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Abstract

Background: Phosducin-like protein 3 (PhLP3) forms a ternary complex with the ATP-dependent molecular chaperone CCT
and its folding client tubulin. In vitro studies suggest PhLP3 plays an inhibitory role in b-tubulin folding while conversely in
vivo genetic studies suggest PhLP3 is required for the correct folding of b-tubulin. We have a particular interest in the
cytoskeleton, its chaperones and their role in determining cellular phenotypes associated with high level recombinant
protein expression from mammalian cell expression systems.

Methodology/Principal Findings: As studies into PhLP3 function have been largely carried out in non mammalian systems,
we examined the effect of human PhLP3 over-expression and siRNA silencing using a single murine siRNA on both tubulin
and actin systems in mammalian Chinese hamster ovary (CHO) cell lines. We show that over-expression of PhLP3 promotes
an imbalance of a and b tubulin subunits, microtubule disassembly and cell death. In contrast, b-actin levels are not
obviously perturbed. On-the-other-hand, RNA silencing of PhLP3 increases RhoA-dependent actin filament formation and
focal adhesion formation and promotes a dramatic elongated fibroblast-like change in morphology. This was accompanied
by an increase in phosphorylated MAPK which has been associated with promoting focal adhesion assembly and
maturation. Transient overexpression of PhLP3 in knockdown experiments rescues cells from the morphological change
observed during PhLP3 silencing but mitosis is perturbed, probably reflecting a tipping back of the balance of PhLP3 levels
towards the overexpression state.

Conclusions: Our results support the hypothesis that PhLP3 is important for the maintenance of b-tubulin levels in
mammalian cells but also that its modulation can promote actin-based cytoskeletal remodelling by a mechanism linked
with MAPK phosphorylation and RhoA-dependent changes. PhLP3 levels in mammalian cells are thus finely poised and
represents a novel target for engineering industrially relevant cell lines to evolve lines more suited to suspension or
adherent cell growth.
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Introduction

The phosducin-like family of proteins were first identified,

through phosducin itself, as proteins proposed to sequester the b
and c subunit dimer of G protein (Gbc) thereby inhibiting its

interaction with the a subunit (Ga) and regulating signalling

involving trimeric G-protein coupled receptors in multicellular

organisms [1]. More recently it has emerged that the most widely

conserved members of this family in eukaryotes, namely excepting

mammalian retinal phosducin, act as co-chaperones for the

chaperonin containing TCP1 (CCT) [2,3,4]. Blaauw et al. [5]

established three subgroups of phosducin-like proteins on the basis

of sequence similarity present from plants to humans via yeast and

slime moulds; subtype I, including the original phosducin (Pdc)

and its subsequently discovered more generally expressed human

relative phosducin-like protein 1 (PhLP1), subtype II represented

in humans by PhLP2A and PhLP2B [5,6] and subtype III which

includes human PhLP3 [5].The nomenclature used in this report

with regard to the phosducin-like proteins is detailed and clarified

in Table 1. From studies to date it appears that PhLP1-3 may all

be important as co-chaperones during CCT-assisted protein

folding whilst only Pdc and PhLP1 (which have a high affinity

for Gbc) have a role in G protein signalling, phosducin itself being

a relatively recent evolutionary product that has lost interaction

with CCT (for a review of this area see [7]).

A growing body of evidence implicates PhLP3 in the folding

pathway of the cytoskeletal components actin and b-tubulin. For

example, Stirling and co-workers [4] suggested that PhLP3 (also

referred to as APACD or TXNDC9 in mammals, see [4] and

Table 1) may be involved during the early stages of actin and

btubulin folding (independent of the prefoldin complex). These in

vitro studies demonstrated that PhLP3 had a negative effect on
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actin and tubulin folding, possibly by modulating the ATPase

activity of CCT. The yeast subtype III orthologue, confusingly

termed Plp1, does not stimulate actin binding by CCT whereas

the subtype II orthologue, Plp2, strongly stimulates both binding

and folding of actin by CCT [2]. In embryonic nematode worms

siRNA silencing of PhLP3 produced defects in astral and spindle

pole microtubules and defective cytokinesis [8], mirroring the

effect of RNA silencing of two PhLP3 homologues in plant

Arabidopsis thaliana (PhLP3a and PhLP3b) that resulted in a

disrupted microtubule network and subsequent defective cell We

have a particular interest in both molecular chaperones and

protein folding [9,10,11] and the cytoskeleton [12,13] with respect

to their roles in determining cellular phenotypes associated with

high level expression of recombinant protein by mammalian cell

expression systems e.g. see [14,15,16]. Proteomic analyses have

also demonstrated a correlation of chaperone and cytoskeletal

protein levels with recombinant protein yields in NS0 cells

engineered to express an IgG4 monoclonal antibody [17]. Indeed,

it is becoming increasingly clear that interactions between the

cytoskeleton, the translational machinery, chaperones, protein

folding/degradation, and the secretory machinery are coordinated

[18], all of which are cellular processes underpinning heterologous

protein production during bioprocessing. In this respect there is

also evidence that the cytoskeletal apparatus interacts functionally

with the translational apparatus and that interference of this

interaction leads to a reduction in protein synthesis [19] whilst

modulation of mRNA translation is known to influence recombi-

nant protein synthesis in mammalian cells [20,21,22]. With regard

to CCT, this chaperone has also been linked to translation in

various cellular contexts, including nascent chain folding on the

ribosome [23], ribosome biogenesis [24], antigen processing [25],

and cytoskeletal biogenesis [12,13,26]. CCT also shows interac-

tions with components of the translational machinery including

elongation and initiation factors [27,28].

In the bioprocessing industry, the gold standard mammalian cell

expression system is the Chinese hamster ovary (CHO) cell [29]

which is adapted to grow in suspension growth in large scale

bioreactors where the cells have a very different morphology to

when grown adherently that presumably requires cytoskeleton

remodelling. With our interest in the cytoskeleton and its role in

determining cellular phenotypes associated with high level

recombinant protein expression from mammalian cell expression

systems, and the fact that the majority of studies into PhLP3

function reported to date have been carried out in non-

mammalian systems, we set out to investigate the role of PhLP3

in cytoskeleton remodelling in the industrially relevant CHO cell

line. Specifically, we investigated the influence of manipulating

PhLP3 levels in mammalian cells and show that over-expression of

human PhLP3 in a mammalian system disrupts a- and b-tubulin

localisation whilst there is an approximate 20% decrease in a-

tubulin levels and an approximate 60% increase in b-tubulin level.

By contrast, neither actin levels nor assembly appeared to be

obviously altered upon over-expression of PhLP3, yet siRNA

silencing of PhLP3 promoted the formation of microfilament

remodelling and RhoA/ROCK-dependent stress fiber formation

which was accompanied by an increase in phosphorylated ERK.

Rescue experiments following siRNA prevent the anchorage-

dependent morphological changes observed during siRNA

silencing but probably reflect a milder overexpression phenotype

with inhibited mitosis and promotion of enlarged polyploid nuclei.

These findings support the hypothesis that PhLP3 is important for

maintaining b-tubulin levels in mammalian cells and that

modulation of PhLP3 levels promotes cytoskeletal remodelling in

a MAPK and RhoA-dependent manner.

Results

Authentic human PhLP3 is expressed in the adherent
CHOK1 cell line

It is reported that recombinant human PhLP3 inhibits CCT

mediated folding of actin in a rabbit reticulocyte lysate in vitro

translation system [4,30]. However, to our knowledge there have

been no reports of the effect of PhLP3 manipulation on the actin/

tubulin cytoskeleton in a mammalian cell culture system.

Successful over-expression of PhLP3 constructs in our adherently

grown CHOK1 model system was initially confirmed by western

blotting. Endogenous PhLP3 was detectable at relatively low levels

in untransfected cells (track 3, top panel, Figure 1A) but increased

greatly when recombinant human PhLP3 was transiently ex-

pressed (tracks 1 and 2). Immunofluorescence confirmed this much

higher expression of PhLP3 in transfected CHOK1 adherent cells

compared with untransfected surrounding cells. Similarly high

levels of PhLP3 expression were seen in GFP-positive cells

generated by co-transfection used to monitor plasmid uptake by,

and transfection of, CHOK1 adherent cells (Figure 1C).

To assess the authenticity of the recombinantly expressed PhLP3

protein, its known activity of binding to CCT [4] was monitored.

CHOK1 adherent cells were transfected with a range of DNA

amounts (100 ng, 500 ng, 1 mg, 2 mg) and binding of CCT

determined in immunoprecipitates generated using antibody to

PhLP3. At the lowest level of PhLP3 over-expression (100 ng of

plasmid) no CCT subunits were detected in immunoprecipitates,

whereas CCTa (and CCTb data not shown) binding was apparent

upon transfection with 500 ng or greater amounts of plasmid

(Figure 1B). When higher amounts of plasmid were transfected (1

and 2 mg) there was not an associated increase in PhLP3 over-

expression compared to the 500 ng transfection and the amounts of

CCTa detected in immunoprecipitation experiments were actually

decreased (Figure 1B). A tagged PhLP3 recombinant protein

(PhLP3V5 - with a V5 tag at its C-terminus) did not interact with

CCTa in this assay (data not shown) and was therefore not used in

further work. This finding suggests that modification of the C-

Table 1. The nomenclature used for the Phosducin like proteins (PLPs) discussed in this manuscript.

Gene (Human) Aliases Protein Name Term used in this manuscript

PDC MEKA Phosducin PDC

PDCL PhLP1 Phosducin-like PhLP1

PDCL2 GCPHLP, PhLP2B Phosducin-like 2 PhLP2B

PDCL3 PhLP2A, VIAF Phosducin-like 3 PhLP2A

TXNDC9 PhLP3, APACD Thioredoxin domain containing 9 PhLP3

doi:10.1371/journal.pone.0028271.t001

PhLP3 and Cytoskeletal Reorganisation
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terminal end of PhLP3 disrupts its ability to interact with CCT

subunits, as observed by Stirling and colleagues [4], though C-

terminal myc-tagging does not prevent CCT binding by PhLP1

constructs [31]. Neither actin nor b-tubulin were detected in the

immunoprecipitated complexes (data not shown).

Increasing PhLP3 expression does not appear to perturb
actin levels or organisation in CHOK1 adherent cells but
results in tubulin re-distribution

Transfection of PhLP3 into CHOK1 cells (or the suspension

CHO cell line LB01, data not shown) did not alter the amounts of b-

actin detected by immunoblot (Figure 1A, second panel) or in any

obvious way the intracellular distribution of actin (not shown). In

contrast, over-expression of PhLP3 resulted in a change to the levels

of, and ratio of, a- and b-tubulin subunits. There was an

approximate 20% decrease in a-tubulin after PhLP3 overexpression

mirrored by an approximate 60% increase in b-tubulin subunits

(Figure 1A, third and fourth panels), as determined by densitometry

analysis of the immunoblots. This change in the ratio of the a- and

b-tubulin subunits was associated with a reorganisation of the

microtubules (Figure 1D). a-tubulin in particular appeared to be

partially redistributed to the nucleoplasm (but not to the nucleolus)

(Figure 1D), a most unusual interphase location for tubulin in

normal cells. Analysis of the supernatant of adherent CHOK1 cells

48 h post-PhLP3 transfection revealed that there was a 2.5-fold

increase in the number of detached cells free in the supernatant (i.e.

not adherent) compared to the controls. Moreover, the viability of

these cells was just 30% (PhLP3 transfected) compared to 80% in

controls (Figure 1E). After 72 h of transfection with 2 mg of plasmid

encoding PhLP3 extensive cell death was evident, suggesting

toxicity of substantial PhLP3 overexpression levels.

Figure 1. Transient expression of PhLP3 in CHOK1 adherent cells promotes tubulin redistribution, an imbalance of a and b-tubulin
subunits and cell death. (A) Anti-PhLP3 antibody detects full length PhLP3 (24 kDa) in CHOK1 adherent cells transiently transfected with human PhLP3
(duplicates lane 1 and 2). Endogenous PhLP3 was detected in the plasmid only control (lane 3). b-actin levels are not altered upon PhLP3 overexpression
but this promotes an increase of b-tubulin subunits relative to the control and a decrease in a-tubulin subunits (compare lanes 1 and 2 with lane 3). (B)
Immunoprecipitation of CCTa in CHOK1 cells transiently transfected with PhLP3. CCTa (top panel) and PhLP3 (bottom panel) were detected in cell lysates
transiently transfected with 500 ng–2 mg PhLP3 plasmid and immunoprecipitated with an anti-PhLP3 antibody, but not in plasmid only, untransfected
and antibody only controls. (C) Immunofluorescent detection of PhLP3 in CHOK1 cells transfected with PhLP3. An anti-PhLP3 antibody was used to
identify cells overexpressing PhLP3 (green) and DAPI (blue). (D). PhLP3 overexpression alters tubulin distribution. Immunofluorescent staining of PhLP3
transfected CHOK1 cells with either anti-a tubulin(red) or anti-btubulin(green) specific antibodies detects redistribution of both tubulin subunits
compared to untransfected controls. (E) PhLP3 overexpression in adherent CHOK1 cells promotes the release of cells into the supernatant and decreases
cell viability compared to mock transfected and untransfected controls. Data calculated as mean +/2 SEM of n = 2.
doi:10.1371/journal.pone.0028271.g001
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siRNA silencing of PhLP3 in CHO LB01 suspension cells
promotes an elongated morphology, anchorage-
dependent growth and an altered actin cytoskeleton

Previous studies demonstrated that PhLP3 is not essential in

Dictyostelium [5] and yeast Plp1 (a type III PLP) is not essential,

but in C.elegans siRNA silencing of PhLP3 resulted in microtubule

defects preventing proper cytokinesis in the embryo [8]. To assess

the effect of PhLP3 silencing in a cultured mammalian cell

system, PhLP3-directed knockdown was conducted using two

CHO cell lines, the CHOK1 (adherent) and LB01 (suspension)

cell lines. Two siRNAs, one derived from human PhLP3 the

other based on mouse PhLP3, were used because they were

commercially available and because the annotated CHO genome

sequence is not in the public domain. PhLP3 silencing, by the

mouse siRNA but not the human siRNA, in CHO LB01 cells was

confirmed by qRT-PCR at the mRNA level (Figure S1) and by

immunoblotting (Figure 2A) which showed an approximate 65%

decrease in endogenous PhLP3 levels consistent with the mRNA

data. Together these data, consisting of the qRT-PCR data

showing a knockdown of PhPL3 at the mRNA level and the

western data showing a knockdown at the protein level, confirm

that the murine siRNA does indeed result in knockdown of the

CHO PhPL3 mRNA. After 72 hours of siRNA silencing

treatment a dramatic change in cell phenotype was observed

with elongation of both cells and nuclei, the latter being also

increased in size (Figure 2, and Figure 3 second panel). This

characteristic morphological change compared with untrans-

fected cells was observed only with the mouse siRNA, not with

the human siRNA, nor with a scrambled sequence (negative

control) siRNA.

The elongated morphology of the cells upon knockdown suggested

cytoskeletal changes, most likely in actin assembly as stress fibres. The

presence of extensive stress fiber formation was indeed confirmed

using phalloidin (Figure 2B). There were no obvious increases in

lamellipodia or membrane ruffles. There was an accompanying

reorganisation of the microtubule network, from a radiating pattern

emanating from a distinct microtubule organising centre (MTOC) to

more extensive elongated parallel microtubule arrays (Figure 2C)

characteristically observed in flat, adherent fibroblast cells with well-

developed stress fibres such as NIH 3T3 cells (Figure 2D). The actin

binding protein vinculin is involved in linking the actin cytoskeleton

with the extracellular matrix (ECM) and immunofluorescence staining

of PhLP3 CHO LB01 knockdown cells for this protein revealed

prominent focal adhesion in the elongated cells that appeared to be

predominately at the cell periphery, in contrast to the staining pattern

in control cells (Figure 2E).

Figure 2. RNAi silencing of PhLP3 in LB01 cells promotes a fibroblast-like morphology and cytoskeletal rearrangement. (A)
Immunoblots using anti-PhLP3 of LB01 cells transfected with mouse siRNA shows a decrease in PhLP3 expression compared to human siRNA and a
scrambled negative control siRNA (top panel). Actin is used as an internal loading control (bottom panel). Note that two PhLP3 products (bands) are
detected in these samples prepared with phosphatase inhibitors while in figure 1A (where they were absent) only one product is detected: PhLP3 is
known to be phosphorylated [45] (see also references in the human PhLP3 Unigene entry UniGene Hs.536122) with the phosphoform displaying
higher apparent molecular weight on SDS gels than the unphosphorylated form. (B) LB01 cells were transfected with mouse PhLP3 siRNA for 72 h
and the cells were fixed and stained for either actin (rhodamine phalloidin) or (C) tubulin (anti-a-tubulin). The microtubule organising center is
indicated by a red arrow. (D) NIH 3T3 mouse fibroblast cells were fixed and stained for F-actin filaments (rhodamine phalloidin, red) and microtubules
(anti-a-tubulin, green). (E) Focal adhesions observed with anti-vinculin in cells transfected with the control plasmid or siRNA silencing plasmid 48 h
and 72 h post transfection.
doi:10.1371/journal.pone.0028271.g002
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Rescue with human PhLP3 cDNA reverses or prevents
morphological changes associated with RNAi mediated
CHO LB01 cell PhLP3 silencing but disrupts mitosis and/
or cytokinesis

To rescue the PhLP3 silenced phenotype, and confirm its cause

as being due to PhLP3 depletion/knockdown, CHO LB01 cells

were co-transfected with mouse PhLP3 siRNA and human PhLP3

cDNA. The basis of this approach is that the murine siRNA used

in this study targets the 39UTR of the mouse mRNA (and the

CHO 39-UTR as shown and described above) at a position where

there is no sequence homology to the human 39-UTR. The

murine siRNA should not therefore knockdown the recombinant

human PhPL3 mRNA upon over-expression of the human cDNA

and thus expression of the recombinant human PhLP3 in the

rescue experiment can be achieved in the presence of the murine

siRNA. To limit the disruption of the microtubule network and

increased cell death evident when cells were transfected with large

amounts (2 mg) of plasmid encoding PhLP3 (Figure 1D and 1E), a

smaller amount (500 ng) of plasmid was used for rescue. Figure 3

shows typical results. While the elongated cell shape was prevented

Figure 3. Rescue of PhLP3 silenced CHO LB01 cells promotes aberrant cell division. LB01 cells were silenced and rescued as described in
the methods section and then fixed and co-stained for PhLP3 (green) and with the nuclear DAPI stain (blue). PhLP3 overexpression in LB01 cells leads
to more ‘rounded’ cells compared to untransfected controls (A v B) whilst siRNA silencing promotes morphological changes including elongated cells
and nuclei and adherent growth (A v C). When LB01 cells were co-transfected with mouse PhLP3 siRNA and human PhLP3 DNA (D and E) the
elongated phenotype observed in the PhLP3 silenced cells was no longer present and thus the cells were considered ‘rescued’. Co-transfected cells
were either in early anaphase (red arrows), late anaphase (green arrow) or exhibited enlarged nuclei (white arrrow).
doi:10.1371/journal.pone.0028271.g003
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or reversed (compare 3C and 3D) by human PhLP3 expression on

top of mouse siRNA, many cells either displayed enlarged nuclei

or showed defects in late stages of mitosis compared to control

transfections suggesting that the microtubule network was

disrupted, if more mildly, as it is just by over-expressing PhLP3.

The only mitotic stage observed in ‘rescued’ cells was either early

or late anaphase which suggests that either progression through

this stage in mitosis was disrupted by suprastoichiometric PhLP3

levels or that cytokinesis was inhibited or delayed, in agreement

with spindle pole defects and aberrant cytokinesis observed during

PhLP3 disruption in C. elegans [8].

The RhoA/ROCK pathway is activated during actin stress
fiber formation in PhLP3 siRNA silenced CHO LB01 cells

The small GTPase Rho A protein (RhoA) has a critical role in

regulating cytoskeletal organisation which includes the formation

of focal adhesions and actin stress fibers in cultured cells [32]. The

rho-dependent serine threonine kinase p160ROCK has been

identified as the major target for Rho [33] and in cultured cells,

the pyrimidine derivative Y-27632 has been shown to specifically

inhibit ROCK-mediated formation of stress fibers [34]. We

evaluated whether this signalling pathway contributed to the

reorganisation of the actin cytoskeleton observed upon PhLP3

silencing. In order to determine this, siRNA mediated knockdown

of PhLP3 in LB01 cells was carried out over a period of 72 h and

cells were collected at 24 h intervals for analysis of activated

RhoA. Activated RhoA (24 kDa) was most strongly detected at

72 hours (Figure 4A), the time point coinciding with the most

dramatic PhLP3 knockdown-dependent changes in cell morphol-

ogy. To investigate RhoA involvement further, PhLP3 silenced

LB01 cells were treated with either 3 mM or 10 mM of the Rho

inhibitor Y-27632 for 6 h (namely during 72–78 h of silencing).

This did not revert the elongated cell morphology, but did produce

a discernible reorganisation of the actin cytoskeleton characterised

by the substantial loss of the internal stress fibres, a concentration

of actin filaments to the cell periphery and an increased number of

filipodia compared to untreated cells (Figure 4B). These findings

are consistent therefore with the hypothesis that the formation and

stabilisation of the stress fibers observed upon PhLP3 silencing is

RhoA dependent.

Manipulation of PhLP3 levels in CHO LB01 cells is
associated with altered MAPK phosphorylation

The dramatic change in morphology observed upon RNA

silencing of PhLP3 in CHO LB01 cells is associated with the

disassembly and reassembly of focal adhesions (Figure 2E). MAPK

(ERK1/2) has an established role in focal adhesion disassembly

involving calpain-activated cleavage of Rho and cytoskeletal linker

proteins such as talin [35] but more recently MAPK was shown to

also be required for their assembly and maturation [36].

Therefore, the status of MAPK phosphorylation was investigated

during manipulation of PhLP3 levels, by immunoblotting with

parallel examination of actin network organisation (by phalloidin

staining) and, by immunofluorescence, of total MAPK versus

phosphorylated MAPK. Figure 5A shows that there was no

obvious change in the amount or distribution of total MAPK

kinase in PhLP3 silenced cells compared to control cells. However,

the phosphorylated MAPK in control cells was concentrated

around the cell periphery and modestly evident whereas in

silenced cells there was both an increase in amounts of

phosphorylated MAPK and a more uniformly cytoplasmic and

even nuclear distribution. Immunoblotting revealed highest levels

of phosphorylated ERK at 72 h silencing compared to controls

and that this increase was reduced in the presence of the ROCK

inhibitor Y27632 (Fig. 5B). Conversely, during transient over-

expression of PhLP3 there was a decrease in phosphorylated ERK

over 48 h compared to controls (Fig. 5C).

Discussion

We believe the studies here to be the first detailed report of the

effects of manipulating PhLP3 levels on mammalian cells. Our

findings are indicative of effects both on microtubules (principally

manifested when PhLP3 is in excess of its usual amounts) and on

microfilaments (when it is diminished). This is not unexpected,

given that PhLP3 is proposed to modulate the actions of CCT, the

chaperone most implicated in, and required for the folding of,

both tubulin and actin, the required components of microtubules

and microfilaments. Even so, the results obtained do appear to

signify that PhLP3 appears to be important in regulating both of

these cytoskeletal components, not just one or the other to their

mutual exclusion. Indeed, they imply that the balance of PhLP3

levels in mammalian cells is rather crucial for the maintenance of

cell health and the balance of deployment (and functions) of

cytoskeleton subunits in the cytoskeletal network.

PhLP3 interacts with CCT to form a ternary structure with

tubulin and is important in the regulation of b-tubulin folding [4].

Lacefield and Solomon [37] carried out deletion studies in yeast

which showed that while it is non-essential, class III PLP (yeast

Plp1) protects these unicellular organisms from the toxic effects of

excess b-tubulin [38] and they concluded that PhLP3 was involved

in an early step in b-tubulin folding. We show here that in Chinese

hamster ovary cell lines, the overexpression of PhLP3 has dramatic

effects upon microtubule networks, disassembling the interphase

microtubule array, mislocalising b-tubulin to nuclei and upregu-

lating b-tubulin levels while downregulating a-tubulin, an

imbalance likely to influence dimer assembly and certainly one

that is toxic to CHO cells (Figure 1) as observed for such

imbalances in yeast. We note too that human PhLP2A (PDCL3 or

VIAF, see Table 1) is an inhibitor of apoptosis (IAP) interacting

factor that plays a role in caspase activation during apoptosis [39]

demonstrating that at least one of the PLPs plays an active role in

cell death. Interestingly, it has been suggested that in plp1D yeast

cells, aggregation of a-tubulin is a result of the absence of correctly

folded b-tubulin so heterodimers cannot be formed [37].

Determining how this imbalance arises upon PhLP3 over-

expression will be a key factor in determining the role of PhLP3

in tubulin biogenesis.

We present here in Figure 3 findings indicating that knockdown

of PhLP3 (using siRNA derived from mouse sequence) is

permissive of microtubule assembly without obvious defects and

yet it promotes reorganisation of the actin microfilament

cytoskeleton to produce a more elongated anchorage-dependent

phenotype. This contrasts with PhLP3 knockdown studies in C.

elegans and A. thaliana that noted aberrant microtubule architecture

as well as abnormal cytokinesis that could signify affects on actin

too [8,40]. A microtubule-based phenotype did however return

upon partial rescue of CHO PhLP3 knockdown using human

PhLP3 encoding DNA (Figure 3) where defects in mitosis were

indicated by the observation of enlarged multinuclear cells

(polyploidy) or disrupted chromosomal segregation indicative of

delays in early or late anaphase. It is of interest to note that a

temperature-sensitive yeast Plp2 mutant has implicated this

protein in G1/S phase cell cycle progression [41] and it is possible

that PhLP3 too may play a role in regulating chromosome

separation during mitosis in mammalian cells, either directly

through a tubulin folding based mechanism, or as a regulator of

PhLP3 and Cytoskeletal Reorganisation
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CCT. As discussed above, interference of PhLP3 interaction with

CCT might shift the normal balance of its functions for other

clients, including those with known regulatory function in cell

cycle progression, including cdc20, cdh1 and plk1 [42,43] that

between them help to govern the anaphase to metaphase

transition, mitotic exit and entry into S-phase.

Deletion studies in yeast and in vitro suggest that PhLP3 has a

negative effect on actin expression [4] seemingly confirmed here

by the influence of PhLP3 knockdown. Willison and colleagues

have shown that yeast PhLP3 (Plp1) appears to inhibit the binding

of actin to CCT whereas Plp2 (the yeast PhLP2 orthologue)

strongly stimulates CCT-mediated actin folding [2]. If type III

PLPs (human PhLP3 and yeast Plp1) stimulate b-tubulin folding

while type II PLPs (human PhLP2 and yeast Plp2) instead

stimulate actin folding then changing their balance could impact

both tubulin and actin folding in reciprocal manner. Thus, our

findings here in mammalian cells of a ‘fibroblast-like’ anchorage-

dependent morphology induced by siRNA silencing of PhLP3 in

CHO cells could reflect a tipping of this balance, promoting a re-

arrangement of the actin cytoskeleton driving the formation of

RhoA activated actin stress fibers and focal adhesions. The RhoA

effector ROCK, is involved in these cytoskeletal changes since the

selective ROCK inhibitor, Y27632, was observed to disrupts these

actin stress fibers (Figure 4). In addition, these changes in the

cytoskeletal architecture are accompanied by an increase in

phosphorylated MAPK, while over-expression of PhLP3 reduced

MAPK phosphorylation (Figure 5). Recently it was shown that the

MEK-MAPK signalling pathway is required for focal adhesion

Figure 4. RhoA/p160ROCK pathway regulates actin stress fiber formation in PhLP3 siRNA silenced CHO LB01 cells. A commercially
available RhoA-GTP/Rhotekin pull down assay was carried out on siRNA silenced PhLP3 LB01 cells. Samples were collected 24 h, 48 h and 72 h post
transfection and activated RhoA was detected at 72 h post-knockdown with an anti-Rho A antibody but not in plasmid only control cells (A). LB01
cells transfected as in panel A for 72 h were then treated for 24 h with the ROCK inhibitor Y2763 (either 3 mM or 10 mM), fixed and stained for actin
(rhodamine phalloidin, red). F-actin disassembly was observed at both Y2763 concentrations and the concentration of peripheral actin was observed
with 10 mM Y2763 (B).
doi:10.1371/journal.pone.0028271.g004
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formation of cells adhering to fibronectin [36]. It therefore

remains to be established whether PhLP3 directly influences the

formation of RhoA activated stress fibers and focal adhesions and

whether phosphorylation of MAPK is a direct or indirect

consequence of PhLP3 siRNA silencing and formation of focal

adhesions, i.e. whether such changes are causal or instead

outcomes and whether they occur by a direct or indirect

mechanism. We note too (as above) that any perturbation of

CCT by manipulating one of its regulators, such as here using

PhLP3, is likely to impact on its many other clients and their

functions that may feedback less directly into cyctoskeletal changes

and could also, or instead, include any function CCT might serve

in the adoption of quarternary, as opposed to tertiary, structure by

its clients including, for example, any role it may play in regulating

in vivo assembly of actin [13]. It is indeed interesting in this context

that knockdown of the CCTe subunit in mammalian cells

destabilises holoCCT assembly, releases CCT subunits to bind

the cytoskeleton as monomers or subassemblies and, especially, is

reported to produce a remarkably similar actin reorganisation-

associated, elongated cell morphology phenotype to that observed

here upon PhLP3 knockdown [44].

In conclusion, we note that activities of PLPs are regulated by

phosphorylation [45], further complicating the analysis of these

important proteins and hence studies focused on expression

levels alone are unlikely to unravel the complete mechanism by

which manipulation of these proteins influences the cytoskeleton.

Despite this, the data presented here collectively shows that

cytoskeleton remodelling and adherent-dependent growth can be

activated in the industrially relevant CHO cell line by

manipulating PhLP3 levels. For the bioprocessing of CHO cell

lines engineered to express recombinant proteins it is necessary

to suspension adapt these cells for growth in largescale

bioreactors. The work we present here suggests that the

reorganisation of the cytoskeleton via the manipulation of

Figure 5. siRNA silencing of PhLP3 promotes MAPK phosphorylation upstream of RhoA activation and PhLP3 overexpression
decreases levels of phosphorylated MAPK in suspension CHO LB01 cells. (A) PhLP3 silenced LB01 cells were fixed and co-stained with either
anti-MAPK (second panel, green) and rhodamine phalloidin (for filamentous actin, red) or anti-phosphorylated MAPK (fourth panel, green) and
rhodamine phalloidin. DAPI was used to detect DNA. Untransfected cells were used as controls (first and third panel). (B) An increase in
phosphorylated MAPK was detected by immunoblotting using an anti-MAPK kinase antibody in cells transfected only with PhLP3 siRNA (lane 2)
compared to cells that had been transfected with PhLP3 siRNA in the presence of the ROCK inhibitor Y2763 (lane 3). Cells treated with either Y2763
only, cells transfected with a ‘scrambled’ negative control siRNA and untransfected cells did not show elevated phosphorylated MAPK levels. (C) CHO
cells were transiently transfected with PhLP3 for either 24 h or 48 h and levels of phosphorylated MAPK were detected by immunoblotting with an
anti-MAPK kinase antibody. Expression levels of phosphorylated MAPK were found to decrease from 24 h to 48 h (compare lanes 1 to 2) and to be
lower than in untransfected cells (lanes 3 and 4).
doi:10.1371/journal.pone.0028271.g005
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PhLP3 levels could therefore be further investigated as a method

by which such cells can be switched between adherent and

suspension culture for bioprocessing.

Materials and Methods

Plasmid Construction
Full length Homo sapiens thioredoxin domain containing 9 mRNA

(Acc no BC005968) was obtained as an IMAGE clone (4073821)

from Geneservice Ltd (U.K.). The full length protein coding

sequence was obtained by PCR using forward primer 59ACG-

TACGGATCCATGGAAGCTGATGCATCTGTT39 and as re-

verse primer either 59GTACGTTCTAGACTAATCATCATCA-

GAGTCTGA39 to obtain an untagged clone or 59GTACGT-

TCTAGACTATCATCATCAGAGTCTGA39 to obtain a clone

with a C-terminal V5 tag. PCR products were digested with BamHI

and XbaI and cloned into a modified version of the plasmid vector

pcDNA3.1 V5His-TOPO (Invitrogen) from which the ‘T overhang

cloning site’ was removed by cleavage with BstXI and re-ligation.

GFP plasmid, pEGFP-N1, was obtained from Clontech.

Cell Culture
The CHO derived suspension cell line LB01, engineered to

secrete a recombinant monoclonal antibody [9,10] and the

adherent cell line CHOK1 [46] were kindly provided by Lonza

Biologics plc (UK). LB01 cells were cultured in CD CHO, a

chemically defined media (Invitrogen, UK) which was supple-

mented with 25 mM methionine sulfoximine (MSX). The cells

were grown in 250 ml shake flasks (Corning Inc, USA) in 5%

CO2 at 37uC, with shaking at 100 rpm and routinely

subcultured every 4 days at 36105 cells/ml. CHOK1 adherent

cells were cultured at 5% CO2 and 37uC in Dulbecco’s modified

Eagles medium (DMEM/F-12) (Invitrogen, UK), 10% (v/v)

heat inactivated fetal calf serum (FCS) (Lonza), MEM non

essential amino acids (Invitrogen, UK; 100 mM), L-glutamic

acid and L-asparagine (400 mM), adenosine, cytidine, guanosine

and uridine (20 mM), thymidine (10 mM) and 10 mM L-

glutamine.

RNA Silencing
Double stranded small interfering RNAs (siRNAs) that

corresponded to mouse PhLP3 (Mm_Txndc9_5) and human

PhLP3 (Hs_TXNDC9_3) were obtained from Qiagen, UK. For

immunofluorescence studies, cells were seeded in 24 well plates at

46104 cells/well and for immunoblotting in six well plates at

26105 cells/well. LB01 On the day of transfection LB01 cells were

plated out in Dulbecco’s modified Eagles medium (DMEM/F-12)

(Gibco UK), 10% (v/v) heat inactivated fetal calf serum (FCS)

(Lonza), MEM non essential amino acids (100 mM), L-glutamic

acid and L-asparagine (400 mM), adenosine, cytidine, guanosine

and uridine (20 mM) and thymidine (10 mM) to allow them to

adhere to the culture dish. CHOK1 adherent cells were cultured

as described above. Cells were transfected with either 150 ng

siRNA (for 24 well plates) or 37.5 ng siRNA (diluted into the

appropriate culture media) and either 12 ml or 3 ml of Hiperfect

transfection reagent respectively, according to the manufacturers’

protocol (Qiagen, UK). Cells were then harvested post-siRNA

transfections for analysis at the time points described in the figure

legends. For PhLP3 RNAi rescue experiments, CHOK1 cells were

co-transfected with 37.5 ng siRNA and 500 ng plasmid for

transient over-expression of PhLP3 as described below using

Hiperfect as the transfection reagent as described by the

manufacturer.

Primary Antibodies used for Immunoblotting and
Immunofluorescence

The following antibodies were used and sourced as indicated;

ab56600 (an anti-thioredoxin domain containing 9 (PhLP3))

mouse monoclonal antibody, Abcam, UK; V8012 (anti-V5 clone

V5-10) mouse monoclonal antibody, Sigma UK; AF1230 (anti-

human/rat/mouse ERK2 rabbit polyclonal antibody which also

recognises ERK1, R&D Systems, UK); 4370 (anti-phospho-p44/

42 MAPK (ERK1/2), New England Biolabs, UK); V9131 (anti-

vinculin) mouse monoclonal, Sigma, UK. The CCTa and CCTb
subunit antibodies (rabbit polyclonal) were gifts from Dr M Smith,

University of Kent, UK; AC-15, anti-b-actin mouse monoclonal

antibody (Sigma, UK); TAT (anti-a tubulin mouse monoclonal

antibody) and KMX, anti-b-tubulin mouse monoclonal antibodies

were gifts from Professor K. Gull (University of Oxford, UK). The

anti-GFP mouse monoclonal antibody 3E1 was a gift from

Professor W. Gullick (University of Kent, UK).

Transient DNA Transfections for the Over-Expression of
PhLP3

For over-expression studies, the appropriate amount of

expression vector (500 ng or 1 mg as described in the figure

legend) was transfected into LB01 cells which had been seeded at

16106 cells/well in a 24 well plate using Fugene HD (Roche

Diagnostics Ltd, UK) transfection reagent according to the

manufacturer’s instructions. CHOK1 adherent cells were seeded

at either 46104 cells/well (for immunofluorescence) or 16106

cells/well (for immunoblotting) and transfected using Lipofecta-

mine 2000 (Invitrogen, UK) according to the manufacturer’s

instructions.

Immunoprecipitation
For immunoprecipitation studies, cells were seeded at 36105

cells/well in 24 well plates and transfected with either the PhLP3

or PhLP3V5 encoding plasmid constructs as described above.

Twenty four hours post-transfection, the cells were washed 36
with 1 ml of PBS and then lysed in 20 mM HEPES, pH 7.2,

100 mM NaCl, 1% (v/v) Triton X-100, 50 mM sodium fluoride,

1 mM sodium vanadate, 10 mM sodium b-glycerphosphate and

Complete Protease Inhibitor Cocktail (Roche, UK). For immu-

noprecipitation, 2 mg of antibody was added to 200 mg of lysed

protein and incubated for 2 h on ice. 25 ml of Protein A Sepharose

slurry (Sigma, P3391) was then incubated with shaking with the

antibody/lysate solution for 1.5 h at 4uC. The Protein A beads

were then washed 36 in PBS and then 20 ml of 26Laemmli SDS-

PAGE sample buffer added, the samples boiled for 2 min,

centrifuged in a bench top centrifuge at 13,000 rpm (17900 rcf)

for 1 min and the eluted protein analysed by SDS-PAGE.

SDS-PAGE Sample Preparation
Suspension cells were pelleted for 5 min in a benchtop

microcentrifuge and the supernatant removed. The pelleted cells

were washed twice in cold PBS before ice cold lysis buffer (see

above) was added and the cells left for 5 min on ice to lyse.

Adherent cells were washed twice in ice cold PBS, prior to

addition of lysis buffer and then scraped with a Fisherbrand cell

scraper (Fisher Scientific, UK). The lysate was then centrifuged at

13,000 rpm (17900 rcf) for two minutes and stored at 280uC until

required for SDS-PAGE analysis.

SDS PAGE Electrophoresis and Immunoblotting
SDS-PAGE was used to analyse proteins on 4–20% polyacryl-

amide gels (BioRad Labs Inc, UK). Proteins were semi-dry blotted
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for 1 h at 12 V onto Immobilon PDVF membranes (Millipore,

UK). Non-specific binding sites were blocked with 4% Marvel milk

proteins diluted in PBS for 60 min at room temperature.

Immunoblots were incubated with primary antibodies (see below),

which had been diluted in PBS/0.1% Tween 20 at 4uC overnight.

The immunoblots were washed 565 min in PBS/0.1% Tween 20,

probed with either rabbit anti-mouse IgG antibody or goat anti-

rabbit IgG antibody conjugated to HRP (Sigma, UK) for 1 h at

room temperature and washed again. The immunoblots were

visualised on Hyper Film using the commercially available ssECL

detection kit (Amersham Biosciences, UK).

Indirect Immunofluorescence
Cells were seeded onto coverslips at 26105 cells/well in a 24

well plate and after the appropriate treatment were washed 26 in

PBS, fixed for 10 min with 4% (w/v) paraformaldehyde in PBS,

permeabilised in 0.1% Triton X-100/PBS for 5 min at 4uC,

washed with PBS and non-specific binding sites blocked with 3%

BSA in PBS for 20 min at room temperature. After the addition of

primary antibody (diluted in 3% BSA in PBS) for 1 h at room

temperature, cells were washed with 3% BSA in PBS and either

anti-mouse FITC or anti-mouse TRITC conjugated rabbit IgG

antibody (Sigma, UK) diluted 1:100 or anti-rabbit FITC

conjugated goat IgG antibody diluted 1:64 with 3% BSA in PBS

was added and left for 1 h at room temperature in the dark.

Filamentous actin was detected using Phalloidin Alexa Fluor 546

(Molecular Probes, UK) which was diluted 1:80 and incubated

with the cells for 30 min. GFP (green fluorescence protein) was

detected with 3E1 (an anti-GFP mouse monoclonal antibody). The

cells were then washed and coverslips mounted in Mowiol

containing p-phenyldiamine (1 mg/ml) before being left overnight

at 4uC prior to microscopy using a Leitz DMBR immunofluores-

cence microscope.

Activated RhoA Binding Assay
Activation of RhoA was determined using a commercially

available pull down assay based upon detecting the interaction of

the active GTP-bound RhoA with the Rho-binding domain (RBD)

of Rhotekin (RhoA Activation Assay Kit, STA-403-A, Cell Biolabs

Inc, USA). For this assay, 26105 cells were seeded in 6 well plates

and siRNA silencing of PhLP3 was carried out as described above.

Cells were subsequently collected 24, 48 and 72 h post

transfection, lysed in a buffer consisting of 25 mM HEPES,

pH 7.5, 150 mM NaCl, 1% Nonidet-40, 10 mM MgCl2, 1 mM

EDTA and 2% glycerol, and stored at 280uC prior to analysis by

immunblot with an anti-RhoA antibody as described in the

manufacturer’s protocol.

Inhibition of ROCK with Y27632
The Rho-kinase (ROCK) specific inhibitor Y27632 (Sigma

Aldrich, UK) was added either at 3 mM or 10 mM to LB01 cells in

which PhLP3 had been silenced for 72 h (as described above). The

cells were incubated at 37uC for 6 h and then processed for

immunofluorescence whereby actin filaments were detected with

Phalloidin Alexa Fluor 546 (Molecular Probes, UK) as described

above in the immunofluorescence section.

Densitometry
Image J public access software (http://rsbweb.nih.gov/ij/

features.html) (a Java image processing programme) was used for

densitometry measurements of bands in immunoblots as per the

instructions with the software.

Supporting Information

Figure S1 siRNA silencing of PhLP3 with a murine
siRNA results in the knockdown of PhLP3 mRNA levels
in CHO LB01 cells 72 h post-transfection. CHO LB01 cells

were transfected with an siRNA to PhPL3 as described in the

methods section and the levels of mRNA determined by qRT-

PCR 72 h post-transfection using a Chromo4 Real-Time PCR

Detection System (Bio-Rad Laboratories, Inc.). Total RNA was

extracted 72 h post-transfection using the RNeasy extraction kit

(Qiagen) according to the manufacturer’s instructions. For qRT-

PCR the following primers were used; Forward: 59 agtggaaatt-

taatggagcca; Reverse: 59 gtatttctttccttggatagtt and the following

PCR conditions; 50uC for 10 min followed by 95uC for 5 min,

then 95uC for 10 s and 58uC for 30 s, these last two steps being

repeated 35 times. qRT-PCR was undertaken using a QuantiFast

SYBR Green RT-PCR kit (Qiagen). Crossing point, quantifica-

tion, and melting curve analysis was undertaken using the Opticon

Monitor software (Bio-Rad Laboratories, Inc.) by normalization to

four house keeping genes. Control = no knockdown, PhPL3

KD = samples transfected with PhPL3 murine siRNA. Error bars

represent Standard Deviation from the mean (SD), n = 3 biological

triplicates.

(TIF)
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