due 
to missing data, storage
problems, or heavy  EEG 
ar�facts (n = 8)

Randomiza�on (n = 22)

Se
co

nd
 

Al
lo

ca
�o

n

Fig. 1   Participant flow according to CONSORT guidelines
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avoid movements or speaking, and to keep their eyes open 
during the presentation.

For cue exposure phases (T0 & T1), participants had to 
imagine the displayed foods as vividly as possible, includ-
ing smell, taste, and consistency, which has previously been 
evaluated as a successful strategy to induce craving (Sobik 
et al. 2005). During self-regulation phases at T0, participants 
should relax the way they would usually relax with open 
eyes; for self-regulation phases at T1, participants used the 
strategies learned in the treatments (NF or MI).

After the instruction, physiological recording started and 
was synchronized with the presentation. A baseline record-
ing was performed for 120 s. Then, three alternating phases 
of cue exposure (30 s each) and self-regulation (120 s each) 
succeeded. In cue exposure phases, participants were con-
fronted with three individually selected, appealing digital 
pictures of foods they regularly crave and binge on. These 
pictures were also used during the corresponding treatments. 
In self-regulation phases, an animated landscape of a beach 
at sunset was displayed, which was also used in the treat-
ment sessions. However, the EEG system did not provide 
any feedback on brain activity during the experimental ses-
sions. Altogether, the experimental sessions lasted 9.5 min 
and contained the same stimuli (pictures, animation) at T0 
and T1.

Physiological Recording and Analysis

We obtained physiological data using the Varioport Biosig-
nal Recorder (Becker MediTec) and the Variograf software. 
Besides EEG recording, galvanic skin response and heart 
rate were assessed for another research project. Results will 
be presented elsewhere. EEG was derived with an active 
and pre-amplified, unipolar 5-channel EEG device (Ag/
AgCl electrodes) with reference and ground electrodes on 
the right and left mastoid. Recording sites were Cz, Fz, F3, 
F4, and Pz, according to the international 10–20 system (Jas-
per 1958). We used flexible EEG caps (EasyCap) to attach 
electrodes. Skin preparation was conducted with abrasive 
One-Step EEG peeling paste and 65% isopropyl alcohol to 
ensure satisfactory impedance levels. To retain skin contact 
and sufficient conductivity, we used SuperVisc (EasyCap) 
electrode paste for active EEG recordings.

After electrode attachment, the experimenter checked sig-
nal quality and adjusted electrodes whenever signals were 
not satisfying or impedance levels were too high. Addition-
ally, for correction of ocular artifacts, we acquired a vertical 
electrooculogram (EOG) via a 2 mm Ag/AgCl electrode and 
conductivity enhancing electrode paste (Electrode Cream, 
GE Medical Systems) below the left eye. Analogue sam-
pling rate was 1024 Hz. A 50 Hz notch-filter was included 
in the recording device. During experimental recordings, the 

experimenters monitored the signals and protocolled visible 
muscular artifacts or decreasing signal quality.

Analysis of EEG data was performed offline, using a Mat-
Lab based tool (programmed by Prof. Dr. Bertrand Mas-
sot, INSA Lyon), to perform Fast Fourier Transformation 
and obtain spectral power of the relevant EEG frequency 
ranges. The method implied bases on a shifting window 
over 10 s-segments without overlap throughout the course 
of the experimental session. It uses the Welch periodogram 
(Welch 1967) due to the advantage of being independent 
of predetermined window size. A rectangular window was 
applied to analyze spectral power in the whole range of EEG 
frequencies from 1 to 30 Hz. Correction of ocular artifacts 
was performed based on the EOG recordings, using princi-
pal component analysis (PCA) as the superior method for 
automatic corrections, avoiding spectral distortions (Wall-
strom et al. 2004).

We exported calculated values (absolute Power, µV2) 
as data sheets and screened them for artifacts protocolled 
during the experimental sessions. This is especially impor-
tant because the frequency range of interest, EEG high beta 
activity (23–28 Hz) may be influenced by muscular activity 
due to overlapping frequency ranges (Muthukumaraswamy 
2013). Values were then averaged for each electrode position 
and every separate 10 s-interval over the spectral ranges of 
interest (delta: 1–3 Hz; theta: 4–7 Hz; alpha: 8–12 Hz; sen-
sorimotor rhythm [SMR]: 13–15 Hz; low beta: 16–22 Hz; 
high beta 23–28 Hz). To calculate an EEG power indicator 
for statistical analyses of the current research questions, we 
determined mean values over all three 120 s self-regulation 
phases after cue exposure at T0 and T1. Whenever artifacts 
only affected single 10 s-intervals, values were replaced by 
mean values in the respective phase. Participants with more 
than five 10 s-intervals affected by artifacts (i.e., more than 
15% of the recording) or those who showed decreasing sig-
nal quality during the sessions were excluded from analyses 
(n = 16).

Since absolute spectral power values in EEG recording 
can vary heavily between participants and between repeated 
measurements, relative spectral power was calculated divid-
ing absolute power for each target frequency (e.g., high beta 
in µV2) by the overall sum of absolute power of the spectral 
ranges (delta to high beta in µV2). Decimal values (rang-
ing from 0 to 1) were then transformed to percentages. Due 
to the potential effects of the NF training on baseline EEG 
activity from T0 to T1 (Gruzelier 2014a), we did not per-
form any baseline corrections to avoid neglecting those pos-
sible outcomes. Only values of the electrode site which was 
used as a training position in NF (Cz) will be reported in 
the present paper.
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Treatments

Both treatments—NF and MI—consisted of ten sessions 
based on standardized treatment manuals (see Schmidt and 
Martin 2016 for further details). Each session began with 
a 180 s adaptation phase. Then participants in both groups 
were repeatedly exposed with individual pictures of foods, 
which regularly induce craving and binge eating (ten expo-
sures, 30 s each). Participants should imagine the foods as 
vividly as possible. Each exposure phase was followed by 
120 s of the self-regulation task.

For the NF group, the self-regulation task was the down-
regulation of EEG high beta activity (23–28 Hz) as a means 
to reduce cortical arousal caused by cue exposure to appeal-
ing food cues (Blume et al. 2019; Parvaz et al. 2011). The 
signal was derived from a unipolar online EEG assessment 
(Mindfield Mindmaster EEG) at the vertex position (Cz), 
with reference and ground electrodes on the earlobes. Feed-
back on EEG high beta activity was displayed as bar dia-
grams to be kept below a threshold as well as through a 
beach landscape animation. Activity below thresholds was 
rewarded (green bar, fluent animation); Activity surpassing 
thresholds was inhibited (red bar, stopping animation). An 
additional bar diagram indicated artifacts caused by eye-
movements or muscular activity (e.g., swallowing or body 
movements) during the sessions. In addition, the NF-trainers 
monitored the signal quality over the course of the sessions.

Participants were encouraged to try different strategies for 
self-regulation (e.g., thinking of nothing, thinking of colors, 
using mantras or imagery) throughout the first treatment ses-
sions. They were instructed to pursue the ones that were 
rewarded by the NF system. At the beginning of the sessions, 
thresholds were set to 4 μV for EEG high beta and 1–1.5 μV 
for artifacts. During the adaptation phase of each session, 
the trainers adjusted the thresholds to the individuals’ base-
lines to match predefined success rates. These success rates 
were reduced over the training course (stepwise: 85% to 
70%). In cases of strong deviations from the thresholds over 
the course of one training session for more than 5 min, the 
trainers slightly adjusted the thresholds to avoid discour-
agement of the participants. After ten exposure phases, we 
additionally instructed participants to upregulate alpha activ-
ity (8–12 Hz) for the concluding 180 s. We selected this 
procedure to assure that participants conclude the sessions 
in a relaxed state of mind (Gruzelier 2014b). Each session 
lasted approximately 45 min, including preparation.

For the MI group, participants were made familiar with 
the mental imagery approach (Kemps and Tiggemann 2007; 
Knäuper et al. 2011), which incorporates vivid imagination 
of pleasant, relaxing, and food-unrelated mental images 
(e.g., sitting by the sea or walking through beautiful land-
scapes). Through this procedure, a state of relaxation should 
be induced. Alternative imagery should replace craving 

related food imagery by claiming visuospatial working 
memory capacities. To find the most suitable mental image, 
all women should try different image contents and observe 
which image would fulfill the prerequisite of being easy to 
retrieve, relaxing, and vivid. Participants then visualized this 
image in every self-regulation phase. In all sessions, a visual 
beach animation was fluently presented to assist relaxation. 
After ten exposure phases, we additionally instructed par-
ticipants to relax with their eyes closed for 180 s to end 
the sessions in a relaxed state of mind. Each session lasted 
approximately 35 min.

Assessment Instruments

Screening Instruments

For screening purposes regarding inclusion and exclusion 
criteria, we assessed age, gender, Body Mass Index, current 
dieting status, medication, histories of eating disorders, alco-
hol abuse, neurological and mental disorders, and diabetes 
online. Further, we used the Restraint Scale (RS; Dinkel 
et al. 2005) with a ten item cut-off sum score ≥ 12 to deter-
mine restrained eating, and the German Eating Disorder 
Examination Questionnaire (EDE-Q; Hilbert and Tuschen-
Caffier 2006) with a 22 item cut-off mean score < 4 (Mond 
et al. 2006) to determine disordered eating. For both meas-
ures, good psychometric properties have been reported (Din-
kel et al. 2005; Hilbert and Tuschen-Caffier 2006).

Binge Eating Episodes

We assessed the frequency of binge eating episodes with 
a questionnaire (Schmidt and Martin 2015), asking par-
ticipants to retrospectively rate the number of binge eating 
episodes within the last seven days. The rating scale was 
preceded by a definition of binge eating episodes in the sub-
clinical context of this study, defining them as being induced 
by food craving urges and resulting in undesired consump-
tion of high calorie food without physiological hunger. The 
reported number of binge eating episodes was used as an 
indicator of binge eating frequency at T0 and T1. To sepa-
rate successful and unsuccessful participants for subgroup 
analyses, a criterion of at least 50% symptom reduction in 
binge eating from T0 to T1 was regarded as clinically rel-
evant success, in line with previous suggestions (e.g., Blan-
chard and Schwarz 1988).

Somatic Self‑efficacy

We assessed somatic self-efficacy with a five item question-
naire on the perceived ability to control bodily responses and 
to relax (e.g., “I am able to control my bodily reactions”; 
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“For me, it is easy to calm down when I am upset”) with 
7-point answer scales (0 = do not agree at all; 6 = fully 
agree). The mean score served as an indicator of somatic 
self-efficacy. Internal consistency of the questionnaire was 
acceptable, α = 0.70.

Statistical Analyses

Some data distributions violated normality assumptions. We 
therefore used non-parametric methods for group compari-
sons and backed up regression analyses with bootstrapping 
techniques.

To analyze possible reductions in relative spectral EEG 
high beta activity throughout self-regulation phases at T0 
and T1, we performed separate within-groups Wilcoxon-
tests for the NF and MI group. To provide an overall picture 
of EEG activity during self-regulation at T0 and T1, we 
conducted additional exploratory pre-post comparisons for 
the other analyzed EEG spectral ranges (delta, theta, alpha, 
SMR, and low beta) apart from hypothesis testing. We used 
the same statistical procedure for somatic self-efficacy to 
account for comparable effects. To address the question 
whether successful and unsuccessful participants differ in 
their amount of relative spectral EEG high beta post-treat-
ment, we used Mann–Whitney U-tests for either group.

We conducted hierarchic regression analyses to deter-
mine, whether EEG high beta activity or somatic self-effi-
cacy would predict binge eating episodes at post-treatment. 
EEG high beta activity was first inserted as predictor for NF 
(model 1), followed by the addition of somatic self-efficacy 
(model 2). We then tested the same model in the MI group. 
To back up regressions, we used a bootstrapping procedure 
(n = 1000). Significance levels were determined at p < 0.05, 
one-sided for H1 and H2, and two sided for H3.

In line with recommendations (Fritz et al. 2012), effect 
sizes for H1 and H2 were calculated as r based on Z-values 
due to partly skewed data. Effect sizes for H1 were calcu-
lated as r =

��
��

z
√
2n

��
��
 . Effect sizes for H2 were calculated as 

r =
��
��

z
√
N

��
��
 . For r, values ≥ 0.50 indicate large effects, val-

ues ≥ 0.30 indicate medium effects, and values ≥ 0.10 indi-
cate small effects (Fritz et al. 2012).

Results

We did neither observe any significant differences between 
groups in demographic or screening variables (see Table 1), 
nor in any outcome variable at pre-treatment (all ps > 0.121), 
indicating comparable groups.

Addressing the first research question, we found that NF 
participants showed significantly reduced EEG high beta 
activity during self-regulation phases after cue exposure at 
T1 compared to T0 (p = 0.027, medium effect). This effect 
was not observed for MI participants (p = 0.142, small 
effect). There were no significant differences in any other 
exploratory T0-T1 comparisons of EEG activity. Descriptive 
data and test statistics are displayed in Table 2.

For the second research question, groups were divided 
into subgroups of participants with successful (NF: n = 9, 
MI: n = 11) and non-successful (NF: n = 9, MI: n = 7) 
treatment outcomes based on at least 50% reductions in 
weekly binge eating. At T1, successful NF participants 
had significantly lower EEG high beta activity (M = 2.67%, 
SD = 1.18%) compared to unsuccessful NF participants 
(M = 3.70%, SD = 1.31%), Z = − 2.08, p = 0.020, r = 0.50 
(large effect). This difference cannot be attributed to ini-
tial EEG high beta activity, as at T0, no difference was 
observed, Z = − 0.84, p = 0.218, r = 0.20. Further, no effect 
was found comparing successful (M = 3.59%, SD = 2.44%) 
and unsuccessful (M = 3.07%, SD = 1.36%) participants in 
MI, T1: Z = 0.23, p = 0.430, r = 0.05; T0: Z = 0.50, p = 0.330, 
r = 0.12. Results are depicted in Fig. 2.

Hierarchic regression analyses for the third research ques-
tion showed that in NF, model 1, with EEG high beta activ-
ity as a predictor, explained 21% of the variance in binge 
eating at post-treatment. When somatic self-efficacy was 
added as a predictor in model 2, the amount of variance 
explained increased to 34%. While EEG high beta activ-
ity remained significant as a predictor, somatic self-efficacy 
only showed a trend towards significance as a predictor, yet 

Table 1   Demographic and 
screening data of the analyzed 
sample

Variable Neurofeed-
back (n = 18)

Mental 
imagery (n = 18)

Total (n = 36) Test statistics

M (SD) M (SD) M (SD)

Age 47.94 (14.24) 39.22 (14.75) 43.58 (14.96) U = 211.5, p = .121
Body Mass Index 27.89 (4.93) 27.26 (4.86) 27.58 (4.84) U = 170.0, p = .812
Restraint score 19.39 (4.39) 19.28 (3.97) 19.33 (4.13) U = 158.0, p = .911
Eating pathology 

(EDE-Q total)
2.19 (0.91) 2.39 (1.09) 2.29 (0.99) U = 133.5, p = .376
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became significant in the bootstrapped model (p = 0.046). 
Statistical details for both models are shown in Table 3.

For MI, the regression model using EEG high beta 
activity as a single predictor (model 1) was not significant 
(p = 0.785) and did not explain any variance in post-treat-
ment binge eating. However, when somatic self-efficacy 
was added as a predictor (model 2), the model explained 
32% of the variance in post-treatment binge eating. The 

bootstrapped model confirmed the result pattern. Statistical 
details for both models are shown in Table 4.

Discussion

The present study aimed at investigating the presence and 
role of physiological learning mechanisms (i.e., reductions 
in EEG high beta as a marker of cortical arousal) versus 

Table 2   Group EEG and 
self-report data pre and post 
treatment

Test statistics: within-groups t-tests; p-values: one-sided, * p < .05; ** p < .01. Conventions for effect size 
r: r ≥ .10 small effect; r ≥ .30 medium effect; r ≥ .50 large effect. For p-values of group-comparisons used 
for hypothesis testing (H1, bold print) are corrected for multiple comparisons (Holm); p-values of all other 
exploratory comparisons are reported without corrections for multiple testing

Pre-treatment Post-treatment Test statistics

M (SD) M (SD) Wilcoxon p r

Neurofeedback (n = 18)
Somatic self-efficacy 2.93 (0.91) 3.79 (0.81) 6.5  < .001** .58
EEG high beta % 4.68 (2.97) 3.19 (1.32) 130.0 .027* .32
EEG low beta % 7.34 (4.21) 6.27 (2.93) 114.0 .115 .21
EEG SMR % 7.97 (3.86) 8.12 (3.63) 83.0 .466 .02
EEG alpha % 13.80 (6.96) 15.85 (6.96) 53.0 .084 .24
EEG theta % 16.89 (5.00) 17.79 (4.67) 57.0 .115 .21
EEG delta % 49.32 (16.43) 48.80 (11.87) 100.0 .276 .11
Binge eating episodes 4.38 (2.77) 3.27 (3.34) 105.5 .027* .33

Mental imagery (n = 18)
Somatic self-efficacy 2.71 (0.89) 3.41 (1.06) 16.5 .006** .47
EEG high beta % 4.04 (2.57) 3.39 (2.06) 111.0 .142 .19
EEG low beta % 7.01 (2.80) 6.18 (3.11) 119.0 .077 .24
EEG SMR % 8.85 (3.70) 8.44 (4.42) 97.0 .320 .08
EEG alpha % 16.18 (6.61) 18.12 (8.32) 73.0 .305 .09
EEG theta % 18.39 (3.64) 17.62 (3.19) 113.0 .123 .20
EEG delta % 45.53 (10.50) 46.24 (13.28) 87.0 .483 .01
Binge eating episodes 4.50 (3.84) 2.83 (3.49) 120.0 .020* .35

Fig. 2   Comparison of post-
treatment EEG high beta activ-
ity (relative) in participants with 
or without clinically relevant 
success (≥ 50% vs. < 50% symp-
tom reduction); Test statistics: 
Mann–Whitney U-Test, error 
bars indicate standard errors, 
*p < .05
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psychological learning mechanisms (i.e., enhancement of 
somatic self-efficacy and abilities to relax) in a NF treat-
ment against binge eating. We aimed at analyzing, how these 
learning processes relate to treatment success, and if physio-
logical changes are specific for NF. Therefore, we conducted 
the same analyses in a group training with a MI treatment in 
a corresponding setup with imagery-related self-regulation 
after food cue exposure.

The results indicate the presence of physiological learn-
ing in NF: Participants in NF were able to reduce their corti-
cal arousal—as measured by EEG high beta activity − from 
pre- to post-treatment, confirming H1. In comparison, we 
did not observe EEG high beta reductions in MI. Hence, 
these physiological changes seem to be specific for NF. 
Enhancements in somatic self-efficacy were observed in 
both treatments, indicating that the reduced EEG arousal 
in NF is not only caused by subjective relaxation (e.g., Kim 
et al. 2014).

We further obtained results that mark the relation 
between a reduction in cortical arousal and treatment 
success: Post-treatment EEG high beta activity differed 
among successful and unsuccessful participants, with 
lower EEG high beta activity in successful participants, 
confirming H2. This effect not observed for MI.

After the treatment, lower EEG high beta activity pre-
dicted the frequency of binge eating episodes. While post-
treatment somatic self-efficacy did exert some influence 
in NF, the impact of EEG high beta activity was larger, 
confirming H3. In comparison, EEG high beta activity was 
not related to treatment outcomes in MI.

In present sample, the frequency of binge eating episodes 
decreased in both treatment groups. In the prior RCT sam-
ple (Schmidt & Martin, 2016), the NF group showed less 
frequent binge eating episodes post-treatments compared to 
a waitlist, while the MI group did not. Still, a within group 
comparison at follow-up showed significant reductions of 
binge eating in both active groups, which is confirmed in 
the present analysis. However, the present analysis shows 
that the two treatments seem to work on different pathways: 
Although perceived subjective self-regulatory abilities play 
a certain role in NF —which is in line with previous find-
ings in BF research (Holroyd et al. 1984; Wickramasekera 
1999) —physiological learning still showed a greater influ-
ence in this treatment type. In MI, only psychological learn-
ing, i.e. somatic self-efficacy accounted for improvements 
in binge eating.

One important prerequisite of the NF and BF approach is 
the view that physiological activity associated with dysfunc-
tional states or behaviors is altered, to change the behavior 

Table 3   Hierarchic regression 
for the prediction of binge 
eating episodes after 
Neurofeedback

Y = Binge eating episodes post treatment, n = 18, T1 = post-treatment

Variable B β t p B: CI 95% ΔR2

Model 1
Constant − 0.82 − 0.44 .699 [− 4.79; 3.16]
EEG high beta T1 1.29 .51 2.36 .032 [0.13; 2.44] .26
R2 adj = .21; F(1, 16) = 5.55; p = .032
Model 2
Constant 5.10 1.52 .149 [− 2.05; 12.25]
EEG high beta T1 1.41 .56 2.82 .013 [0.34; 2.48] .26
Somatic self-efficacy T1 − 1.67 − .41 − 2.05 .058 [− 3.41; 0.07] .16
R2 adj = .34; F(2, 15) = 5.43; F change = 4.21; p = .017

Table 4   Hierarchic regression 
for the prediction of binge 
eating episodes after Mental 
Imagery

Y = Binge eating episodes post treatment, n = 18, T1 = post-treatment

Variable B β t p B: CI 95% ΔR2

Model 1
Constant 2.44 1.46 .163 [− 1.09; 5.96]
EEG high beta T1 0.12 .07 0.28 .785 [− 0.78; 1.01] .01
R2 adj = − .06; F(1, 16) = 0.08; p = .785
Model 2
Constant 9.77 3.61 .003 [3.99; 15.54]
EEG high beta T1 0.04 .02 0.10 .920 [− 0.69; 0.76] .01
Somatic self-efficacy T1 − 2.07 − .63 − 3.11 .007 [− 3.48; − 0.65] .39
R2 adj = .32; F(2, 15) = 4.91; F change = 9.69; p = .023
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or state itself consequently (Niv 2013; Schwartz 1976). 
Critiques have recently again challenged this view, point-
ing out that treatment effects in NF may be attributed to 
unspecific treatment factors (Thibault et al. 2016), placebo 
effects (Thibault et al. 2017) or ‘neuroenchantment’ (i.e., 
enhanced credibility of studies or treatments that use brain 
imaging; Ali et al. 2014). The emerging amount of studies 
that explicitly address and analyze physiological learning in 
BF-treatments (Imperatori et al. 2018) will help to specify 
the relevance of these placebo effects. While the present 
study tried to control for unspecific treatment effects by 
comparing the influence of learning processes in two active 
treatments, the effect of neuroenchantment caused by the 
technical equipment used in the NF-group needs further 
investigation. Future studies should therefore also include 
sham-feedback—preferably in double-blind designs (Ros 
et al. 2020)—including groups that train with the same tech-
nical setup to assess the specific contribution of neural regu-
lation (Thibault et al. 2016). However, such studies should 
also assess possible nocebo effects that might be caused by 
false feedback (Colloca and Miller 2011). Besides these 
methodological suggestions, the scientific rigor of RCTs on 
NF treatments should further be improved by preregistration 
of NF studies to prevent false-positive results and under-
reporting of negative outcomes in NF research (Ros et al. 
2020; Thibault et al. 2018).

Still, according to the results of the present study, physi-
ological changes seem to play a role in this NF protocol 
against binge eating, linking reduced cortical arousal to less 
craving and less frequent binge eating episodes (Blume et al. 
2019; Parvaz et al. 2011). This finding is also important 
because EEG high beta activity has seldom been the main 
target frequency range in NF protocols (Paquette et al. 2009; 
Zotev et al. 2014), but has instead mostly been used as a 
supplementary control range (Egner and Gruzelier 2001; 
Keith et al. 2015). Our findings indicate that high beta is a 
trainable frequency range that can be targeted in NF when 
psychological correlates are indicative for this procedure. 
However, due to different classifications of ranges of the beta 
band in the EEG, we have to mention that the present study 
trained high beta in the range of 23–28 Hz only. Research-
ers should therefore be cautious in transferring the present 
findings on physiological learning to other protocols with 
different classifications of the beta range (e.g., general beta 
activity, 13–30 Hz).

Despite additionally training EEG alpha activity at the 
end of the NF sessions, pre-post changes in alpha activity 
were not significant. However, given the treatment setup and 
instructions, this result is not surprising: Participants only 
had to upregulate alpha activity in the last 180 s of each 
sessions and not as a self-regulation task after the food cue 
exposure. Thus, the specific alternations in high beta activity 
further point into the direction that pre-post changes could 

be attributable to the self-regulation-training effects in NF, 
rather than to general relaxation.

Still, a discussion of limitations is warranted. Statistical 
power is reduced due to missing EEG data that had to be 
excluded because of artifacts. Although we tried to limit 
constraints exerted by sample size with appropriate statis-
tical analyses, the study should be replicated with larger 
samples.

The present study allowed assessing changes in EEG 
activity from the start to the end of the treatment. However, 
we were not able to determine the physiological learning 
curves for NF based on the course of EEG changes within 
every session and between sessions because of technical 
constraints of the training system. Especially within-session 
learning is a parameter, which is frequently used in NF and 
BF studies (Gruzelier 2014a; Rokicki et al. 1997) and should 
therefore be measured in further evaluations of this proto-
col. According to the proposed guidelines on reporting NF 
studies, future studies should register, analyze, and report 
regulation success, based on the feedback signal itself, as 
well as the detailed courses of changes in the trained as well 
as associated EEG parameters within and between sessions 
(Ros et al. 2020).

Further, we focused on the analysis of EEG changes on 
the position of the training electrode Cz. However, neuro-
feedback might also lead to topographic changes in brain 
activity and can result in significant alterations of EEG 
activity on positions not involved in the training (Gruzelier 
2014a). Therefore, future studies with increased statistical 
power should analyze multiple EEG positions to assess pos-
sible topographic EEG changes.

Apart from limitations, our study has the strengths of 
analyzing objective physiological regulatory abilities with 
sophisticated EEG equipment and proper artifact corrections 
(Muthukumaraswamy 2013; Wallstrom, et al. 2004), in a 
standardized experimental design using reliable methods.

The experimental setup of the study implies another 
strength: We measured the EEG in the absence of feedback. 
Through this setup, we found that the down-regulation of 
cortical arousal was no longer dependent on provided feed-
back. These findings indicate that NF participants should be 
able to control their cortical arousal in everyday situations 
that include tempting confrontations with food cues (e.g., at 
dinner parties or cafeteria buffets). Hence, our results show a 
transfer process that accounts for external validity and effec-
tiveness of the NF (Sherlin et al. 2011).

Evidence on physiological learning was mixed in prior 
research on BF and NF protocols (Imperatori et al. 2018). 
To our best knowledge, our study provides the first avail-
able insights into mechanisms in a high beta NF protocol 
with food cue exposure to reduce binge eating. Overall, the 
present results contribute to the body of evidence for the role 
of physiological changes associated with NF treatments that 



303Applied Psychophysiology and Biofeedback (2020) 45:293–305	

1 3

is heavily demanded by NF researchers (Bagdasaryan and 
Le Van Quyen, 2013; Gruzelier 2014a; Niv 2013; Ros et al. 
2020; Sitaram et al. 2017; Strehl 2014).

Altogether, these results contribute to the notion that 
self-control abilities regarding the ‘flesh’ (i.e., physiologi-
cal changes) can help increase the ‘spirit’s’ ability to resist 
temptation, showing that NF indeed can provide specific 
physiological contributions to change dysfunctional eating.
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