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ABSTRACT

DNA methylation plays a central role in genomic
regulation and disease. Sodium bisulfite treatment
(SBT) causes unmethylated cytosines to be
sequenced as thymine, which allows methylation
levels to reflected in the number of ‘C’-‘C’ align-
ments covering reference cytosines. Di-base color
reads produced by lifetech’s SOLiD sequencer
provide unreliable results when translated to bases
because single sequencing errors effect the down-
stream sequence. We describe FadE, an algorithm
to accurately determine genome-wide methylation
rates directly in color or nucleotide space. FadE
uses SBT unmethylated and untreated data to de-
termine background error rates and incorporate
them into a model which uses Newton–Raphson op-
timization to estimate the methylation rate and
provide a credible interval describing its distribution
at every reference cytosine. We sequenced two
slides of human fibroblast cell-line bisulfite-
converted fragment library with the SOLiD sequen-
cer to investigate genome-wide methylation levels.
FadE reported widespread differences in methyla-
tion levels across CpG islands and a large number
of differentially methylated regions adjacent to
genes which compares favorably to the results of
an investigation on the same cell-line using
nucleotide-space reads at higher coverage levels,
suggesting that FadE is an accurate method to
estimate genome-wide methylation with color or nu-
cleotide reads. http://code.google.com/p/fade/.

INTRODUCTION

DNA methylation was first proposed to act as a stable and
heritable epigenetic modification in 1975 (1) and first

observed at cytosine guanine dinuleotides (CpG) in
somatic cells (2). Today, we know that DNA methylation
plays a vital role in gene regulation such that different
levels of methylation can have major ramifications for
human health and disease (3). Estimation of the level of
methylation at all cytosine nucleotides in an individual (the
methylome) has recently become possible with the advent
of Next Generation Sequencing (NGS) techniques, specif-
ically sodium bisulfite treated (SBT) sequencing (4,5). In
whole genome SBT sequencing, DNA is treated with
sodium bisulfite which converts unmethylated cytosine nu-
cleotides to uracil. Because sequencing machines treat
uracil the same as thymine, treated reads can be mapped
to a reference genome, where the majority of ‘C’-‘C’ align-
ments will result from methylation. To accurately align
each read, the alignment algorithm can first translate all
‘C’ nucleotides to ‘T’ nucleotides on the read and reference
sequence. Then the original read sequence can be
compared with its aligned location on the translated refer-
ence for ‘C’ to ‘T’ mismatches which result from methyla-
tion. This method and others which involve translation of
the bases on the read have been shown to work successfully
(5,6) with reads in nucleotide space.
Unfortunately, these methods are not suitable for color-

space as the pre-aligned reads cannot be accurately
translated to nucleotide space because single-color errors
can change the downstream sequence (7). Post-alignment
translation to nucleotides improves accuracy but also
introduces errors when the color error rate is high or
there exist consecutive or dense polymorphism (i.e. con-
secutive methylcytosine positions) (8).
Thus, determination of methylation rates is most

accurate when SBT color reads are aligned in color-
space and methylation is determined directly from the
color alignment. Although there exist algorithms to facili-
tate alignment of SBT color reads (9,10,11), all accomplish
estimation of methylation through some type of
post-alignment translation from color sequences to
called nucleotides which reduces accuracy, especially for
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consecutive cytosine positions. It is for these reasons that
we were motivated to develop an algorithm capable of
determining methylation levels directly in color-space.
Accurate whole-genome per-base estimation of methyla-
tion from color reads requires first that accurate unbiased
alignment be acquired, which is itself a non-trivial task. In
the Materials and Methods section, we discuss in greater
detail how reference bias can be reduced to provide
accurate, highly sensitive color-space alignment.
Given such an alignment, an algorithm is tasked with

using the colors and quality scores spanning each reference
cytosine to estimate the methylation rate in the cell popu-
lation and determine a statistical level of accuracy for the
estimation. For each read covering a particular reference
cytosine, one color and quality score encodes the transition
from the preceding reference base to the cytosine and
another color and quality score encodes the transition
from the reference cytosine to the following reference
base. This is shown in Figure 1. The quality scores
associated with each color are normalized values supplied
by the sequencing machine which represent the accuracy
for each color sequenced. Rather than representing
transitions with one of four colors, the color (x), quality
score (q) and read position (i) can be combined to form one
of many color-quality tuples (xi, qi) which provide more
detailed information regarding the underlying nucleotide
sequence.
FadE uses the probability of observing each pair of

color-quality tuples in the methylated versus
unmethylated state to iteratively determine the rate at
which the cytosine nucleotide is methylated. While most
aligned pairs of color-quality tuples provide convincing
evidence as to whether methylation is present, some
pairs will not immediately suggest methylation or the
lack of it; this is illustrated in Table 1. The probability
of observing any such pair of color-quality tuples under
methylation depend on the color-quality scores and the
machines distribution of color errors. Inferring the error
rate distribution or ‘emission rates’ from control data
allows FadE to perform methylation estimation that is
extremely robust to machine sequencing error as well
accurate for consecutive cytosine positions, both of
which not possible when reads are translated to nucleo-
tides. The collection of the emission rates and their use in
the parameter optimization routine employed by FadE are
further described in Materials and Methods section,
whereas the Results section demonstrates the accuracy
that FadE offers in both real and simulated datasets in
color and nucleotide space.

MATERIALS AND METHODS

FadE provides point estimates and credible intervals for
the epigenome from an accurate alignment in color or
sequence space. While FadE handles both data types the
following section explains the development of the algo-
rithm in color-space before changes necessary to facilitate
nucleotide alignment are described. In color-space the ac-
quisition of an accurate alignment requires many modifi-
cations to the alignment protocol. Thus, it is important to
first describe the necessary steps to produce an accurate
alignment file and estimate the emission rates before the
methylation parameter optimization is described.

Color alignment

The performance of FadE strongly depends on achieving
an accurate and complete alignment file. If bisulfite treated
reads are aligned to the native human reference, only a
small fraction of the reads will find low-mismatch align-
ments due to the C! T conversion of unmethylated
cytosine nucleotides. Alignment to a C! T translated
reference genome will find produce many more suitable
alignments, but also bias the mapping away from
methylated cytosines. Hansen et al. (12) describes a
method which eliminates bias to CpG positions by
creating a custom alignment tool which indexes all com-
binations of CpG! TpG translations for each read-length
reference substring and translates all CpH positions (‘H’ is
not guanine) to thiamine. If non-CpG cytosine nucleotides
are suspected to be methylated or the read length is long,
the number of combinations of reference translations may
grow prohibitively large for some reference substrings. If
an alignment algorithm exists with tolerance to many sub-
stitutions, translating the entire reference sequence into
multiple sequences will also provide a significantly reduc-
tion in bias in comparison to single genome reference
alignment without increasing the amount of memory
required for alignment. For example, color reads could
be mapped to the color sequence corresponding to the
following three genomes:

(1) The native reference sequence;
(2) The reference sequence where all C! T; and
(3) The reference sequence where all C! T except ‘C’

preceding ‘G’.

Table 1. Some pairs of color alignments are difficult to resolve with

in a single read

A ! cj ! G Likely
interpretation

Methylation
probability

xi xj – –

Green Red A-C-G High
Red Green A-T-G Low
Red Red A-T-? or ?-C-G Dep. on error rate
Green Green A-C-? or ?-T-G Dep. on error rate

In the example below the colors ‘Green–Red and ‘Red–Green’ lead to the
interpretation that the position cj is in the state ‘C’ and ‘T’, respectively.
The colors ‘Red–Red’ is likely the result of sequencing error. Whether the
sequencing error is assumed to alter the first or second color in the pair will
lead to a different interpretation for the position cj:

Figure 1. For any alignment spanning a non-consecutive reference
cytosine (cj) at read position i, the transition from the previous nucleo-
tide (nj�1) and the transition to the following nucleotide (nj+1) each emit
a color-quality tuple, xi, qi and xi+1, qi+1, respectively. The rate govern-
ing the emission of color-quality tuples for different read positions and
adjacent reference nucleotides can be used to estimate the probability
that the cytosine sequenced in each read existed in a methylated or
unmethylated state.

e14 Nucleic Acids Research, 2013, Vol. 41, No. 1 PAGE 2 OF 9



A highly tolerant alignment algorithm will be able to
locate most reads for an alignment to at least one of the
reference translations, after which the results can be joined
into a single-alignment file. Detailed analysis of this
method and others are further discussed in the Supple-
mentary Data. Other ways to increase alignment
accuracy include using paired-end reads, using uni-
directional (forward strand only) reads, and iteratively
translating unmapped reads to sequence space to search
for matches (10). Additionally, if untreated reads from the
same sample are available, SNP-calling can be performed
on the reference sequence and homozygous SNP positions
can be altered to facilitate a more accurate alignment.

Emission rate estimation

For any cytosine spanning color alignment, the probabil-
ity that it was generated from a methylated base is depend-
ent on the observed colors and associated error rate. The
supplied quality scores represent the signal intensity and
capture only one source of error (13). The SOLiD system
in particular has been shown to have a relatively high
error rate which increases toward read tails (7).
Additionally, it is possible that the bisulfite treatment
itself may alter the true error distribution. To most accur-
ately estimate methylation rates, FadE attempts to deter-
mine the error distribution for colors adjacent to
methylated and unmethyalted cytosines. The error distri-
bution is encapsulated into ‘emission rates’ which describe
nucleotide transitions under methylated and unmethylated
states.

As shown in Figure 1, for a given cytosine cj spanning
alignment beginning at read position i, emission rates
describe the probability that the transition from the
preceding reference base nj�1 to cj and the transition
from cj to the following reference base nj+1 emit the
color-quality tuples xi, qi and xi+1, qi+1, respectively. The
emission rates for cytosines in the unmethylated (M=0)
state can be inferred from the alignment of unmethylated
bisulfite-treated reads. The phage lambda genome is
thought to have little to no methylation, and as such
serves as an excellent control to estimate emission rates
over unmethylated bisulfite-treated cytosine nucleotides.
Using the alignment of bisulfite-treated reads to the
phage lambda genome, the emission rate for the
unmethylated state (M=0) for the color-quality tuple
xi, qi resulting from the transition between reference base
gj�1 and cj at read position i can be estimated from its
frequency (I()) in the read alignment R:

Eðxi, qijM ¼ 0, gj�1Þ ¼

P
R

Iðxi, qijM ¼ 0, gj�1ÞP
R

Iðx, qjM ¼ 0, gj�1Þ
ð1Þ

Emission rates describing the transition away from refer-
ence cytosine positions can be calculated similarly,
whereas the emission rates for the methylated state
(M=1) should ideally be calculated from experimentally
similar reads which have an extremely high rate of methy-
lation. As such data are difficult to acquire, experimentally
similar reads which have not been treated with sodium

bisulfite (e.g. all cytosine remain unchanged), can serve
as an approximation for the distribution expected under
methylation. Additionally, if neither of these controls is
available, the error distribution can be estimated using the
alignment to non-cytosine positions which can serve to
provide an approximate estimate of the distribution of
observations expected with respect to the methylation
state at a reference nucleotide.

Statistical model

FadE uses a hidden data model to describe the methyla-
tion level at different cytosine positions across cell popu-
lations. At every reference cytosine cj we assume an
unknown parameter �j which describes the rate at which
the position cj exists in an unmethylated (M=0) or
methylated (M=1) state. For each read alignment
spanning cj, the hidden methylation state produces
observable color-quality tuples according to the emission
rates for the read position and and adjacent reference
nucleotides. This is illustrated in Figure 2. By accurately
inferring the emission rates from control data, FadE is
able to use each set of reads Rj which align to cj to estimate
the posterior probability distribution describing �j:

Parameter optimization
Given an isolated cytosine cj and a single-read alignment r
2 Rj, the probability of observing the alignment when cj is
in the methylated (M=1) or unmethylated (M=0) state
can be calculated from the product of emission rates:

PðrjM¼1Þ¼Eðxi, qijM¼1, nj�1Þ
�Eðxi+1, qi+1jM ¼ 1, nj+1Þ

PðrjM¼0Þ¼Eðxi, qijM¼0, nj�1Þ
�Eðxi+1, qi+1jM ¼ 0, nj+1Þ

ð2Þ

where the color-quality tuples xi, qi and xi+1, qi+1 span the
transition to and from the reference cytosine cj, respect-
ively, as is illustrated in Figure 1. Given the rate of methy-
lation, �j, the law of total probability informs us that for
any observation r:

Pðrj�jÞ ¼ PðrjM ¼ 1Þ�j+PðrjM ¼ 0Þð1� �jÞ ð3Þ

Assuming independence between read alignments, the
probability of observing the set of reads Rj which align
to cj when �j is known is:

PðRjj�jÞ ¼
Y
reRj

Pðrj�jÞ ð4Þ

Figure 2. For each of n reads, a hidden binary methylation state
(M1,M2, :::,Mn) is drawn uniformly according to an unknown methy-
lation parameter �j. For each methylation state, observations E(r) in
the form of color-quality tuples are produced according to emission
rates corresponding to the read position and adjacent reference bases.
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Given Equation (4), Bayes Theorem can be used to cal-
culate the inverse; the posterior probability for the methy-
lation rate �j, given the set of reads Rj:

fð�jÞ ¼ Pð�jjRjÞ ¼
PðRjj�jÞPð�jÞ

PðRjÞ
ð5Þ

where Pð�jÞ is the prior distribution for �j: For ease of
explanation Pð�jÞ is currently assumed to be the continu-
ous uniform distribution. PðRjÞ is a normalizing constant
which can be calculated by integrating over support of the
distribution:

PðRjÞ ¼

Z1
0

PðRjj�jÞ ¼

Z1
0

Y
reRj

Pðrj�jÞ: ð6Þ

To produce a point estimate for the methylation rate, we
can calculate b�j, the value for �j for which fð�jÞ is
maximized. To quickly and accurately optimize this
function we recall Equation (4) and its expanded form
shown in Equation (3). Taking logarithms and differen-
tiating once yields:

X
k

ð
Pðrjk jM ¼ 1Þ � Pðrjk jM ¼ 0Þ

�ðPðrjk jM ¼ 1Þ � Pðrjk jM ¼ 0ÞÞ+Pðrjk jM ¼ 0Þ
Þ ð7Þ

Differentiating again yields:

X
k

ð
�ðPðrjk jM ¼ 1Þ � Pðrjk jM ¼ 0ÞÞ2

ð�ðPðrjk jM ¼ 1Þ � Pðrjk jM ¼ 0ÞÞ+Pðrjk jM ¼ 0ÞÞ2
Þ:

ð8Þ

Which is strictly negative, meaning that Equation (4) is
strictly concave on the region (0,1). Thus, the value for
the parameter b�j, which maximizes the density can be
calculated iteratively with Newton’s optimization
method, where each estimate of � is updated as follows:

�n+1 ¼ �n �
F 0ðRjÞ

F 00ðRjÞ
ð9Þ

The value to which this optimization routine convergesb�j, is the maximum value on a concave uni-modal poly-
nomial probability density function. This curve becomes
tightly centered around this maximum value provided suf-
ficient read depth, accurate alignment and read quality.
Unfortunately, if read quality or read depth is poor the
distribution will not be tightly centered and reporting only
the maximum value as an estimate for �j may be mislead-
ing, especially if the assumption of a uniform prior is in-
accurate (see Implementation section). This can be
ameliorated by obtaining the 90% credible interval
around b�j: The credible interval can be calculated itera-
tively by updating the step size e until the following is
satisfied:

�e
Rb�j+e

b�j�e
Q
k

Pðrjk j�Þ

PðRjÞ
> 0:9 ð10Þ

where �e is the prior probability that �j exists on the
interval [b�j � e,b�j+e], which is simply the length of the
interval if a uniform prior distribution is assumed. The
integrals can be calculated explicitly by expanding the
polynomial function PðRjj�jÞ when read depth is
moderate or approximated using tools of numerical
integration.

Implementation

Boundary values for methylation parameter
When read depth and quality are sufficient the Newton–
Raphson optimization and credible interval estimation
converges quickly and accurately. In practice convergence
to within the hundredth decimal point occurs in fewer
than 8 iterations in 99% of cases. These conditions also
allow a 90% credible interval around b�j to be quickly
located by changing the value of e in relation to the
distance from 90% achieved in the previous iteration.

If read depth is shallow or b�j exists near one of the
boundary values, convergence is slower and there often
is no region which bounds b�j symmetrically to a provide
90% credible interval. In such cases FadE uses Equation
(10) to first find the relative support for the symmetric
interval which includes one of the boundaries;
[b�j � e,b�j+e] where e ¼ b�j: Then the non-boundary edge
of the interval is expanded until a non-symmetric 90%
credible interval is found.

Prior methylation probability
As previously described FadE is implemented with a
default continuous uniform prior probability. The most
accurate prior distribution is highly data dependent. In
our tests on the human fibroblast cell-line IMR-90, the
methylation rate is highest on isolated CpG sites
whereas CpG islands have a bimodal distribution resulting
from regions of hypomethylation and otherwise highly
methylated sites. In humans CpN dinucleotides (where
‘N’ is not guanine) are relatively unmethylated, but this
is not true for all cell types (5). Additionally, the prior
methylation probability can be inferred site-by-site from
previous studies. If we assume the prior methylation prob-
ability is Nð�, �Þ, then Equation (8), F 00ðRjÞ becomes:

X
k

ð
�ðPðrjk jM ¼ 1Þ � Pðrjk jM ¼ 0ÞÞ2

ð�ðPðrjk jM ¼ 1Þ � Pðrjk jM ¼ 0ÞÞ+Pðrjk jM ¼ 0ÞÞ2
Þ �

1

�2

ð11Þ

which is also strictly negative, meaning the Newton–
Raphson optimization routine can still be used to calcu-
late b�j, and the numerical methods used to estimate
credible intervals can still be employed. FadE is imple-
mented to allow the user to select different normal prior
parameters for ‘CpG’ versus ‘CpN’ dinucleotides or
supply a file which lists site-specific normal parameters
for different reference positions.

Adjacent reference cytosines
In the previous section the two reference positions
adjacent to cj have been assumed to be non-cytosine nu-
cleotides. In such cases, the two-part observation involves
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color-quality tuples resulting from the transition from the
preceding base nj�1 to cj and from cj to nj+1: However,
(shown in Figure 3) if cj is followed by another cytosine
nucleotide, then the emission probability associated with
this transition depends on the methylation state at cj: In
the general case of m-consecutive reference cytosines,
FadE calculates the first and last methylation parameters
using only the color-quality tuple spanning the transition
involving non-cytosine reference bases. Then, for each of
the interior positions the observation probability is condi-
tioned on the adjacent methylation parameter, such that
the observation probability for a single-read aligned to the
second position in a run of cytosine positions is
generalized to:

Pðrj�j+1Þ ¼ Pðrj�j+1, nj ¼ CÞ�j+Pðrj�j+1, nj ¼ TÞð1� �jÞ

ð12Þ

In the Results section, the necessity to remain in
color-space to accurately estimate methylation for con-
secutive cytosine positions is shown. Translating colors
to bases over partially methylated cytosine runs results
in errors which cannot be recovered once color sequences
are discarded.

Implementation in sequence space

FadE can be implemented in nucleotide space by making
only a few changes to the algorithm described above. The
main difference between sequence and color-space is that
emissions in sequence involve only a single nucleotide and
quality score rather than a pair of color-quality tuples.
Thus, in nucleotide space Equation (2) becomes:

PðrjM ¼ 1Þ ¼ Eðbi, qijM ¼ 1Þ
PðrjM ¼ 0Þ ¼ Eðbi, qijM ¼ 0Þ

ð13Þ

where bi and qi are the base and quality score aligned to a
reference cytosine. Estimation of sequence emission rates
are calculated without regard to adjacent positions, thus
Equation (1), which describes the frequency of observa-
tions aligned to a reference cytosine generalizes to:

Eðbi, qijM ¼ 0Þ ¼

P
R

Iðbi, qijM ¼ 0ÞP
R

Iðb, qjM ¼ 0Þ
: ð14Þ

With these two changes the algorithm can be developed as
it is described in color-space, with the exception that
methylation estimates at adjacent reference cytosines are
carried out independently.

RESULTS

Color-space simulations

To assess FadE’s accuracy and memory requirements for
different read depths in color-space, a simulation was
performed using Human Chromosome 21. Twenty
percent of the over 14 million cytosine positions on
either strand (1.7 million of which were members of con-
secutive blocks) of Chromosome 21 were selected at
random and assigned a methylation rate from a Uð0, 1Þ
distribution. 100-million 50-bp nucleotide reads were
simulated according to a bisulfite conversion rate of
99% and translated to color sequences with uniform
color error rates of 1.5%. Alignment was performed
with PerM (14) which is capable of providing full sensitiv-
ity to up to four substitutions. Only unique alignments
with five or fewer substitutions were accepted. 98.8% of
the reported alignments were correct and over 96% of the
methylated cytosines had at least one unique alignment. In
fewer than 3 CPU hours and requiring less than 500 MB
of memory, FadE was able to analyse 14-million reference
cytosine positions with an average read depth of 83X,
which suggests that FadE is feasible for genome-scale
use. The size of the credible intervals returned by FadE
decreased with respect to coverage; at 10X the simulated
parameter was contained within the credible intervalb�j � 0:17 in 91% of cases whereas at 100X coverage the
credible interval b�j � 0:07 contained the parameter in 91%
of cases. This is shown in Figure 4.
To compare FadE’s performance to traditional pileup

methods the aligned reads were converted to Sequence
Alignment/Map (SAM) format which translates aligned
color sequences into their likely nucleotide sequences
using a dynamic programming algorithm (15). After trans-
lation methylation can be estimated by simply counting the
percentage of ‘C’ nucleotides which cover each reference
cytosine. For each of 3 error rates (0, 1.5 and 5%) 20 trials
were performed to compare FadE to the base translation
strategy. For each test the mean difference between the
estimated and true parameter was used as a measure of
accuracy. The simulations demonstrated that FadE is
capable of moderately outperforming color-translation
methods when the color-error rate is low or the cytosine
positions are isolated but drastically outperforming
color-translation at high color-error rates or on adjacent
cytosine nucleotides. As shown in Table 2, in error-free
data FadE’s provide more accurate estimation of
adjacent cytosine blocks, whereas at high error rates
FadE outperforms color-translation by providing a
model that is more robust to color-sequencing errors and
better at handling alignment errors.
To determine if a nucleotide space implementation of

FadE increases accuracy compared with estimating
methylation by the percentage of aligned cytosines
relative to thymine nucleotides, additional simulations
were performed on chromosome 21 using nucleotide
reads. The methylation distribution and bisulfite conver-
sion rate described in the color simulation were used to for
the nucleotide simulation. Sequencing error rates of 0.0,
1.5, 3 and 5% were imposed on the reads and PerM was
used to carry out direct nucleotide alignment with

Figure 3. If reference cytosines are adjacent, then the interior emission
probabilities will depend on the methylation state of the adjacent
cytosine. In this case, the methylation rate at boundary cytosine nu-
cleotides is estimated using the boundary emission probabilities. Then,
the rate of interior cytosine nucleotides are calculated conditioned on
the identity of boundary positions.
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parameters identical to those used in the color simulation.
However, alignment accuracy in nucleotide space was
slightly higher than in color-space; for 1.5% error rate,
99.4% of reported alignments were correct.
Computationally, performance was similar to perform-
ance in color-space. In nucleotide space FadE reports
slightly more accurate estimations for b�j as well as larger
credible intervals. The increased accuracy is likely a result
of the increase in alignment accuracy that is enjoyed in
nucleotide space. The larger credible intervals observed in
sequence space (b�j � 0:15 at 25x read depth versusb�j � 0:13 for color alignment) are a result sequence data
relying on only a single-aligned base and quality score
from which to infer the methylation state responsible for
each alignment rather than the two of color-quality tuples
which span alignments in color-space. Although valid con-
secutive color sequencing errors are rare (see Equation (2)
versus Equation (13)), the possibility of a single-nucleotide
error producing misleading information cannot as easily
be discounted, this uncertainty is reflected in larger
credible intervals.
To compare FadE to an often used method to estimate

methylation (5,12), the results obtained by FadE were
compared with the result of a native nucleotide-space
pileup (where the percentage of ‘C’ relative to ‘T’ align-
ments was used to infer methylation). In Table 3 the
results of the comparison for the three different error
rates are shown. When sequencing errors are not present
in nucleotide space the Newton–Raphson optimization
routine employed by FadE produces the maximum likeli-
hood estimate for b�j, which is the percentage of ‘C’ align-
ments. While, the advantage is far less than the
performance increase seem in color-space, FadE does

outperform this method in nucleotide space when the
error rate increases. Additionally, by reporting credible
intervals as well as methylation estimation in nucleotide
space a measure of certainty is supplied which is not
obtained by a simple pileup analysis.

Pileup analysis of sequence data often uses the read
depth as a proxy for accuracy, usually filters or
minimum coverage levels are set to improve the accuracy
of the analysis. Read depth alone does not take into
account the read quality or error distribution of the align-
ment and for this reason does not give as accurate an
estimation of the likely discrepancies between the true par-
ameter and the estimated parameter as a credible interval.

Color-space methylome estimation

Data acquisition and alignment
To demonstrate FadE’s scalability to large datasets as well
as to compare color-space results to those achieved using

Figure 4. At a 1.5% error rate, 20X read depth appears to be sufficient for FadE to produce accurate results using color-space data. Shown here are
the average size of the calculated 90% credible interval and the percentage of positions for which the simulated parameter �j exists in the credible
interval. At 20x coverage the average credible interval length is b�j � 0:13 and the interval includes �j in 92% of cases.

Table 2. Comparison to color-translation method at 50x average read

coverage

Error rate (%) Isolated Adjacent

CT-Method FadE CT-Method FadE

0.0 0.066a 0.064a 0.281 0.070
1.5 0.107 0.094 0.301 0.096
5.0 0.162 0.110 0.312 0.116

Shown is the mean absolute difference between the simulated parameter
and the value for b�j returned by FadE and the color-translation
method.
aThe difference is, here is, not less than the standard error in the 20
trials.
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nucleotide-space data, two full slides of IMR-90 (fibroblast
cell-line) bisulfite-converted fragment libraries were
sequenced in color-space. The IMR-90 cell-line has been
previously used to study the methylome (5). In total, 1.1
billion unidirectional, paired-end (50 and 25 colors, in the
reverse and forward directions) reads were generated using
the SOLiD 4 system. The DNA was spiked with phage
lambda DNA that had been digested with the restriction
endonuclease ALu-I to allow the emission rates under
complete bisulfite conversion (no methylation) to be
estimated. The 50 color reads and 25 color reads were
aligned with PerM, using the same three-reference
protocol described in the Materials and Methods section.
PerM provided full sensitivity to 3 color mismatches in the
50 color sequences and full sensitivity to two-adjacent color
mismatches in the 25 color sequences. To increase align-
ment accuracy, resulted were combined and read pairs
which did not find a 50 color forward strand alignment
and 25 color reverse strand alignment within the 1200 bp
fragment window were discarded. After this filter an align-
ment file was produced in which the average horizontal
coverage was �3.8 reads per genome position.

Fibroblast methylation analysis
For each chromosome FadE was ran on every reference
CpG site with at least one read covering it, which resulted
in the analysis of �85% of the over 28 million CpG sites.
The average coverage to the analysed CpG sites was �5.14
reads.

Globally the mean estimated methylation rate returned
by FadE was �63%. Methylation rates across CpG sites
were not distributed uniformly. FadE identified 13 841
CpG islands which had more than 10 CpG sites with
>20X coverage using the definition described by Takai
and Jones (16). Figure 5 shows that the distribution
among of methylation rates along CpG islands differed
wildly from that observed in an isolated CpG context.
Over 20% of CpG islands had an average methylation
rate more than 5 times less than the global average
across CpG sites and 435 sites had an estimated average

methylation rate more than 10 times less than the global
average. More than half of these islands (218 of the 435)
were within 1000 bp of a gene. In comparison only 23% of
all CpG islands analysed were within 1000 bp of a gene,
which matches the results of previous studies which aim to
show that hypomethylated CpG islands are involved in
gene regulation (4,16). The methylation rates around
CpG island promoter regions are further discussed in
the Supplementary Data.

Comparison to previous nucleotide-space analysis
To demonstrate the feasibility of color-space epigenome
analysis our results were compared with a study carried
out using nucleotide-space reads which were also
sequenced from the IMR-90 fibroblast cell-line (5).
Lister et al. used 91.0 gigabases of SBT Illumina reads
(14.8x avg read depth per strand, 29.6x total average
depth) to study the methylation patterns in different cell
types, including the fibroblast IMR-90. Despite differences
in coverage, both FadE and the protocol used by Lister
et al. found very similar average CpG methylation rates
(62.7% and 63.5%, respectively) and also found a very
similar global distribution for methylation levels across
CpG sites. In total there were over 23 million CpG sites
which were analysed in both nucleotide and color-space.
In over 89% of shared sites the rate estimated by Lister
et al. was contained in the credible interval returned by
FadE. Across the shared sites fewer than 10% of the pos-
itions analysed by both protocols had reported methyla-
tion rates which differed by more than 30%. These
statistics are summarized in Table 4.
The work by Lister et al. also described biologically

relevant partially methylated domains (PMDs), which
can be identified by iteratively adding 10 kb windows to
a region until a window contains fewer than 10 well
covered (>5x coverage) CpG sites or has >70% average
methylation. In Hg19 coordinates they identified 8030
such regions made up of 125 601 sliding 10 kb windows
(125 601 000 total bases). In the 110 748 10 kb sliding
windows in which FadE contained contained sufficient
coverage, 96% had <70% average methylation over
99% had <75% average methylation. In comparison,
the global distribution of methylation over sufficiently
covered 10 kb windows included over 30% and 22%
which had average methylation rates of 70% and 75%.
That the results are so similar when viewed over 10 kb
windows suggest that sources of noise may be largely re-
sponsible for the site-by-site differences in methylation es-
timation between FadE and the nucleotide-space analysis
performed by Lister et al.
To determine if noise is indeed responsible for these

differences FadE was used to perform analysis in nucleo-
tide space using the dataset supplied by Lister et al. As
described in detail in the Supplementary Data, the nucleo-
tide alignment was used to directly estimate emission rates
and FadE was run on each human autosome. In the
Supplementary Data we show that the site-by-site con-
cordance between the two programs to be much higher
when the same dataset is used, which provides evidence
that differences in the color-space study likely result from
biological variation, differences between the sequencing

Table 3. Comparison to sequence space pileup estimation at 50x

average read coverage

Error
rate (%)

Mean absolute difference 90% Credible interval

Pileup
method

FadE Size Percent
contained

0.0 0.057a 0.057a 0.178 0.93
1.5 0.063 a 0.062a 0.201 0.92
3.0 0.074 0.069 0.218 0.90
5.0 0.079 0.072 0.234 0.89

Shown is the mean absolute difference between the simulated parameter
and the value for b�j returned by FadE and the percentage of cytosines
relative to thymine (pileup) aligned to the location. Additionally, the
size of the 90% credible interval returned by FadE and the percentage
of locations where the simulated parameter was contained in the
interval are shown. Note that in the absence of sequencing error, the
algorithm implemented in FadE returns the parameter equal to the rate
of cytosines aligned to the location.
aThe difference is, here is, not less than the standard error in the 20
trials.
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platforms, or other forms of noise rather than differences
or errors in implementation.

DISCUSSION

FadE’s most novel concept is it’s capability of working
directly in color-space or nucleotide space and calculating
not just an estimation for the level of methylation at a site
but also the credible interval to provide information about
the distribution of the parameter. Working directly in
color-space allows FadE to provide a higher level of
accuracy than algorithms which rely on translation of
color reads, especially near consecutive cytosine positions.
Recent scientific studies have shown not only that the
specific levels of methylation in a cell population can
have massive biological implications (17,18) but also
that non-CpG cytosine positions, which are often found
in consecutive blocks are heavily methylated in some cell
types (5). In light of these discoveries, there is a need for
an algorithm which uses a statistical model to estimate
methylation directly in color or nucleotide space and
provide accurate results and a statistical framework
from which to interpret them. FadE is able to provide
similar results regarding methylated regions with low-
coverage color-space data to a high-coverage nucleotide-
space experiment. This is evidence which supports what is
displayed in the simulated (Figure 4) datasets; very high
coverage and alignment quality is needed to determine the
specific methylation level in cell population at a particular
site but moderate read depth is sufficient to determine
differentially methylated regions.

CONCLUSION

FadE is a novel tool which implements a Bayesian statis-
tical model to estimate methylation levels in color and
nucleotide space. FadE is both fast and memory efficient
and uses the natural parallelism of the 24 human chromo-
somes to quickly determine the methylation rate at every
reference covered reference cytosine. FadE supplies the
scripts and tools to allow it to pair well with any
mapping program capable of outputting color or nucleo-
tide alignment in SAM, bed, mapping or a user-defined
column separated format. FadE also increases accuracy by
allowing the user to supply prior probabilities if the tissue
in question has been previously studied as well as
including the emission rates calculated from the
Phage-Lambda genome to increase accuracy if controls
are not available. FadE’s result’s on simulation data

Figure 5. Analysis of experimental SOLiD color-space data taken from the stem cell-line IMR90 show a different in methylation distribution in CpG
islands when compared with isolated CG positions. Across Hg19 the global distribution of ‘CG’ dinucleotides is 1%. Here, a CpG island is defined as
a region of at least 500 bp and >5% ‘CG’ dinucleotides.

Table 4. The methylation rate at 23 152 801 IMR90 CpG positions

analyse by FadE and Lister et al.

FadE Lister et al. Validation
ratea (%)

Global rate (%) 62.7 63.5
Total shared sites 23 152 801 23 152 801 89.1b�j < 0:25 5 646 187 4 106 700 84.8b�j > 0:75 10 943 429 11 160 396 91.1
cov > 10 1 030 308 92.9

aThe validation rate refers to the percentage of positions where the
methylation rate calculated by Lister et al. fell within the credible
interval returned by FadE.
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show the utility of using a statistical model to determine
methylation rather than a simple color-conversion or
sequence pileup method whereas the results on the
human fibroblast dataset provide some insight into the
distribution of methylation across the human genome
and also corroborate with a study conducted using
higher coverage nucleotide data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–3 and Supplementary Figures
1–4.
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