
ll
OPEN ACCESS
iScience

Article
Cell type-specific and cross-population polygenic
risk score analyses of MIR137 gene pathway in
schizophrenia
MIR137_Hill_01

MIR137_Hill_02

MIR137_iPSC

MIR137_NPC

MIR137_GABA

MIR137_DA

MIR137_Glut

TCF4_NPC

TCF4_Glut

TCF4_ChIP

Enriched schizophrenia heritabilityVariance Explained

Discovery Sample
PGC3: Schizophrenia

Target Sample
MGS/Han Chinese

Integration

SNP/Gene set analysis

PRS score calculation

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

I I I I I
I I I I I

I I I I I I I I I I

I I
I

I I
I

I I IIII

I I I

I I I

I I I
I I I

III
I I
I

MIR137

3’-UTR

MIR137_Hill_01
MIR137_Hill_02
MIR137_iPSC
MIR137_NPC
MIR137_GABA
MIR137_DA
MIR137_Glut
TCF4_NPC
TCF4_Glut
TCF4_ChIP
MIR137_all
iPSC
Neural
Whole Genome

Yin Yao, Wei Guo,

Siwei Zhang, ...,

Alan R. Sanders,

Weihua Yue,

Jubao Duan

yin_yao@fudan.edu.cn (Y.Y.)

jduan@uchicago.edu (J.D.)

Highlights
PRS of neural MIR137

target genes better

explains schizophrenia

(SZ) risk variance

SZ risk and SNP

heritability explained by

MIR137 target genes is

cell type-specific

MIR137 target genes

explain a

disproportionally larger

SZ risk than genomic

control

PRS of MIR137 target

genes better explains SZ

risk in Europeans than in

Han Chinese

Yao et al., iScience 24, 102785
July 23, 2021 ª 2021 The
Author(s).

https://doi.org/10.1016/

j.isci.2021.102785

mailto:yin_yao@fudan.edu.cn
mailto:jduan@uchicago.edu
https://doi.org/10.1016/j.isci.2021.102785
https://doi.org/10.1016/j.isci.2021.102785
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102785&domain=pdf


iScience

Article

Cell type-specific and cross-population
polygenic risk score analyses
of MIR137 gene pathway in schizophrenia

Yin Yao,1,* Wei Guo,2 Siwei Zhang,3 Hao Yu,4,5,6,7 Hao Yan,4,5 Hanwen Zhang,3 Alan R. Sanders,3,8

Weihua Yue,4,5,9 and Jubao Duan3,8,10,*

SUMMARY

Cell type-specific pathway-based polygenic risk scores (PRSs) may better inform
disease biology and improve the precision of PRS-based clinical prediction. For
microRNA-137 (MIR137), a leading neuropsychiatric risk gene and a post-tran-
scriptional master regulator, we conducted a cell type-specific gene set PRS anal-
ysis in both European andHan Chinese schizophrenia (SZ) samples.We found that
the PRS of neuronal MIR137-target genes better explains SZ risk than PRS
derived from MIR137-target genes in iPSC or from the reported gene sets
showing MIR137-altered expression. Compared with the PRS derived from the
whole genome or the target genes of TCF4, the PRS of neuronal MIR137-target
genes explained a disproportionally larger (relative to SNP number) SZ risk in
the European sample, but with amoremodest advantage in the Han Chinese sam-
ple. Our study demonstrated a cell type-specific polygenic contribution of
MIR137-target genes to SZ risk, highlighting the value of cell type-specific
pathway-based PRS analysis for uncovering disease-relevant biological features.

INTRODUCTION

Genome-wide association studies (GWASs) of complex disorders are identifying an increasing number of

common risk variants. The most recent schizophrenia (SZ) GWAS meta-analysis of Psychiatric Genomic

Consortium (PGC3) with 69,369 patients with SZ and 236,642 controls identified 270 distinct risk loci (The

SchizophreniaWorkingGroup of the Psychiatric Genomics Consortium et al., 2020). Like other complex dis-

orders, SZ is polygenic, i.e., there are possibly hundreds or even thousands of risk-associated genes, each

contributing small effect. Beyond the polygenic model, an omnigenic model has also been hypothesized

for complex disorders such as SZ, where most if not all genes, expressed in a relevant cell type may

contribute to risk through interacting with a core set of genes (Boyle et al., 2017). The polygenic or omni-

genic nature of SZ poses challenges to identifying causal variants/genes and better understanding path-

ogenesis. Polygenic risk scores (PRSs) derived from GWAS data of common variants in a large cohort

have been commonly used to improve estimates of risk variance in a target sample and estimate individual

risk. However, PRSs derived from genome-wide data can be noisy because they include many SNPs with no

risk effect and many risk genes may not be expressed in a cell/tissue type relevant to the disorder. A more

effective approach may be deriving PRS frommore disorder relevant gene pathways and cell types that are

more likely to harbor a higher proportion of causal SNPs (Baker et al., 2018; Zeng et al., 2017), an approach

that has been understudied for SZ.

It has been increasingly recognized that many risk genes likely act as part of a gene network/pathway. It is

thus imperative to identify core gene network(s) contributing to risk. As opposed to maximizing the predic-

tive power of case-control status in PRS analyses by using genome-wide data, gene set PRS analyses can

more specifically detect associations to some biologically informative features (Baker et al., 2018). For

instance, a recent PRS study using SZ GWAS SNPs of gene sets highly expressed and dynamically modu-

lated in placenta showed that considering environmental exposure (early-life complications) can increase

the predicting accuracy of SZ risk (Ursini et al., 2018), although a later study did not replicate this finding

(Vassos et al., 2021). Similarly, by incorporating cell type-specific or developmental stage-specific gene

expression information, gene set PRS analysis may inform cell types or developmental stages that are

more biologically relevant to a disorder. Furthermore, although genome-wide PRS of one specific ancestry
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has been commonly considered inappropriate for predicting risk variance of a different ancestry (Amariuta

et al., 2020), a cell type-specific pathway-based PRS may be more portable between different populations.

For example, PRS derived by prioritizing GWAS variants in the predicted cell type-specific regulatory

elements has substantially increased trans-ancestry portability (Amariuta et al., 2020). Once a gene set is

implicated by PRS analysis, the gene set risk scores for each individual can be used to stratify individuals

for functional follow-up and to formulate a more tractable and testable hypothesis, e.g., by generating pa-

tient-specific cell models in those individuals with high PRS and perform pathway-specific genetic

perturbation.

MicroRNAs (miRNAs) and their targets are ideal candidates for gene set-based PRS analyses. This is because

eachmiRNAoften hasmany possible target genes, i.e., be a ‘‘master regulator.’’ In addition, miRNAs are central

to brain development and play an important role in the cause of neurodevelopmental disorders such as SZ

(Guarnieri andDiLeone, 2008; Im and Kenny, 2012). AmongGWAS-implicated SZ risk loci (Schizophrenia Psychi-

atric Genome-Wide Association Study (GWAS)Consortium, 2011; Lee et al., 2012; Purcell et al., 2009; Shi et al.,

2009; Stefansson et al., 2009; Ripke andConsortium, 2014), one of themost strongly associated (p = 6.63 10�16)

(Schizophrenia Psychiatric Genome-Wide Association Study (GWAS)Consortium, 2011; Ripke and Consortium,

2014) spansMIR137. The SZ risk alleles of theMIR137 locus also predict cognitive deficits (Green et al., 2012), and

the deletion of theMIR137 locus has been associated with intellectual disability (Willemsen et al., 2011).MIR137

is highly expressed in brain and enriched at neuronal synapses (Willemsen et al., 2011). It regulates neuronal dif-

ferentiation, migration, and dendritogenesis (Silber et al., 2008; Smrt et al., 2010; Sun et al., 2011; Szulwach et al.,

2010; Volvert et al., 2012). Of interest, several SZ GWAS loci encompassMIR137 targets; for instance,MIR137 has

been known to regulate other genes that harbor SZ-associated variants such as ZNF804A, TCF4, CACNA1C,

CSMD1, andC10orf26 (Collins et al., 2014; Kwon et al., 2013; Remmers et al., 2014; Wright et al., 2013), suggest-

ing a central hub role for MIR137 in an SZ gene network. A recent PRS analysis of genes whose expression was

altered by artificial manipulation ofMIR137 expression in a neural progenitor cell (NPC) line uncovered an inter-

esting association of theMIR137 gene set PRS with cognitive function (Cosgrove et al., 2017). However, another

study did not find a significant association between MIR137 PRS and cortical thickness, surface area, or hippo-

campal volumemeasures linked tomemory function (Cosgrove et al., 2018). Although interesting, theseMIR137

PRS analyses have several limitations: (1) the relative contribution ofMIR137 gene set PRS to the overall SZ risk

variance has not been estimated; (2) because of the notorious weak expression correlation ofMIR137 and its tar-

geting genes (Forrest et al., 2017; Topol et al., 2016), the gene set defined by artificially manipulating MIR137

expression in a single cell line may not be representative of an actual specific MIR137 gene network; and (3)

NPCs used to define the gene sets for MIR137 PRS analyses may not represent the most relevant cell type for

SZ (Skene et al., 2018).

Here, by using PGC3 (The Schizophrenia Working Group of the Psychiatric Genomics Consortium et al.,

2020) SZ GWAS summary statistics of European ancestry samples, we have compared the PRS performance

of different gene sets ofMIR137 targets in explaining SZ risk variances in the Molecular Genetics of Schizo-

phrenia (MGS) European ancestry cohort (Shi et al., 2009) and in a Han Chinese SZ case-control sample (Li

et al., 2017; Yu et al., 2017) (Figure 1). We also compared with performances of PRSs derived from sets of

target genes of TCF4, a transcriptional master regulator of SZ (Doostparast Torshizi et al., 2019). We discov-

ered that the PRSs of neuronal MIR137-target gene sets explain disproportionally larger SZ risk variance,

compared with the TCF4-target gene sets and genome-wide SNP sets. Furthermore, with human induced

pluripotent stem cells (hiPSCs) as a model, we found that the PRS predictive efficacy ofMIR137-target gene

sets is neuron specific. Finally, we evaluated the PRS portability of MIR137 gene sets from European

Ancestry to Han Chinese samples. Our study underscores the value of cell type-specific gene set PRS anal-

ysis in understanding the biology of a polygenic or omnigenic disorder.

RESULTS

To evaluate the contribution of gene pathway(s) pertinent toMIR137, a leading noncoding SZ risk locus, to

genetic risk of SZ, we addressed three specific questions in a set of PRS analyses: (1) Between genes per-

turbed by altering MIR137 expression in a specific cell type (Cosgrove et al., 2017) and those predicted

MIR137 target genes specifically expressed in a disease-relevant cell type, which constitutes an optimal

gene set of the MIR137 pathway for PRS analysis? (2) What is the proportion of SZ risk variance that can

be explained by disease risk variants in the MIR137 gene pathway? (3) Is the MIR137 gene pathway-based

PRS portable across ancestry? To address these questions, we have compiled 10 gene sets (Tables 1 and

S1), including the lists of genes perturbed by MIR137 alteration and previously used for MIR137 gene
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pathway PRS analysis by Hill et al. (Cosgrove et al., 2017), genes predicted to be MIR137 targets and ex-

pressed in hiPSC or in various hiPSC-derived neuronal cell types (Forrest et al., 2017; Zhang et al., 2018,

2020). For a comparison, we also included sets of genes that were perturbed by knocking down a transcrip-

tional master regulator, TCF4 (also an SZ GWAS-implicated risk gene), in hiPSC-derived neuronal cells

(Doostparast Torshizi et al., 2019), as well as empirical binding targets of TCF4 in chromatin immunopre-

cipitation (ChIP-seq) (Forrest et al., 2017). For each gene set, the ‘‘significant’’ SNPs were selected based

on seven predetermined significance thresholds (Pd < 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) in the discovery

sample (the European ancestry PGC-SZ3 minus MGS) to derived PRS for each individual in two target sam-

ples, the European ancestry MGS (2,681 cases, 2,653 controls) (Shi et al., 2009) and a Han Chinese sample

(4,288 cases, 5,512 controls) (Li et al., 2017; Yu et al., 2017). We estimated the proportion of variance ex-

plained by the aggregate risk score by each SNP/gene set in each sample (Figure 1).

Neuronal MIR137 target genes better explain SZ risk variance than genes with expression

altered in vitro by MIR137

Genes with expression altered by either over-expression or knocking-down of MIR137 in NPCs have been

recently used to correlate PRS to SZ-related cognitive phenotypes (Cosgrove et al., 2017, 2018). Given the

known weak expression correlation of MIR137 and its targeted genes (Forrest et al., 2017; Topol et al.,

2016), we hypothesized that predicted MIR137 gene targets specifically expressed in a disease-relevant

cell type may constitute a better gene set for PRS analysis. As shown in Figure 2A (Table S3), although

with similar number of genes (Table S2), PRS derived from the predicted MIR137 target genes that are ex-

pressed in hiPSC-derived NPCs (Ngene = 925 in MIR137_NPC), GABA (Ngene = 986 in MIR137_GABA), DA

neurons (Ngene = 1,034 of MIR137_DA), or Glut (Ngene = 991 of MIR137_Glut) neurons explains greater SZ

risk variance in the MGS sample than PRS derived from genes expressed in hiPSCs (Ngene = 909 in MIR137_

iPSC) or those with expression altered by MIR137 in NPC (Ngene = 1,017 and 934 in MIR137_Hill_01 and

MIR137_Hill_02, respectively). The PRS of gene set in Glut showed the best performance (Figure 2A and

Table S3), consistent with the notion that it is among themost disease-relevant cell types for SZ (The Schizo-

phrenia Working Group of the Psychiatric Genomics Consortium et al., 2020). We observed similar patterns

across different GWAS p-value thresholds (Pd < 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) and at different gene

intervals, i.e., 20 (Figure 2A) or 100 kb (Figure S1A) extended genic regions.

Although different gene sets in our above-described PRS analysis (Figure 2A) contain similar number of

genes, the results may be cofounded by variable gene length (e.g., neuronal genes are often larger) (Zylka

et al., 2015) and SNP numbers in different gene sets. To account for these confounding factors, we first esti-

mated the relative PRS enrichment for each gene set in Figure 2A by correcting for the number of tested

SNPs in each gene set (Figure S2). We found that MIR137 target gene sets in iPSC-derived neuronal cells

explained disproportionally more SZ risk variance than SNPs from MIR137 target genes expressed in iPSC

across all GWAS p-value thresholds (Figure S2). However, MIR137 target gene sets in iPSC-derived
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Figure 1. Workflow for PRS analysis
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neuronal cells did not seem to outperformMIR137_Hill_01 andMIR137_Hill_02 in this analysis, especially at

Pd < 0.01, 0.05, 0.1, 0.2, or 0.3.

We then performed permutation (N = 1,000) to randomly select the same number of SNPs in each gene set

for calculating PRS (Table S3). As shown in Figures 2B and S1B, we found that MIR137 target gene sets ex-

pressed in hiPSC-derived NPCs or neurons explain more SZ risk variance in theMGS sample than the genes

expressed in non-neuronal hiPSCs. Overall, these neural MIR137 target gene sets also explained dispro-

portionally more SZ risk variance than SNPs of the two gene sets with expression altered by artificially

changing MIR137 expression in NPCs (MIR137_Hill_01 and MIR137_Hill_02), especially with SZ GWAS p-

value cut-offs of <0.3, <0.4, or <0.5 (Figure 2B). Although this assessment may still be confounded by

the number of SNPs in each permutation at some SZ GWAS p value cut-offs, we noted that the SNP

numbers in the permutation tests were overall similar between gene sets, especially with exactly the

same number of SNPs (n = 1,500) at SZ GWAS p-value cut-off <0.5 (Figure S3), suggesting a greater relative

enrichment of variance explained byMIR137 target gene sets from hiPSC-derived neural cells (versus those

from iPSC, MIR137_Hill_01 or MIR137_Hill_02). We also compared the SZ PRS of these SNP sets with an

equal number of SNPs from all the predicted MIR137 target genes independent of whether they were ex-

pressed in any particular cell type (MIR137_all) and found that SNPs from MIR137_all explained similar SZ

risk variance as SNPs from neuronal gene sets, but significantly more variance than genes expressed in iPSC

(Figure 2B and Table S4), suggesting a major contribution of neuronalMIR137 target genes to SZ risk (also

see below). It is noteworthy that MIR137_Hill_01 and MIR137_Hill_02 gene sets, although explaining pro-

portionally less variance than the neuronalMIR137 target gene sets, still explain proportionately more vari-

ance than the control genomic SNP set (Figure 2B and Table S4). The statistical significance of a Student’s t-

tests was shown in Figure 3 and Table S4 on 1,000 permuted Nagelkerke’s pseudo R2 values between any

two gene sets. Altogether, these results suggest the importance of PRS analysis using cell type-specific

gene sets.

To independently validate the results from gene set-specific PRS analysis, we further conducted a partitioned SZ

heritability analysis by a stratified linkage disequilibrium score regression (sLDSC) (Bulik-Sullivan et al., 2015; Fi-

nucane et al., 2015) for different gene sets. With PGC SZ wave_3 GWAS summary statistics, we estimated the

proportion of explained SZ SNP heritability (h2) and the proportion of SNPs in each gene set (Figure 2C and

Table 1. Gene/SNP sets used in the PRS analysis

List no. List name Genes Description Reference

1 MIR137_Hill_01 1,017 Genes altered by over-expressingMIR137 in an

NPC cell line (previous study)

(Cosgrove et al., 2017; Hill et al., 2014)

2 MIR137_Hill_02 934 Genes altered by knocking downMIR137 in an

NPC cell line (previous study)

(Cosgrove et al., 2017; Hill et al., 2014)

3 MIR137_iPSC 909 TargetScan MIR137 target genes expressed in

hiPSC

(Zhang et al., 2020)

4 MIR137_NPC 925 TargetScan MIR137 target genes expressed in

hiPSC-derived NPCs

(Zhang et al., 2020)

5 MIR137_GABA 986 TargetScan MIR137 target genes expressed in

hiPSC-derived GABA neurons

(Zhang et al., 2018)

6 MIR137_DA 1,034 TargetScan MIR137 target genes expressed in

hiPSC-derived DA neurons

(Zhang et al., 2018)

7 MIR137_Glut 991 TargetScan MIR137 target genes expressed in

hiPSC-derived Glut neuron

(Forrest et al., 2017; Zhang et al., 2020)

8 TCF4_NPC 1,000 Top ranking genes altered by knocking down

TCF4 in hiPSC-derived NPCs

(Doostparast Torshizi et al., 2019)

9 TCF4_Glut 1,000 Top ranking genes altered by knocking down

TCF4 in hiPSC-derived Glut neurons

(Doostparast Torshizi et al., 2019)

10 TCF4_ChIP 1,000 Top ranking genes with promoter/enhancer

bind by TCF4 (previous study)

(Forrest et al., 2017)

The lists of MIR137_Hill_01 and MIR137_Hill_02 have been used by Hill et al. in previous PRS analysis (Cosgrove et al., 2017; Hill et al., 2014).
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Figure 2. PRS analysis of different lists of target genes ofMIR137 and TCF4 annotated in a 20-kb window for the

MGS sample

Gene sets in (A) and (B) were described in Table 1.

(A) PRS result using LD-pruned SNPs (r2 < 0.2) for each gene list. The variance explained in the target sample is based on

risk scores derived from an aggregated sum of weighted SNP risk allele effect sizes estimated from the discovery samples

ll
OPEN ACCESS

iScience 24, 102785, July 23, 2021 5

iScience
Article



Table S5).We found that all the testedMIR137 target gene sets are enriched (3- to 5-fold) for SZ SNP heritability,

with neuronal gene sets, especially those expressed in Glut neurons, showing strongest enrichment, whereas

MIR137_Hill_01 andMIR137_Hill_02 gene sets showed the least enrichment (Figure 2C and Table S5). On com-

parison with the enrichment score of each gene set, the coefficient from the sLDSC analysis gave even stronger

support for proportionally more SZ SNP heritability explained by neuronal MIR137 target gene sets than those

expressed in iPSC orMIR137_Hill_01 andMIR137_Hill_02 gene sets (Table S5). The result from the sLDSC anal-

ysis is thus largely consistent with our gene set-specific SZ PRS analysis using randomly selected SNPs from each

gene set, supporting that neuronal MIR137 target genes better explain SZ risk variance/heritability than non-

neuronal genes or those with expression altered in vitro by MIR137.

SZ PRS explained by MIR137 target genes is mainly attributed to a small number of neuron-

specific genes

Given that the MIR137 target gene sets expressed in hiPSC-derived neurons explain 2- to 3-fold more SZ vari-

ance than those in hiPSCs (Figures 2A and 2B), we speculated that those MIR137 target genes specifically ex-

pressed in neurons contributed to the difference. As shown in Figure 4A, most genes (N = 784; Table S1)

were expressed in both hiPSC and hiPSC-derived NPCs, DA, GABA, and Glut neurons. Therefore, we hypoth-

esize that the PRS of a very small subset of MIR137 target genes expressed only in NPCs and/or neurons ex-

plained a larger proportion of the SZ risk variance. These genes include those at genome-wide significant SZ

risk loci, such as CACNA1C uniquely expressed in Glut/DA/GABA neurons, CSMD1 and DPYD expressed

only in Glut neurons, and GRIA1 expressed in all neuronal cells. It is noteworthy that the dysregulated synaptic

expression of GRIA1 in dendritic protrusions of Glut neurons was found associated with the SZ risk allele of

MIR137 (Forrest et al., 2017). Some other contributing neuronal genes are not among those top-ranking SZ

GWAS risk genes, e.g., PDE10A (Table S1), a gene that was recently shown to be a key target that mediates

the MIR137 function in heterozygous MIR137 knockout mice (Cheng et al., 2018).

To explore the hypothesis that a small subset of neuronalMIR137 target genes show a higher enrichment of SZ

risk variance, we restricted the PRS analysis to the neuralMIR137 target genes (N = 182; denoted as ‘‘Neural’’) or

those genes also expressed in iPSC (N= 784; denoted as ‘‘iPSC’’) (Figure 4B). Similar to the SNPpermutation test

in Figure 2B, we compared the SZ variance explained by each subset of genes by using the same number of

1,500 SNPs in each permutation for each gene set at GWAS p-value threshold of <0.5 (Figure 4B). We found

that the subset of neural MIR137 target genes (N = 182) disproportionally explained much greater SZ risk vari-

ance than those also expressed in iPSC (N = 784) or any other gene set tested in Figure 2B (Figures 3 and 4B).

We further conducted Hi-C-coupled MAGMA (H-MAGMA) analysis (de Leeuw et al., 2015; Sey et al., 2020)

to orthogonally validate the enrichment of SZ GWAS risk in the small subset of neuronal MIR137 target

genes (N = 75 in NPC to N = 161 in Glut) as opposed to genes expressed in both iPSC and neural cells

(N = 784; Figure 4A). H-MAGMA improved the prediction of brain-disorder risk genes by incorporating

brain chromatin interaction profiles (Sey et al., 2020), specifically the Hi-C data from iPSC-derived neurons

(Rajarajan et al., 2018) for the current study (Figure 4C). Consistent with the result from our PRS analysis (Fig-

ure 4B), we found that MIR137 target genes specifically expressed in each subtype of neural cells, but not

those also expressed in iPSC, showed robust enrichment of SZ GWAS risk (enrichment p-values ranging

from 3.2 3 10�4 in GABA to 9.6 3 10�7 in Glut) (Figure 4C). Taken together, these analyses suggest that

SZ PRS explained byMIR137 target genes is mainly attributed to a small number of neuron-specific genes.

SZ PRS of MIR137 target genes accounts for a disproportionally larger SZ risk variance of

MGS sample

The maximum SZ risk variance explained by PRS of neuronal MIR137 target gene sets in the MGS sample

was ~2%, whereas the whole genome SNP set explains up to ~10% SZ risk variance (Figure 2A). Considering

Figure 2. Continued

at seven significance thresholds (p < 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5). The y axis indicates the percentage of

phenotypic variance explained by the PRS (Nagelkerke’s pseudo R2).

(B) The permutation (N = 1,000) PRS results based on randomly selected 1,500 SNPs for each gene set. Data are presented

as mean G SEM.

(C) Stratified LDSC analysis showing stronger enrichment of SZ GWAS SNP heritability in neuralMIR137-target gene sets.

Shown are the folds of enrichment of SNP heritability (proportion of explained heritability h2 normalized by the proportion

of SNPs in each gene set) and the statistical significance (Bonferroni-corrected p values; in -log10 scale).
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the small number of MIR137 target genes (N = ~1,000) in each gene set in comparison with the number of

all the RefSeq genes (N = ~20,000), the variance explained by neuronalMIR137 target gene sets suggests a

disproportionally larger (4-fold) contribution of neuronalMIR137 target gene sets to genetic etiology of SZ.

This observation is consistent with the ‘‘master regulator’’ role ofMIR137 in post-transcriptional regulation.

The larger proportion of SZ risk variance explained by neuronal MIR137 target gene sets was further sup-

ported by a comparative PRS analysis of gene targets of TCF4, a transcriptional ‘‘master regulator’’ (and

also a prominent SZ GWAS risk locus): PRS of MIR137 target gene sets explained higher SZ risk variance

in the MGS sample (Figures 2A and S1, and Table S3).

Permutation tests of gene set-specific PRS analysis accounting for SNP number in each gene set also

demonstrated an overall better performance of the PRS of neuronal MIR137 target genes in explaining

SZ risk variance (Table S4), compared with the PRS of TCF4 target gene sets or the genome-wide SNP

set (Figures 2B and S1B). Our independent partitioned heritability analysis further showed neuronal

MIR137 target gene sets explained disproportionally more SZ heritability (with PGC3 SZ GWAS summary

statistics) than TCF4 target gene sets (Figure 2C and Table S5).

The European ancestry-based PRS of MIR137 target gene sets explains smaller SZ risk

variance of Han Chinese in cell type-specific manner

Although genome-wide PRS is usually considered to not be portable between samples of different

ancestry, PRS of a disease-relevant gene pathway/set may perform better in explaining disease risk vari-

ance across populations (Baker et al., 2018). Given the strong genetic association of the MIR137 locus

with SZ in both European and Han Chinese samples, as well as our observed large contribution of neuronal

MIR137 target genes to SZ risk variance in theMGS sample (Figure 2), we conducted a PRS analysis in a Han

Chinese SZ sample for the same gene lists and by using the same European ancestry-based PGC-SZ3-

minus-MGS summary GWAS statistics. As expected, we observed that the PGC-SZ3 genome-wide PRS
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Figure 3. -log(p-values) of t-tests for comparing the variance explained by the equal number of randomly selected

SNPs (1,000 permutations) of two gene sets

The upper triangle indicates the results in the MGS sample, and the lower triangle indicates the results in the Han Chinese
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diagonal grid. The cells with * indicate non-significant p-value > 0.0009 (from two-sample Student’s t-test; Bonferroni

corrected).
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explained much smaller (~2%) SZ risk variance in the tested Han Chinese sample (Figure 5A, Figure S4A,

and Table S3) (versus ~10% in MGS). Similarly, PRS of MIR137 target genes also explained much less vari-

ance of the Han Chinese sample (up to ~0.3% with extended 20 kb; Figure 5A) than of the MGS sample

(Figure 2A).

We further examined whether the PRS of neuronal MIR137 target genes also explain larger SZ risk vari-

ance of Han Chinese sample than that of genes with expression altered in vitro by MIR137 or the TCF4

target gene sets as we observed for MGS sample. For gene sets with the 20-kb extended genic region,

although we observed a better predictive performance of PRS of the entire SNP sets of neuronal MIR137

genes at p < 0.01 (Figures 5A and 3), permutation testing accounting for SNP number in each gene list

did not provide support (Figures 5B and 3). However, for gene sets with a 100-kb extended genic region

at some SZ GWAS p-value cut-offs (p < 0.01, <0.05, and <0.5) both the PRS analysis of the entire SNP sets

and the permutation test supported that the PRS of neuronal MIR137 target genes overall explain larger

SZ risk variance of the Han Chinese sample than that of non-neuronal MIR137 target genes or genes sim-

ply altered by changing MIR137 expression (Figures S4 and 3). As observed for MGS, the PRS of neuronal

MIR137 target genes with the extended 100-kb genic region overall explained larger SZ risk variance of

the Han Chinese sample compared with the PRS of TCF4 target genes or over genome-wide random
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Figure 4. SZ PRS explained by MIR137 target genes (in Figure 2) is mainly attributed to a small number of neuron-specific genes

(A) Venn diagram of the five lists of MIR137 target genes expressed in different cell types derived from hiPSC. NPC, neuron progenitor cells; GABA,

GABAergic neurons; DA, dopaminergic neurons; Glut, glutamatergic neurons.

(B) The PRS results from permutation (N = 1,000) for the small subset of MIR137 target genes expressed only in neuronal cell type (N = 182, denoted as

‘‘Neural’’) or shared with hiPSC (N = 784, denoted as ‘‘iPSC’’), using randomly selected 1,500 SNPs for each gene set at GWAS p-value threshold of <0.05.

Data are represented as mean G SEM.

(C) H-MAGMA analysis showing enrichment of SZ risk (PGC_wave3) inMIR137 target genes specific to each neuronal cell type but not in genes shared with iPSC (n =

784 from A). Shown in bubble plot are corresponding effect size (BETA) and enriched p-value (Bonferroni corrected; in -log10 scale) of each gene set.
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SNP sets (Figures S4B and 3). However, the same pattern was not observed for the gene sets with the 20-

kb extended genic region, even with the same number of randomly selected SNPs in each gene set (Fig-

ure 5B), which may be due to the different LD structure in the Han Chinese sample that makes the PRS

analysis very sensitive to the SNP numbers in each gene set. Altogether, these results suggest that,

compared with the MGS sample of European ancestry, there was only a more modest proportional

advantage of neuronal MIR137 gene sets over non-neuronal gene sets or genomic controls in explaining

SZ risk variance in Han Chinese.
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Figure 5. PRS analysis of different SNP lists of MIR137 and TCF4 target genes annotated in a 20-kb window for

the Han Chinese sample

(A) PRS result using LD-pruned SNPs (r2 < 0.2) for each gene list. The variance explained in the target sample is based on

risk scores derived from an aggregated sum of weighted SNP risk allele effect sizes estimated from the discovery samples

at seven significance thresholds (p < 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5). The y axis indicates the percentage of

phenotypic variance explained by the PRS (Nagelkerke’s pseudo R2).

(B) The permutation (N = 1,000) PRS results based on randomly selected 1,500 SNPs for each gene set. Data are presented

as mean G SEM. Gene sets in (A) and (B) were described in Table 1.
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DISCUSSION

Gene pathway- or set-based PRS analysis in a large cohort can help inform disease biology and identify core

gene networks that contribute most risk to a polygenic or omnigenic disorder (Baker et al., 2018). Furthermore,

because a disorder-relevant gene pathwaymay contain SNPs that showmore convergent cross-ancestry genetic

associations, thepathway-basedPRS in a sampleof oneancestrymaybe somewhatmoreportable for predicting

individual risks in a population of another ancestry. Here, forMIR137, a leading SZ GWAS risk gene and a post-

transcriptional master regulator, our gene pathway-based PRS analysis suggested a cell type-specific effect of

PRS in explaining SZ risk variance and a disproportionally large contribution of MIR137 target gene set to SZ

risk in a European ancestry sample and to a lesser degree in a Han Chinese sample.

MIR137 is a leading SZ risk gene that is predicted by TargetScan to post-transcriptionally regulate more

than 1,000 genes. However, the relative genetic contribution of the MIR137 gene pathway to SZ etiology

has not been examined. Through cell type-specific PRS analyses, we have found that neuronal MIR137

target genes can explain ~2% of SZ risk variance in the MGS European ancestry sample (Figure 2), which

accounts for one-fifth of the total risk variance explained by the genome-wide SNP set. Despite an overall

much smaller proportion (as expected) of SZ risk variance of Han Chinese explained by the European

ancestry-based SZ PRS, a comparable proportion of PRS contribution from neuronal MIR137 target gene

pathway was identified for Han Chinese. The cross-population convergent PRS contribution of the neuronal

MIR137 target gene sets is not unexpected, because MIR137 is also a leading SZ GWAS locus in the Han

Chinese sample (Li et al., 2017). The same GWAS SNP at the MIR137 locus has also been associated

with brain imaging phenotypes in the Han Chinese population (Liu et al., 2014). The relatively large contri-

bution of theMIR137 gene pathway to SZ risk in both populations (Figures 2B, 2C, 5B, and S4B) presents a

clear contrast to the target gene sets of TCF4, another leadingGWAS risk gene and a transcriptional master

regulator (Doostparast Torshizi et al., 2019). These results suggest a possibly shared disease pathway

involving MIR137 and its target genes across populations.

Our cell type-specific MIR137 target gene set PRS contribution to SZ risk also implies the importance of

considering the most disease-relevant cell types in PRS analysis. Gene sets with expression altered by

either over-expressing or knocking down MIR137 expression have been used in previous PRS analysis of

SZ-relevant cognitive performance, but with mixed outcomes (Cosgrove et al., 2017, 2018). By comparing

with the exact set of MIR137 gene sets used by these studies (Cosgrove et al., 2017, 2018), we have shown

here that PRSs of neuronalMIR137 target gene sets rather than those genes simply altered by manipulating

MIR137 expression better explain SZ risk variance in a target sample (Figure 2). The improved performance

of neuronal MIR137 target gene sets was not unexpected, because many genes showing gene expression

changes upon artificially changingMIR137 expression may just reflect the noise of transcriptomic data, i.e.,

not specific toMIR137 function. The importance of cell type specificity in PRS analysis is echoed by a recent

study that shows PRSs derived from cell type-specific regulatory elements can substantially increase its

trans-ancestry portability (Amariuta et al., 2020). Beyond disorder-relevant cell types, other considerations

that reflect the convergent disease biology, such as developmental stage or variant functionality, may

further improve the applicability of PRS.

Identifying the core gene networks and the functionally relevant cell types for a polygenic disorder has

been a challenge. Leveraging the transcriptomic profiles of hiPSC-derived relatively pure (>80%) neuronal

cultures (Forrest et al., 2017; Zhang et al., 2018, 2020), both our cell type-specific PRS analyses of MIR137

target gene sets with the same number of randomly selected SNPs (Figure 2B) and our independent par-

titioned heritability analysis for each gene set (Figure 2C) indicated that Glut, DA, andGABA neurons are all

relevant cell types for MIR137 gene pathway to function and contribute SZ risk, which has not been previ-

ously demonstrated. Indeed, the implicated specific cell types where the PRS of MIR137 target gene sets

better explain SZ risk variance are consistent with our previous studies that showed high-level expression of

MIR137 in DA and Glut neurons, but not as much in NPCs or iPSCs (Forrest et al., 2017; Shi et al., 2014).

Moreover, our observation that the PRS of the Glut neuronalMIR137 target gene set explained the highest

SZ risk variance in MGS (Figure 2) is consistent with our recent report of a negative correlation of MIR137

expression and its target gene GRIA1 in dendritic protrusions (or spines) of hiPSC-derived Glut neurons

(Forrest et al., 2017). Identifying disease relevant cell type(s) is important for understanding the biology

of SZ (Skene et al., 2018). The significance of our current analysis is the identification of SZ-relevant cell

types for a specific gene pathway through cell type-specific and cross-population PRS analyses (Figures

2 and 3), providing a more tractable mechanistic insight on understanding the biology of SZ.
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Limitations of the study

We acknowledge the limitations in our analyses. First, although the number of genes in each list are compara-

ble (N~1,000), the number of SNPs (and gene lengths) in each cell type or population may vary, which may

confound the SZ risk variance explained by a specific gene/SNP set. Nevertheless, our permutation tests using

the same number SNPs randomly selected from each gene list and our independent partitioned heritability

analysis (Figures 2B, 2C, S1B, and 3B), which was expected to account for the varying SNP number and

gene length in each gene list, revealed consistent results with the observation directly from all SNPs in each

gene set. Second, some other cell types such as astrocytes and microglia might also be relevant to MIR137

function, which was not investigated in our study; however, compared with glutamatergic andGABAergic neu-

rons, these cell types are less genetically relevant to SZ (Skene et al., 2018). Third, iPSC-derived neurons,

although relatively pure, are commonly known to represent immature neurons (during the prenatal stages),

and our observations may thus not reflect the disorder biology at the adult stage of SZ. Nevertheless, SZ is

known to have a strong neurodevelopmental pathogenic aspect and hiPSC models have been effectively

used for understanding SZ-relevant functional genomics and disease biology (Amiri et al., 2018; Forrest

et al., 2017; Rajarajan et al., 2018). Finally, although MIR137 post-transcriptionally functions through targeting

30-UTRs of its target genes, our gene set PRS analysis was conducted with genetic risk variants not only at 30-
UTRs of theseMIR137 target genes but also in other parts of thegenes such as enhancers.More comprehensive

PRS analysis or partitioned heritability analysis of the MIR137 gene pathway in different cell types at various

developmental stages, and by variant location in different genomic/epigenomic features, may shed further

mechanistic insight onto how MIR137 confers individual susceptibility to SZ.

In summary, by combining pathway-based PRS analysis with cell type-specific transcriptomic profiles in

hiPSC-derived neurons, we discovered that MIR137 target genes expressed in three major SZ-relevant

neuronal cell types explain a larger proportion of SZ risk variance in European and, to a lesser degree,

Han Chinese samples. Despite the limitations, our analysis informed the SZ-relevant cell types for

MIR137 to function, highlighting the value of pathway-based PRS analysis in uncovering disorder-relevant

biological features. Knowledge on cross-population high-risk gene pathways may not only help improve

the specificity of PRS-based individual risk prediction but also have the potential to facilitate the translation

of genetic findings into pathway-based therapeutic interventions.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Jubao Duan (jduan@uchicago.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The PGC3 SZ GWAS summary statistics can be accessed through ‘‘schizophrenia data access portal’’

(https://www.med.unc.edu/pgc/pgc-workgroups/schizophrenia/). The Chinese Han SZ GWAS summary

statistics have been deposited in the Peking University Open Research Data repository with accession num-

ber 10638 (https://doi.org/10.18170/DVN/IHROUE). The gene expression data used to generate the list of

MIR137-target genes expressed in different neural cell types can be accessed through GEO: GSE129017

and GSE132757. This paper does not report original code. Any additional information required to reana-

lyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Genetic data sets

PGC-SZ3. The PGC-SZ3 (The Schizophrenia Working Group of the Psychiatric Genomics Consortium

et al., 2020) dataset was downloaded through approved access from PGC SZ workgroup (www.med.unc.

edu/pgc/pgc-workgroups/schizophrenia). This specific dataset is the summary statistics of PGC-SZ sam-

ples of European ancestry leaving out MGS. This PGC-SZ3 dataset contains the odds ratios (ORs) and p

values that were calculated on 7,651,682 SNPs in the meta-analysis of all 75 European cohorts (except

the MGS data), and was used as a discovery sample to identify SZ risk variants.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

PGC3 SZ GWAS summary statistics The Schizophrenia Working Group of the

Psychiatric Genomics Consortium et al., 2020

www.med.unc.edu/pgc/pgc-workgroups/

schizophrenia

Chinese Han SZ GWAS summary statistics Li et al., 2017; Yu et al., 2017 Accession number 10638 https://doi.org/10.

18170/DVN/IHROUE

RNA-seq data from cell lines of 8 donors per

cell type (iPSC, NPC, DA, and GABA)

Zhang et al., 2020; Forrest et al., 2017;

Zhang et al., 2018

GSE129017 and GSE132757

Software and algorithms

IMPUTE2 software program (version 2.1.2) Howie et al., 2011; Howie et al., 2009 http://mathgen.stats.ox.ac.uk/impute/

impute_v2.html

SHAPEIT2 (version v2.r644) Delaneau et al., 2011 https://mathgen.stats.ox.ac.uk/

genetics_software/shapeit/shapeit.html

LDSC Bulik-Sullivan et al., 2015; Finucane et al., 2015 https://github.com/bulik/ldsc

H-MAGMA Sey et al., 2020 https://github.com/thewonlab/H-MAGMA

Other

1,000 Genomes Phase 3 panel (October 2014

Data Release)

Auton et al., 2015 https://www.internationalgenome.org/

category/phase-3/

1000G_EUR_Phase3_baseline v2.2 Bulik-Sullivan et al., 2015; Finucane et al., 2015 https://github.com/bulik/ldsc/issues/96
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MGS. MGSwas used as a target sample of European ancestry. This MGS dataset contains GWAS data for

2,681 SZ cases and 2,653 controls (3,134 males, 2,200 females; mean age = 46.8 with 14.7 SD) (Shi et al.,

2009). Quality control (QC) performed on the genotype data was previously reported (Shi et al., 2009). Ge-

notype imputation was conducted using the IMPUTE2 software program (version 2.1.2) (Howie et al., 2009,

2011), using haplotypes from all 2,504 individuals in the 1,000 Genomes Phase 3 panel (October 2014 Data

Release) as a reference panel (Auton et al., 2015). The haplotypes were phased using SHAPEIT2 (version

v2.r644) (Delaneau et al., 2011), which can perform the pre-phasing step for the study genotypes to produce

‘best-guess’ haplotypes. The imputed SNPs with low quality were excluded (IMPUTE2 info <0.6, IMPUTE2

certainty <0.8, or minor allele frequency (MAF) < 0.05). A total of 5,132,475 imputed SNPs was retained in

the follow-up PRS analyses. The NorthShore University HealthSystem IRB approved the study.

Han Chinese. The Han Chinese dataset contains 4,288 SZ cases and 5,512 controls (4,395 males, 5,405

females; mean age = 31 with 10.03 SD) (Li et al., 2017; Yu et al., 2017). Genotyping of these samples was

conducted using different types of Illumina Genome-Wide Arrays: GWAS1 dataset using Human-

Hap610-Quad BeadChips, GWAS2 dataset using Human660W-Quad BeadChip, and GWAS3 and

GWAS4 datasets using Illumina Human OmniZhongHua BeadChips specifically designed for the Chinese

population. The genotyping QC filters included: genotype call rate >98%, MAF >0.01, difference in SNP

missingness between cases and controls <0.02, Hardy-Weinberg disequilibrium p > 1 3 10�6. Samples

were excluded for gender discordance and genetic ancestry outliers. Genotypes were first phased using

SHAPEIT (v2.r727) (Delaneau et al., 2011), and imputation was then performed over each 3 Mb-interval

centered on all index SNPs using IMPUTE (v2.3.0) software (Howie et al., 2009, 2011). Haplotypes derived

from Phase 1 of the 1000 Genomes Project (release v3) were used as reference data. After imputation, we

excluded SNPs with an imputation quality score below a set threshold (info<0.6), call rate <0.98 in either

cases or controls, MAF<0.01, Hardy-Weinberg disequilibrium p < 1 3 10�6.

PRS analysis

To explore the genetic relationship between the discovery sample (PGC-SZ3 without MGS) and target sam-

ples (MGS, Han Chinese) datasets, we used PRSice to conduct a standard PRS analysis (Euesden et al., 2015)

as in the PRS workflow (Figure 1). Let Pd be the p values of the GWAS study in the discovery sample. Spe-

cifically, ‘significant’ SNPs with Pd<0.5 were pruned based on linkage disequilibrium (LD) (r2 < 0.2) in MGS

data, and then selected based on seven predetermined significance thresholds (Pd<0.01, 0.05, 0.1, 0.2, 0.3,

0.4, and 0.5) in PGC-SCZ3. Within each pruned SNP set under each significance threshold, a quantitative

aggregate risk score was calculated for each individual in the target samples, defined as a sum across

SNPs of the number of reference alleles (0, 1, or 2) at that SNP multiplied by the effect size measures

(log of OR) for that SNP estimated from the discovery sample. Association of aggregate risk score and

actual SZ in the target samples were performed with logistic regression adjusted for gender, age, and

10 principal components to control for population stratification. We then calculated the percentage of

phenotypic variance explained by the aggregate risk score (Nagelkerke’s pseudo R2) of different SNP/

gene-sets (see below).

Gene-sets

We have used the same lists of 900–1,000 genes previously used for MIR137 PRS analysis (Cosgrove et al.,

2017; Hill et al., 2014) for comparison to our own gene sets. These lists of genes are those with expression

altered by overexpressingMIR137 or knocking downMIR137 in a single NPC cell line, selected by the fold-

change of gene expression and their statistical significance (Cosgrove et al., 2017; Hill et al., 2014).

For testing lists of cell type-specificMIR137 target genes (900–1,000 genes per list), we assembled them by

cross-referencing the predictedMIR137 target genes (target prediction score >0.1 by TargetScan 6.2) with

their expression value FPKM (fragments per kilobase per million reads) in hiPSC and hiPSC-derived NPCs,

dopaminergic neurons (DA), GABAergic neurons (GABA), and glutamatergic neurons (Glut) (Forrest et al.,

2017; Zhang et al., 2018, 2020). Briefly, RNA-seq data (GENCODE v28) from cell lines of 8 donors (genetic

backgrounds) per cell type (iPSC, NPC, DA, and GABA) (Zhang et al., 2020) were used to estimate the

average gene expression level. For Glut neurons, we used NGN2-induced excitatory neurons at day-27

post neuronal induction, and expression values were calculated as the average of all available samples

(Forrest et al., 2017; Zhang et al., 2018, 2020). An expressed gene in each cell type was defined using a cut-

off value of log2 FPKM >0.5. Subsequently, the lists of expressed genes were cross-referenced with pre-

dicted target gene list of MIR137 in each cell type.
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For targets of TCF4, we have compiled 3 lists of ~1,000 genes each. These include genes with expression

either up- or down-regulated by knockdown TCF4 expression in NPCs and in early-stage Glut neurons

(Doostparast Torshizi et al., 2019). For genes in both cell types, we only selected the top 1,000 genes

showing differential expression upon TCF4 knockdown. The direct binding targets of TCF4 were extracted

from an empirical chromatin immune-precipitation (ChIP) study, and the top ranking 1,000 gene were

selected according to their promoter and intergenic ChIP peak significance (Forrest et al., 2017).

Permutation to account for variable SNP number

The number of genes varies from 909 to 1,017 among 10 gene sets from bothMIR137 and TCF4 (Table 1 and

Table S1). Furthermore, the number of SNPs for each gene set varies in both MGS data and Chinese data

before/after LD pruning (Table S2). Therefore, to adjust for different SNP number in each gene set, PRS

were evaluated based on the same number of SNPs that were randomly selected within each gene set

in 1,000 permutations. A total of 3,000 and 1,500 SNPs (Pd<0.5) was randomly selected in the permutation

for both the MGS and the Han Chinese datasets annotated within 20kb and 100kb windows (i.e., extended

genic regions), respectively. The detailed procedures were:

1) Obtain GWAS summary statistics (Pd values and ORs) in the discovery sample (PGC-SZ3 without

MGS).

2) Cross-reference with target sample data with both genetic and phenotype data and identify SNPs in

common between the discovery and target samples.

3) Account for association redundancy due to LD by SNP pruning (LD-r2 = 0.2 as a cut-off) among all

overlapped SNPs with Pd<0.5.

4) Extract SNPs located within a specific gene-set, and randomly select Nrandom SNPs, where Nrandom

was selected based on the number of SNPs after LD pruning (Table S2), and Nrandom = 1500/3000

for data within 20kb and 100kb window, respectively.

5) Restrict to SNPs with various thresholds (Pd<0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5).

6) Construct PRS = sum of risk alleles weighted by log (OR) from regression.

7) Regress trait in target sample onto PRS. Evaluate strength of this association adjusted by age, sex,

and 10 principal components of ancestry (Nagelkerke’s pseudo R2).

8) Repeat steps 2-8 for 1,000 permutations.

These procedures were repeated for all the gene-sets including the whole-genome SNP set for both MGS

and Han Chinese samples as target samples. Two-sample Student’s t-tests were further performed on

1,000 permutated Nagelkerke’s pseudo R2 values to test for the mean difference between any two

gene-sets.

Partitioned heritability analysis by stratified LDSC

To independently validate the gene-set specific PRS analysis and account for potential confounding factors

(e.g., numbers of SNPs) in PRS analysis, we performed a sLDSC analysis (Bulik-Sullivan et al., 2015; Finucane

et al., 2015) for different gene sets using PGC SCZ wave_3 GWAS summary statistics. For calculating par-

titioned LD scores, a 20 kb window size (similar to what was used in Figures 2A and 2B) was applied to all

genes within the ten gene sets. For partitioned heritability (h2), we used baseline model LD scores from the

1,000 Genomes project European cohort (1000G_EUR_Phase3_baseline v2.2). Finally, we used the cell-type

group analysis algorithm as described in the LDSC documentation (Bulik-Sullivan et al., 2015; Finucane

et al., 2015) to estimate the proportion of heritability and identify the enrichment of h2 in each gene set.

Gene-set GWAS risk enrichment analysis by H-MAGMA

To account for gene sizes and overlapping genetic variants in different gene sets as well as other potential

cofounding factors, we performed H-MAGMA analysis using MAGMA version 1.08 (Sey et al., 2020) to

evaluate the enrichment for SZ GWAS risk. Specifically, we first started by generating theMAGMA-required

gene analysis data files using pre-compiled gene-SNP annotation files. Compared to the original MAGMA

analysis, H-MAGMA improved the prediction of brain-disorder risk genes by incorporating brain

chromatin interaction profiles (de Leeuw et al., 2015; Sey et al., 2020). Since we defined neural gene sets
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using iPSC-derived neurons, we used the gene-SNP annotation file pre-compiled with Hi-C data from iPSC-

derived neurons (Rajarajan et al., 2018). With the gene-SNP annotation file, we then performed gene-level

analysis on SNP p-values using the reference SNP data of 1,000 Genomes European panel (g1000_eur,

–bfile) and the pre-computed SNP p-values from the PGC SZ GWAS wave 3 dataset (daner_PGC_SCZ_w3,

–pval). The sample size (ncol = ) was directly taken from the column of sample sizes per SNP column of the

PGC3 SZ dataset. Subsequently, the result files (–gene-results) from the gene-level analysis were read in for

competitive gene-set analysis (–set-annot), where we used default setting (‘correct = all’) to control for

gene sizes in number of SNPs and the gene density (a measure of within-gene LD). The gene-set analysis

produced output file (gsa.out) with competitive gene-set analysis results that contained the effect size

(BETA) and the statistical significance of the enrichment of each gene set for SZ GWAS risk.

QUANTIFICATION AND STATISTICAL ANALYSIS

To quantify the SZ risk variance explained, we used PRSice to conduct a standard PRS analysis (Euesden

et al., 2015). A quantitative aggregate risk score was calculated for each individual in the target samples.

The percentage of phenotypic variance explained by the PRS (Nagelkerke’s pseudo R2) was presented

in Figures 2, 3, 4, and 5. To compare the SZ risk variance explained by different gene sets, we accounted

for SNP number used in each gene set by permutation test (N = 1,000) using the randomly selected

1,500 SNPs for each gene-set. Data are presented as meanG SEM in Figures 2 and 5. To further determine

whether the difference of the SZ risk variance explained by the equal number of randomly selected SNPs

(1,000 permutations) of two gene-sets are statistically significant, we used two-sample Student’s t-test and

corrected p-values for multiple testing by Bonferroni method (Figure 3). To quantify the enrichment of SZ

GWAS SNP heritability (h2) for each gene set, we used sLDSC analysis (Bulik-Sullivan et al., 2015; Finucane

et al., 2015) to determine the folds of enrichment of SNP heritability (proportion of explained heritability h2

normalized by the proportion of SNPs in each gene set) and derive the statistical significance (Bonferroni-

corrected p-values) in Figure 2.
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