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High-throughput discovery of functional disordered
regions: investigation of transactivation domains
Charles NJ Ravarani1,* , Tamara Y Erkina2, Greet De Baets1, Daniel C Dudman2,

Alexandre M Erkine2,** & M Madan Babu1,***

Abstract

Over 40% of proteins in any eukaryotic genome encode intrinsi-
cally disordered regions (IDRs) that do not adopt defined tertiary
structures. Certain IDRs perform critical functions, but discovering
them is non-trivial as the biological context determines their func-
tion. We present IDR-Screen, a framework to discover functional
IDRs in a high-throughput manner by simultaneously assaying
large numbers of DNA sequences that code for short disordered
sequences. Functionality-conferring patterns in their protein
sequence are inferred through statistical learning. Using yeast
HSF1 transcription factor-based assay, we discovered IDRs that
function as transactivation domains (TADs) by screening a random
sequence library and a designed library consisting of variants of 13
diverse TADs. Using machine learning, we find that segments
devoid of positively charged residues but with redundant short
sequence patterns of negatively charged and aromatic residues are
a generic feature for TAD functionality. We anticipate that investi-
gating defined sequence libraries using IDR-Screen for specific
functions can facilitate discovering novel and functional regions of
the disordered proteome as well as understand the impact of
natural and disease variants in disordered segments.
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Introduction

Understanding how the amino acid sequence of a protein contri-

butes to its function (sequence–function relationship) is a problem

of long-standing interest. The work of Anfinsen and colleagues in

the 1960s (Anfinsen, 1973) together with the elucidation of protein

structures established the sequence–structure–function paradigm

(Fersht, 2008). With the availability of genomes, it has become clear

that a large fraction of any eukaryotic proteome encodes protein

segments that do not autonomously fold into a defined tertiary

structure although they may contain secondary structural elements

(van der Lee et al, 2014). Proteins typically use their intrinsically

disordered regions (IDRs) to perform their function by mediating

transient protein interactions (Tompa et al, 2014; Van Roey et al,

2014). Such regions can tolerate mutations; hence, they evolve

rapidly and acquire functionality through both convergent evolution

and divergent evolution (van der Lee et al, 2014; Tompa et al, 2014;

Davey et al, 2015). Although computational approaches have esti-

mated that there could be up to a million functional IDRs in the

human proteome (Tompa et al, 2014), only a small fraction of them

have been characterized so far (Gouw et al, 2017), limiting our

understanding of the disordered proteome.

In vitro technologies such as phage display are powerful to identify

short disordered linear motifs (three to seven residues within IDRs)

that can mediate interactions with specific protein domains in vitro as

well as discover strong binders (Ivarsson et al, 2014; Garrido-Urbani

et al, 2016; Davey et al, 2017). Such approaches require screening

short peptides against specific interaction partners, thus constraining

the mechanism by which they mediate function (Jones et al, 2006;

Ivarsson et al, 2014; Garrido-Urbani et al, 2016; Davey et al, 2017).

The screening occurs outside of the relevant cellular/biological

context during the selection experiment and hence does not explicitly

consider cellular specificity for binding, i.e., selection against promis-

cuous binding with other molecules in the cell (negative selection).

Thus, there is a need for a complementary and systematic high-

throughput approach to study the sequence–function relationship of

IDRs in a biologically relevant cellular context.

We present a framework called IDR-Screen that allows mecha-

nism-independent discovery of disordered regions that are func-

tional in a cellular context (Fig 1). It leverages various techniques,

including mutational scanning of pooled sequences, genetic screens,

and machine learning (ML; Boucher et al, 2014; Fowler & Fields,

2014; Jordan & Mitchell, 2015; Geffen et al, 2016; Nim et al, 2016;

Rocklin et al, 2017), and consists of the following modular steps: (i)

designing and generating libraries of sequences that code for short

peptide segments, (ii) generating a cell population carrying the
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different sequences and screening them for a function of interest

using a selection system (e.g., based on cell viability), (iii) sequenc-

ing the population before and after selection and determining func-

tional and non-functional sequences, (iv) describing all sequences

by calculating a feature vector quantifying their molecular proper-

ties, and (v) applying data analysis approaches such as ML to high-

light the molecular basis of functionality of the short disordered

peptides in the library (Fig 1). Here, we study transcription initia-

tion as a model biological process to discover and learn what makes

certain disordered regions functional (Appendix Figs S1–S3).

Results

High-throughput screening of random sequence library for
transactivation domain discovery

In addition to the DNA binding domain that binds to the promoter

DNA, transcription factors (TFs) also harbor transactivation

domains (TAD), which are typically less than 20 residues and

intrinsically disordered (Sigler, 1988). The current mechanistic

model is that TAD mediates interactions to recruit the transcrip-

tional machinery, which is critical for transcription initiation

(Ptashne & Gann, 1997). Early investigations of individual TADs

of TFs as well as screens of random DNA sequences and Escheri-

chia coli genomic fragments have revealed that TADs tend to be

disordered (i.e., unstructured; Sigler, 1988), enriched for acidic

(Ma & Ptashne, 1987; Erkine & Gross, 2003) and hydrophobic resi-

dues (Cress & Triezenberg, 1991; Regier et al, 1993; Drysdale et al,

1995; Lu et al, 2000; Erkine & Gross, 2003), have a propensity to

form alpha helices (i.e., intrinsic helicity) upon binding to their

interaction partner (Uesugi et al, 1997; Lee et al, 2010) and may

contain distinct sequence motifs that mediate interactions with

specific components of the transcriptional machineries (Kussie

et al, 1996; Radhakrishnan et al, 1997; Jonker et al, 2005;

Piskacek et al, 2007). This has led to TADs being referred to as

“acid blobs and negative noodles” (Sigler, 1988). While most

TADs are enriched for these properties, the set of features above

do not robustly define a TAD sequence when considered individu-

ally (Abedi et al, 2001; Bhaumik & Green, 2001; Mapp & Ansari,
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Figure 1. Outline of IDR-Screen.

IDR-Screen consists of a modular set of stages that can broadly be grouped into the experimental and computational phases. A library of random or designed sequences is
transformed into a cell population, expressed as a part of a protein that is used for selection (survival or other readouts such as fluorescence). In this manner, the library is
screened to discover sequences that are functional/non-functional based on the designed assay. Upon data processing, this dataset of experimentally validated functional
and non-functional sequences are analyzed to learn the rules of functionality using machine-learning (ML) approaches.
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2007; Hahn & Young, 2011; Warfield et al, 2014; Erkina & Erkine,

2016).

To discover which sequences can function as TADs, we investi-

gated a library of random DNA sequences (60 bp, ≤ 20aa; random

library). Since the encoded peptide sequences are ≤ 20aa, such

segments may contain secondary structures of varying degrees but

are unlikely to form defined tertiary structures (Murzin et al, 1995)

and hence more likely to be disordered. Different selection assays

can be designed to discover TADs. We developed an assay to

discover functional sequences using the yeast heat shock factor 1

(HSF1) transcription factor as our model. HSF1 has several func-

tional regions including a DNA binding domain, a trimerization

domain, and a disordered segment containing a C-terminal TAD

(Morimoto, 1998) and regulates the expression of several genes to

launch a heat shock response (Hahn et al, 2004; Appendix Fig S1A).

Deletion of the disordered C-terminal TAD (HSF1-DTAD) results in

cell death when grown at 37°C (Erkine & Gross, 2003; Sorger, 1990;

Appendix Fig S1B). We then fused the library of sequences to HSF1-

DTAD and subjected them to the selection experiment. We inferred

that sequences that confer survival at 37°C have the potential to

function as TADs in this biological context. On the other hand,

sequences that mediate promiscuous interactions or fail to initiate

transcription efficiently will eventually drop out of the screen. Thus,

non-functional sequences will negatively affect growth of cells

harboring them or result in cell death (Appendix Fig S1C and D). In

this manner, the assay design incorporates the relevant cellular

context and negative selection.

Functional sequences display sequence property enrichments
compared to non-functional ones

Using this assay, we obtained robust measurements for 67,263

random sequences (i.e., transformed and detected in at least two

replicate experiments; Materials and Methods; Table EV1). Using

stringent criteria to ensure a low false-positive rate (Materials and

Methods), we identified 739 sequences (~ 1%) that confer survival

and hence could function as TADs. Representative sequences

from this screen were independently sequenced and confirmed to

confer TAD functionality through spot-dilution assay experiments

(Appendix Fig S4). An advantage of the IDR-Screen approach is that

in addition to discovering functional sequences, the non-functional

sequences that are experimentally validated through the screen

(with negative selection considerations) provide a more appropriate

control set of sequences to compare against. Functional sequences

show enrichment for negatively charged residues (D, E) as well as

aromatic amino acids (F, W, Y), compared to the non-functional

sequences (Fig 2A). Furthermore, functional sequences were

depleted in positively charged residues (R, K, and H). In terms of

sequence properties, the functional sequences tend to be longer

(median length: 18 residues), have a lower isoelectric point (median

pI: 5.57), higher hydrophobicity (median % hydrophobicity: 0.33),

intermediate propensity to be disordered (median probability: 0.57),

and display some helical propensity (median % helicity: 0.14). The

functional sequences are also enriched for the occurrence of certain

linear peptide motifs (9-amino acid TAD; Piskacek et al, 2007;

Fig 2B–G).

We then assessed the predictive power of these individual

sequence properties in discriminating functional from

non-functional sequences. Given the imbalance in our dataset (739

functional: 63,385 non-functional; imbalance ratio: 0.0117), we used

sub-sampling when training the models and assessed the perfor-

mance using precision–recall curves (Materials and Methods). Using

logistic regression models, we find that the aforementioned proper-

ties such as length, pI, hydrophobicity, disorder content, intrinsic

helicity, and the occurrence of a 9-aa TAD motif poorly discriminate

functional and non-functional sequences in the random library

when considered individually (Appendix Fig S5A and Materials and

Methods). In other words, several sequences that do not function as

TADs are frequently erroneously predicted to be functional when

only these properties were considered and a number of functional

sequences will be often incorrectly predicted to be non-functional

(see Appendix Fig S5B–G for examples). Among all the properties

tested, the pI of the sequence appears to have the most discrimina-

tive power. We then combined these sequence properties in our

model (rather than consider them individually), which marginally

affected the ability to discriminate the sequences (Appendix Fig S6A

and B). Thus, the properties described above do not exhaustively

describe TAD functionality, suggesting that a more exhaustive set of

features could increase the predictive power to discriminate func-

tional and non-functional sequences.

Machine learning provides a robust approach to assess sequence
feature importance

We therefore developed several different features that more

comprehensively describe every sequence in the library in addition

to the previously described ones (Appendix Fig S2; Table EV2).

Analysis of the functional sequences showed prevalence of short,

highly degenerate motifs (~ 2–5 residues in length involving nega-

tive and aromatic residues; Appendix Fig S7). It is known that tryp-

tophan residues can stabilize local conformations of protein

segments (Cochran et al, 2001) and is important to mediate interac-

tions with other proteins as in the case of EIF3 (Marcotrigiano et al,

1997). We designed several new features that captured chemical

properties as well as patterns of spacing such as the combinations

of amino acids of defined properties (e.g., aromaticity, aliphaticity,

hydrophobicity, and presence of positively and negatively charged

residues) that are separated by defined distances in the sequences

(degenerate mini-motifs). In this manner, we computed 146 dif-

ferent features that were broadly grouped into eight general feature

sets (Materials and Methods; Table EV2). We then minimized

feature redundancy by retaining one of the highly correlated

features after clustering them based on similarity (Materials and

Methods). To ensure robust analysis and effective interpretation of

patterns in the data, we used different algorithms that rely on

distinct principles and provide feature importance for interpretation

of the models. Specifically, we used ML algorithms that assume

linear (penalized logistic regression model; lasso and ridge) and

nonlinear (boosted tree model) relationship between the features

for classification (Materials and Methods). Both of these approaches

have intrinsic feature ranking capacities. Using the features

described above, we trained the different models, each scanning

over a broad range of parameters (James et al, 2013). We also

employed a stacked model that combines the best models from

these approaches (Materials and Methods) and considers them

together when identifying the feature importance.
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Although the predictive power of the ML models is not high, they

identify features that make sequences functional (Appendix Fig S8A

and B; for the best performing models: precision–recall (PR) area

under the curve (AUC): 0.0563; random performance: 0.0115 and

receiver operator curve (ROC) AUC: 0.6875; random performance:

0.5). It is also a way to test different hypothesis through the impor-

tance of a specific feature. Since all features are tested together

while training the model, the ranking based on feature importance

highlights their relative importance in discriminating functional

from non-functional sequences. We highlight features that contrib-

uted the most to predict a functional sequence in our random library

in the different ML models (Fig 3; Table EV3). One of the key

features in the top 10 that contributed the most includes a degener-

ate mini-motif with a prevalence of negatively charged residues (en-

riched: D, E) in proximity to aromatic (enriched: F, W, Y) amino

acids. Other feature sets that are important include the pI, single

amino acid composition (enriched: W, D, N; depleted: S), and

grouped amino acid composition (enriched: aromatic, hydrophobic,

and negative; depleted: polar). We also tested the 9-aa TAD motif

and helicity among others, which were not among the top 10

features. This highlights that functional sequences need not be

restricted to contain specific sequence motifs or show a tendency to

form specific secondary structure elements. These observations

suggest that IDRs that contain multiple degenerate mini-motifs of

negatively charged and aromatic residues, and devoid of positively

charged residues are a generic descriptor of functional sequences in

the random library. Consistent with this, an analysis of available

structures of TADs in complex with their interaction partner in the

Protein Data Bank (Rose et al, 2017) revealed a common theme

for the known TAD interacting domains, which tend to contain a

positively charged patch and a hydrophobic binding pocket

(Appendix Fig S9).

Studying naturally occurring TADs and their variants provides
insights into functional features

The IDR-Screen approach can also be used to investigate libraries

of naturally occurring sequences and designed variants to probe

and learn about naturally occurring TADs. To highlight this, we

investigated 25 transactivation domains of TFs and focused on 13
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known TADs from diverse organisms ranging from yeast to

human that were functional in our HSF1-based selection assay.

These include TADs from human KLF4, ESX, yeast Pdr1, Oaf1,

plant HSFA2 and viral VP16 and EBNA2 and includes artificial

TADs identified from previous studies (Table EV4). In addition,

we created variants of these reference TAD sequences to investi-

gate their functionality (~ 90 bp, < 30aa; 962 variants; design

library; Table EV5). Guided by the observations from the random

library, we performed mutational scanning of all positions of the

reference TAD sequence to study the importance of a residue in

the natural sequence and their ability to tolerate positive charge

(K and R scanning), conformational changes (P and G scanning)

as well as alanine (A scanning). Some variants in this library also

include known single nucleotide polymorphisms in the human

population and disease mutations (variants seen in cancer

genomes) in the human TADs (Table EV6).

A detailed analysis of this mutagenesis data involving 962

sequences/variants revealed that the introduction of a positive

charge instead of any residue in the reference TAD sequence was

the least tolerated mutation (Materials and Methods). Introduction

of G and A were the most tolerated mutations (Fig 4A; see rows)

except if the reference TAD residue is a W, Q, I, L, and Y. Introduc-

tion of a P, which typically constrains the conformation of a peptide

bond, is less tolerated by aromatic residues, whereas polar and

negatively charged residues appear to tolerate P better. These find-

ings suggest that aromatic and bulky hydrophobic residues are criti-

cal for naturally occurring TAD sequences and negatively charged

residues can be substituted possibly due to their redundancy (D and

E are among the most frequently occurring amino acids in wild-type

TADs). These observations are in line with what we observed in

terms of amino acid enrichments among the functional sequences in

the random library.

Some of the sequence variants that represent polymorphisms in

the natural human population and in cancer genomes do not confer

survival in our assay for TAD functionality. For instance, the W30R

in EKLF4 (allele frequency in the human population of 1.3 × 10�5;

gnomAD database) and the E135K mutation in ESX, which is preva-

lent in esophageal adenocarcinoma (allele frequency of 0.37 from

cBioPortal), may lead to loss of TAD activity in these transcription

factors (Appendix Fig S10). Thus, IDR-Screen can be a powerful

framework to screen and infer the functional impact of a large

number of naturally occurring SNPs and mutations observed in

disease genomes.

We then investigated the individual TADs in terms of their ability

to tolerate mutations. To this end, we computed the tolerance score

for every TAD in our design library. Tolerance is defined as the

number of variants that confer survival over all variants tested for

that TAD. An analysis of the distribution of the tolerance scores of

the TAD sequences revealed a unimodal distribution where a
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majority of the TAD sequences have intermediate tolerance scores

(Appendix Fig S11). VP16 and Oaf1 are at the most tolerant end of

the spectrum, whereas Gln3 is in the least tolerant end of the

spectrum. This suggests that most TADs are tolerant to mutations

to a certain extent and this is likely to be determined by the nature

of the substitution (Fig 4A). It also suggests that naturally occurring

wild-type TADs emerged during evolution to be more or less toler-

ant to different kinds of mutational perturbations with implications

for fine-tuning of function via sequence polymorphisms.

ML-based learning of the design library data using the different

approaches and by a stacked model shows improvement in predic-

tive capacity (for the best performing models: precision–recall AUC:

0.7972; random performance: 0.5626 and ROC-AUC: 0.7602;

random performance: 0.5) and allowed the identification of the key

features that are important in naturally occurring TADs (Fig 4B;

Appendix Fig S12A and B; Table EV7). The top 10 important

features include the 9-aa TAD motif, pI of the sequence, single

amino acid (enriched: D, F; depleted: K) and grouped amino acid

composition (enriched: hydrophobic; depleted: polar) and lower

disorder probability score.

Combining libraries can train models that are more general and
guide design of new sequences

To develop a more general predictor and identify features that are

important to discriminate sequences that have the potential to func-

tion as a TAD in our system, we combined the sequences from the

random and design libraries to train machine-learning algorithms

(Fig 5). Using this combined library, we trained models that strike

a balance between not being able to pick up discernable pattern

due to broad and sparse sequence space (random library) versus

being biased by picking up patterns from a dense and narrow

sequence space (design library; Appendix Fig S13A and B; for the

best performing models: precision–recall AUC: 0.2001; random

performance: 0.0206 and ROC-AUC: 0.7735; random performance:

0.5). An investigation of the features that contribute the most to

prediction revealed several features such as the degenerate mini-

motifs (also seen in the analysis of the random library) as well as

the 9-aa TAD motif (also seen in the analysis of the design library)

with variations. The most consistent feature that appears to be

important in all three libraries is the pI of the sequence (Fig 5;

Table EV8).

To explore this further, and considering that the degenerate

mini-motifs emerges as an important feature to make a functional

sequence, we generated new sequences and tested their ability to be

functional in our assay. More specifically, we tested sequences that

had a repeat of just aromatic and acidic residue and their combina-

tion thereof with the absence of a positively charged residue (i.e.,

Wx10, Dx10, and WDx10, respectively). The designed WDx10

sequence based on the findings presented here performs comparably

to WT HSF as well as VP16 TAD in terms of conferring survival and

growth rate (Fig 6).

Discussion

Based on the findings described above and using the current mecha-

nistic model, we present a general description of what constitutes a

TAD (Fig 7). Enrichment for the negatively charged residues may

ensure that the segment is in an extended unstructured conforma-

tion, repelled away from the DNA phosphate backbone to encounter

the components of the transcriptional machinery that harbor

positively charged patches. The aromatic and bulky hydrophobic

residues within TADs can engage with the subunits of the transcrip-

tional machinery through diverse modes of interactions (e.g., pi–pi,

cation–pi, hydrophobic) and may bury within hydrophobic binding

pockets. Hence, a combination of acidic and aromatic/hydrophobic

residues with distinct spatial patterning along with the absence of

positively charged residues provides a scenario of an extended

disordered peptide that is “peppered” with anchoring residues,

which can then interact with sufficient strength with appropriate

protein interfaces. Given the degeneracy and redundancy of mini-

motifs within TADs, the binding strength is unlikely to come from

highly specific and strong interactions, but rather from multiple

individual binding events (i.e., fuzzy complex, Tompa & Fuxreiter,

2008). The high degree of flexibility may permit the aromatic anchor

residues to lock in the binding pocket or engage in stabilizing inter-

actions on the surface of the components of transcriptional

machineries. The discovered sequences might also facilitate tran-

scription through alternative mechanisms such as disruption of

promoter nucleosomes either by interacting with positively charged

histones and hydrophobic crevices of nucleosome or intercalating

between bases of nucleosomal DNA, thus triggering promoter chro-

matin remodeling (Erkina & Erkine, 2016; Fang et al, 2016). In this

manner, TAD functionality may be an emergent property that

depends on a combination of the context (amino acid composition)

and spatial patterning (sequence motif) of particular amino acid

types within disordered segments.

In this context, it is interesting to note that 1% of the random

sequences were functional. This is a large number especially
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Figure 5. The top 10 most important features of the machine-learning
models trained on the combined library.

Schematic describing the sequence space explored by the combined library (left).
Table listing the top 10most important features. The relative feature importance
is given as relative percentages in the last four columns. The size of the circles is
scaled per method (lasso, ridge, xgboost, stacked). The direction column denotes
the direction of enrichment of the given feature for functional sequences
compared to non-functional sequences (up, positive direction and down,
negative direction). This figure provides a simplified description of the actual
features, which are available in Table EV8.
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considering that a short and completely random sequence can

decide between life and death of the organism hosting it. From

the analysis of the structures of TADs in complex with co-factors

(Appendix Fig S9), it is clear that different sequences adopt

similar binding mode when interacting with the various co-

factors. This suggests that a large number of sequences can and

are compatible with co-factor interaction. Furthermore, many

sequences can fulfill the role of a TAD by interacting with one of

many components of the transcriptional machineries, and hence,

a larger fraction of the sequences may confer survival during the

selection experiment. From a technical perspective, the random

peptide is selected for function and not binding to a specific

protein domain. In other words, the sequences are not explicitly

selected for binding to a specific component of transcriptional

machineries but to any of the over 100 proteins that are involved

in transcriptional initiation. These reasons could possibly explain

why such large number of functional sequences could be

detected.

We would like to emphasize that the specific design of the TAD

assay is important for determining and interpreting the functional

and non-functional sequences. Here, we used a survival-based selec-

tion assay to identify sequences that can launch the heat shock

response at a wide range of promoters. One could also design other

assays that can select sequences based on the expression level of a

reporter (e.g., GFP). Furthermore, one could design more specific

assays to obtain detailed mechanistic insights. For instance, the

same libraries can be screened in different genetic backgrounds such

as knockouts of specific mediator components to identify sequences

37ºC30ºC Heat shock

ΔTAD HSF1

Full length WT HSF1

Dx10

ΔTAD HSF1 DDDDDDDDDD

WDx10

ΔTAD HSF1 WDWDWDWDWDWDWDWDWDWD

Wx10

ΔTAD HSF1 WWWWWWWWWW

VP16

ΔTAD HSF1 VP16

1 1/5 1/25 1/1251 1/5 1/25 1/125

Figure 6. Spot-dilution assay of designed sequences.

Spot assay of designed TAD constructs. The spot assay was performed at 30°C (left) and during heat shock at 37°C (right panel).
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Figure 7. A mechanistic model for TAD function based on findings from this study.

Transcription factors (TFs) interact with DNA via the DNA binding domain (DBD, blue triangle) and to their interaction partners (gray hexagon) via their transactivation
domains (TAD, green rectangle). The enrichment for negatively charged residues leads to a local extended conformation of the TAD via intra-chain repulsions, providing the
appropriate context for aromatic residues to be exposed and to bind to their interaction partners in hydrophobic binding pocket (circular inset). The aromatic residues could
fit the pocket in a stochastic manner, binding in different configurations. This would result in the formation of a “fuzzy” complex. In this case, the negative charges could
furthermore contribute to the affinity of binding given that the TAD-interaction surfaces often expose positively charged patches. The absence of positively charged residues,
compositional bias, and particular spacing of negatively charged and aromatic residues could hence be considered as giving rise to a collection of short mini-motifs that
collectively contributes to TAD functionality.
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that depend on their ability to recruit the deleted factors. The

sequences identified could be interpreted in the context of existing

mechanisms of how transactivation domains perform their function

as discussed above; hence, the assay used here is more general and

less dependent on the specific mechanism (e.g., interaction with a

particular component of the machinery).

Nevertheless, the functional sequences identified here constitute

a good starting point to perform more focused follow-up studies such

as identification of interaction partners through pull-down experi-

ments to infer new mechanisms of action (e.g., interaction with

previously uncharacterized subunits of the machinery) or their struc-

tural characterization. It is worth noting that some of the sequences

that were non-functional in our assay may still be functional in other

biological contexts because of the differences in specific aspects of

the assay design such as the organismal setting, the differences in

transcriptional machineries, the extent of negative design, nature of

the promoter, DNA binding domain and the nature of the assay (e.g.,

survival versus reporter expression). Thus, with different types of

assays and by using larger, and different libraries of sequences, the

predictive models will become better and our understanding of what

constitutes a functional TAD can be much more precisely defined. In

this context, including and developing novel features based on new

understanding that quantitatively describes sequences can allow

better characterization of what makes a functional TAD.

In conclusion, the IDR-Screen framework described here allows

for the discovery and characterization of biologically and function-

ally relevant disordered regions as well as enhances our understand-

ing of what features make such sequences functional. Here, we

have applied IDR-Screen to study transactivation domains. The

approach presented can be readily expanded to study other func-

tions that are mediated by disordered regions such as protein degra-

dation. Employing this framework iteratively could lead to the

development of models that can provide insights into sequences that

have not yet been experimentally investigated with increasing relia-

bility. Such predictors can then be used to scan protein sequences,

alternatively spliced protein regions, and entire proteomes of organ-

isms to discover potential functional disordered sequences and/or

to assess their potential impact on functionality upon perturbing

sequences (e.g., mutations that are seen in cancer genomes and

natural variation). In this manner, we anticipate that adapting IDR-

Screen can help uncover the function of disordered regions from

any organism and of the dark proteome (Kruger, 2016) as well as to

design new sequences with defined functional properties.

Materials and Methods

Library construction and screening

The parental library cloning vector pTYE3000 was constructed by

insertion of a truncated version of yeast HSF1 (positions �1,018 to

+1,479 encoding HSF amino acids 1–493) into a poly-linker site of

pRS314 (http://www.snapgene.com/resources/plasmid_files/yeast_

plasmids/pRS314/). This was done using synthetic restriction sites

KpnI and NotI that were introduced during PCR amplification of the

indicated HSF1 fragment. The sequences of the PCR primers are

provided at the end of this section. In addition, a unique AscI site

was engineered at the 50-end of HSF1 truncation. The plasmid

construct was confirmed by sequencing. The AscI and SacI sites of

the vector (SacI is 18 nucleotides downstream of NotI) were used to

insert a synthesized 60-nucleotide random DNA oligo library

containing three stop codons in all alternating frames at the 30 end.
The design DNA library containing individual wild-type TAD

sequences and their variants was synthesized by CustomArrays,

amplified according to the manufacturer instructions using PCR

primers containing restriction sites for cloning and ligated into the

parental library vector. After transformation into DH5-alpha super-

competent cells, each library (random and design) contained

≥ 300,000 independent clones with at least 80% containing inserts.

Insertions, retention of the reading frame, and the cloning sites were

confirmed by sequencing. The individual plasmid libraries were

isolated from bacteria and transformed into PS128 (MATa; ade2–1;

trp1–1; can1–100; leu2,3–112; his3–11; ura3; hsf1::LEU2), selecting

for Trp+ prototrophs. The transformation plates were replica-plated

onto –trp 5-FOA containing plates, half of which were incubated at

30°C and the other at 37°C for 0, 2, 4, 6, and 8 days. Cell samples

were collected at each time point, total DNA was isolated from each

sample, and the library inserts were PCR amplified using primers

containing Illumina adaptor and barcode sequences. Next-generation

sequencing (NGS) of the resulting pools was done using Illumina

MiSeq platform.

Forward primer: GATCAGGTACCATTCATGCTTACGATAAAATCAC

TTGGA.

Overhang: GATCA; Kpn1 site: GGTACC; wt HSF1: ATTCATGCTTAC

GATAAAATCACTTGGA

Reverse primer: CGGTGGCGGCCGCTTACTATAGATCTGGCGCGCC

TATATTTTTCTTTCTGTT GGTGGTATTAG

Overhang: CGGTG; Not1 site: GCGGCCGC; Insert (replaced): TTAC

TATAGATCT;

AscI site: GGCGCGCC; wtHSF1: CGGTGGCGGCCGCTTACTATAG

ATCTGGCGCGCCTATATT TTTCTTTCTGTTGGTGGTATTAG

Collection of wild-type TADs and their variants

A set of known wild-type TADs were identified from the literature

and were selected to cover a diverse range of organism including

yeast, virus, human, and plants. They span an amino acid length

range from 8 to 21 with an average of 16 (see Table EV4). This set of

sequences was used to design a library of sequences with different

mutations. A first set of variants consists of a point mutation at every

position of the wild-type TAD with either of the following amino

acids (A, G, P, K, or R). The set of resulting sequences includes

disease mutations as well as natural variation that were collected

from COSMIC (http://cancer.sanger.ac.uk/cosmic), cBioPortal

(http://www.cbioportal.org/), and gnomAD (http://gnomad.broadin

stitute.org/), respectively (see Table EV6).

Read preprocessing to obtain variant counts

The sequencing read processing stage resembles metagenomics

pipelines [e.g., UPARSE (Edgar, 2013) or vsearch (preprint:

Rognes et al, 2016)] with adjustments to parameters as described

below. The sequences of the reads from the different samples (i.e.,

time points) were first combined making sure that their sample of
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origin information was kept in the fastq headers of each read. The

forward and reverse reads were then merged using vsearch in

order to produce higher quality resulting reads. Only reads that

would merge into sequence of length 60 bases were kept (the length

of the input DNA), while allowing for a maximum of two gaps.

Sequences were then filtered using vsearch at an expected error

rate of 1, i.e., not tolerating more than 1 expected error across the

read after taking the quality scores per base into account. Next, the

replicate barcode sequences (present in the design library) were

removed using cutadapt (Martin, 2011), recording the replicate

barcode identifier in the fasta header. Barcodes were designed to

have a length of eight nucleotides and to have a Levenshtein

distance of at least four, i.e., the distance that consists in the

number of substitutions, insertions and deletions required to change

one sequence to another. Barcodes were assigned after accepting an

error rate of 25% just within the barcode sequence (not the entire

length of the read). For a barcode of length of eight nucleotides, this

translates to a maximum of two mistakes (0.25 * 8 = 2). This strin-

gent design allowed us to accurately distinguish the reads that come

from the different replicates or samples. Finally, the remaining

adaptor sequences were removed using cutadapt to produce the

final set of raw sequences of the reads that are to be quantified for

their relative abundance, again allowing for an error rate of 10%

only in the adaptor sequences (length of 21 nucleotides).

There are two related protocols depending on the origin of the

library. For the random library, the reads are dereplicated using

vsearch; i.e., only unique sequences are kept, and their count is

recorded, respectively. Only sequences with a count of at least two

were kept in this set. Then, the dereplicated sequences were clus-

tered into groups according to a minimum percent sequence identity

of 90% using vsearch. This approach ensures that reads with

minor sequencing errors (mismatches, insertions, or deletions) are

not incorrectly identified as distinct sequences. Instead, they are

clustered together to obtain a single sequence. Given the vast

sequence space in a random 60mer DNA library, it is very unlikely

that two distinct functional sequences from the experiment would

be incorrectly “clustered” by this approach (Edgar, 2013). These

groups (or clusters) are then considered a collection of centroids

(each supported by a number of sequencing reads) that are used as

the reference to realign the complete set of sequence reads to the

closest centroid sequence using vsearch. The reads of the design

library were directly mapped against the set of sequences that were

designed (which are the centroids) again using vsearch. The

sequence identity parameter was set to 80%. The number of reads

mapped to centroid sequences for each sample was recorded (ran-

dom library: three replicates—the replicate experiments; design

library: six replicates—single experiment where each sequence was

tagged with different set of barcodes that was used to separate the

reads into the relevant samples in the post-sequencing data process-

ing step above).

Estimation of growth scores for each sequence

The raw sequencing counts for both random and design libraries

were further processed to estimate growth rates of the different

strains they are associated with. First, sequences with lower than

three reads over the different time points were removed. Sequences

with a count of 0 at the first time point (but nonzero counts at later

time points) were set to 1 in order prevent division by zero during

the normalization step that follows (see below). Then, samples were

normalized on a per-sample, per-replicate basis using the total sum

normalization procedure, where every count is divided by the sum

of all reads in the sample (per-replicate). The normalized counts

were further normalized to the starting count. Next, we calculated

the growth rates of individual sequences based on the normalized

read counts. For each sequence, the normalized counts at different

time points and their corresponding replicates are fitted with a

robust linear model where the slope represents the growth estimate

over time (intercept set to 1). Finally, the sequences were filtered

based on the regression results. Sequences were retained if they had

at least two replicates, at least 10 reads in total, and if the robust

linear regression had converged. From all the sequences in the

random library that were detected, ~ 67,263 fulfilled the stringent

filtering criteria (see Table EV1).

Processing growth scores to identify functional and non-
functional sequences

To assess whether a sequence should be considered functional, we

defined a growth estimate threshold. Above this threshold,

sequences were classified as functional and below this threshold,

sequences were classified as non-functional. For both the random

and the design libraries, this threshold is based on the growth esti-

mate for sequences that start with a stop codon; sequences starting

with a stop codon should not be functional and therefore should

represent the lowest possible growth estimate value. In both the

libraries, there are sequences with stop codons at the start that

represent truncated transcription factors. Therefore, the growth esti-

mates of these sequences could be used to determine the split

between sequences that are functional, even if the function is weak,

and those that are not functional.

For the random library, growth estimate values were first

rounded to two significant figures, reflective of the resolution of the

experiment (values beyond two decimals are likely to only reflect

noise in the regression procedure). The sequences were then classi-

fied into two groups: those where the insert started with a stop codon

(3,139 sequences) and those that did not start with a stop codon

(64,124 sequences). The former group is not expected to promote

any survival (Appendix Fig S1B) at high temperatures and can there-

fore serve as the group for negative control (i.e., stop codon group).

A threshold of growth estimate value was picked to achieve a

balance between reducing the number of false-positive sequences at

the same time as maintaining a large number of functional sequences

for subsequent analyses. At a growth estimate threshold of �0.13,

we would classify 19 of the 3,139 stop codon sequences as func-

tional. This gives an FPR of 0.6% and allowed classification of ~ 739

sequences as functional (see Table EV1). Although this is an objec-

tive criterion to estimate the FPR, some sequences that are not

expected to be functional (e.g., very short sequences) are classified

as functional using the growth rate cutoff for a particular FPR. To

better reflect the experimental false positives, we also considered all

sequences with four or fewer amino acids as non-functional to obtain

the percentage of false positives as 12.18% (90 sequences with four

or fewer amino acids/739 sequences).

For the design library, three different stop codon sequences (i.e.,

variants) were included to help define the threshold growth estimate
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value between functional and non-functional sequences (TAA with

estimate of �0.21, TGA with estimate of �0.25 and TAG with esti-

mate of �0.15). The highest growth estimate (�0.15) of the three

stop codon variants was chosen to classify sequences into functional

and non-functional groups. Anything above or below this value was

classified as a functional or non-functional sequences.

It is expected that positive slopes of normalized read count indi-

cate that the individual with that sequence grows over time, whereas

negative slopes indicate that the relative fraction of the variant is

decreasing. For example, if a strain with a sequence grows moder-

ately over time, its fraction of total reads between subsequent time

points might decrease because sequences that confer increased fit-

ness are more likely to be sequenced in subsequent time points. In

this way, when fitting the robust linear regression of the normalized

read count over different sample collection time points, the read

count might decrease, despite the sequence being moderately func-

tional. Thus, the negative control of stop codon containing

sequences provides a robust way to split the sequences in an objec-

tive manner.

Converting sequences to vectors of features

The feature calculation was performed with a custom software pack-

age in Python that can process large amounts of sequences and is

extensible by other researchers and interfaces with existing software

so that a broad range of features can be calculated. Each sequence is

processed in three steps. In the first step, a numerical encoding

(e.g., amino acid scale and disorder propensity) is defined to

convert the sequences of amino acids in to a sequence of numbers.

In the second step, different views (i.e., sub-sequences) of the full

sequence are to taken to obtain various sub-sequences (e.g., sliding

windows of defined sizes). Finally, the values for each view are

aggregated (e.g., count, sum, mean, and max) to yield a final value.

A whole range of combinations of these steps was applied to yield a

total of 146 different features (see Table EV2; Appendix Fig S2). The

features that were calculated this way were grouped into the follow-

ing feature sets for interpretability:

1 The single amino acid composition (IVLAFWYGSPKRH-

DETQNCM, respectively)

2 Grouped amino acid composition (Betts & Russell, 2003; Pommie

et al, 2004; aliphatic: IVLA, aromatic: FWY, branching: VIT,

charged: KRHDE, negative: DE, phosphorylatable residues: STY,

polar: RKDEQNY, hydrophobic: VILFWCM, positive: KRH,

sulfur-containing: MC and tiny: GASP)

3 The presence or absence of degenerate mini-motifs that are regu-

lar expression describing logical operation of pairwise combina-

tions of fine and coarse amino acid groups (fine group: negative,

positive, aromatic; coarse group: polar, non-polar). The amino

acids can be interspersed by other residues with a spacing of 0–

10 residues. The groupings were guided by amino acid enrich-

ments of the functional sequences from the random library as

well as other grouped amino acids (Appendix Fig S7).

4 Presence or absence of the 9-amino acid TAD motif (Piskacek

et al, 2007; four different regular expressions: http://www.

med.muni.cz/9aaTAD/)

5 Disorder propensity of the sequence (calculated using IUPRED,

Dosztanyi et al, 2005)

6 The helicity of the sequence [as calculated by Agadir (Lacroix

et al, 1998) and Heliquest (Gautier et al, 2008)]

7 General sequence properties which include molecular weight of

the sequence (calculated using the BioPython package: biopy

thon.org) as well as the sequence length (number of amino

acids)

8 Isoelectric point, pI (calculated using the BioPython package:

biopython.org)

Machine learning on the sequences and their features

The caret package in R was used to perform these tasks in combina-

tion with custom scripts.

Preparation of the datasets

First, the complete dataset with all the sequences, features and

survival classifications was split into two subsets based on the

library of origin, i.e., the random and design libraries. Furthermore,

we constructed an additional dataset where the sequences from the

different libraries were combined, i.e., the combined library. To

train and evaluate models with the different datasets, we applied

similar approaches for the analysis of each of the libraries with vari-

ations described below:

• Random library dataset: The dataset was first split into 75% for

training (training set) and the remaining 25% for testing (testing

set) to have a final testing set that simulates collection of new data

in a realistic way. The entire machine-learning process was

performed with n-repeated k-fold cross-validation (k = 5 and

n = 10 repeats) on the training set (75% of original dataset).

Thus, for every kth fold during cross-validation, the training set

was split up into a training set of size (4/5th) that was used to

train the model, and a validation set (1/5th) that was used to eval-

uate that model performance. This process was repeated 10 times

(to ensure that the random splits into folds did not bias the perfor-

mance). This yields a total of 50 data splits. Because of the unbal-

anced nature of the dataset, with fewer functional sequences

(minority class), the dataset was subsampled to the minority class

while training the model on the training set. To ensure we do not

over-estimate performance, sub-sampling was not done on the

validation or testing set (see Appendix Fig S3).

• Design library dataset: For the analysis of the design library

dataset, a slightly different strategy was used. Specifically, we used

group k-fold cross-validation (k = 5) rather than k-fold cross-vali-

dation. The dataset is treated as 13 distinct groups of TAD sets,

where each group is defined as a wild-type TAD sequence and all

their variants. Therefore, for each data split, 4/5th of the 13 TAD

sets (~ 10 TAD sets) were assigned to the training set and 1/5th

(~ 3 TAD sets) were assigned as the validation set. This ensured

that variants within a TAD set (which are highly similar) were not

split between the training and the validation sets. This procedure

was carried out 10 times, again yielding a total of 50 data splits.

Note that because of the reduced dataset we did not split the

design library dataset into an original training and testing set

(75–25%) as for the random library. Because of the unbalanced

nature of the dataset, the training set was subsampled to the

minority class. This was not done on the validation sets (see

Appendix Fig S3).
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• Combined library dataset: We used the testing set of the random

library as the testing set for the combined library. The different

splits of the training set of the random and design libraries were

combined to obtain the training set of the combined library.

Similarly, the different splits of the validation set of the random

and design libraries were combined to obtain the validation set

of the combined library. The training set was subsampled to

account for the library of origin and the unbalanced nature of

the datasets in terms of the number of functional versus

non-functional sequences. This procedure was repeated for

each fold times the number of iterations (50 in total; see

Appendix Fig S3).

Feature preprocessing

High correlation between features for the sequence from the dif-

ferent library datasets was identified by computing a correlation

matrix between all features using the Pearson correlation coefficient

metric. The correlation matrix was converted into a network where

features (nodes) would be connected if they were correlated (thresh-

old of correlation coefficient of 0.75). From the resulting sub-

networks (clusters) of correlated features, only one representative

feature was kept (the feature least correlated to other features in the

cluster). Unconnected sub-graphs were also retained. Different

values for correlation thresholds were tested without significant dif-

ferences to the outcomes of the modeling. Then, the dataset was

checked for linear combinations of the features. The features were

represented as a matrix, and QR decomposition (decomposition of a

matrix into a product of an orthogonal matrix and an upper right

triangular matrix) was applied to determine whether it was of full

rank and to identify columns with dependencies. This approach was

applied iteratively, removing columns with dependencies and

checking the rank until no more dependencies were identified. From

the feature sets with dependencies, one representative feature was

kept (chosen at random), and the rest was removed. To allow inter-

pretation and comparison to previous work, features previously

associated with TADs, such as minimum sequence length, isoelec-

tric point, hydrophobicity, disorder propensity, helicity, and the

presence of the 9-aa TAD, were always included in the analysis, as

well as at least one feature from each of the eight feature set

described above.

Model building

The different datasets were then used to train and evaluate

models. For each of the iterations of the cross-validation (de-

scribed above), prior to the model training, the following prepro-

cessing steps were applied: (i) the data were centered and scaled;

(ii) near-zero variance features, i.e., features that predominantly

have the same value for all objects were removed at a ratio cutoff

of 95–5% for the most common value to the second most common

value (default value in caret package; https://CRAN.R-project.org/

package=caret).

Simple logistic regressions (logit) were applied to estimate the

predictive power of previously reported sequence features individu-

ally (Appendix Fig S5A) and were combined together in a model

that considers all these features (Appendix Fig S6A and B). Separate

logistic regressions were fitted for length, pI, hydrophobicity, disor-

der, helicity and presence of 9-aa TAD. The logistic regression builds

a model that indicates the probability to be a functional or

non-functional sequence at a given value of the different properties,

respectively.

When dealing with multiple features, Lasso and Ridge (James

et al, 2013; from “glmnet” R package) and xgboost (Chen &

Guestrin, 2016; from “xgboost” R package) algorithms were

applied because of their intrinsic feature selection routines, while

differing in their nature to identify statistical patterns in the data

that can have very different underlying generative phenomena.

Lasso (least absolute shrinkage and selection operator) is a

regression method that penalizes the absolute size of regression

coefficients (James et al, 2013). Varying the degree of penaliza-

tion constrains the estimates to become zero (i.e., removes them

from the model), which helps (i) to deal with features that have

a high degree of correlation (i.e., similar features are filtered

out) and (ii) to describe feature importance (i.e., intrinsic feature

selection) as features that are important will require very high

penalties not to be included in the model. We used the penaliza-

tion on coefficients of logistic regression models. Ridge regres-

sion works in a similar way, penalizing the inclusion of

additional features, but generally includes more features, albeit

with lower coefficients (James et al, 2013). Boosted trees (xg-

boost) work on a very different premise and are based on

ensembles of shallow decision trees that are built in a stagewise

fashion focusing on data points that are hard to classify correctly

(boosting). It produces an ensemble of weak learners that

together give accurate predictions. These models also provide a

way to assess feature importance that is based on the reoccur-

ring placement of features high up in the ensemble of decision

trees. Used in conjunction, the two very different approaches

with intrinsic estimation of feature importance provide a way to

learn the reoccurring patterns in the dataset and interpret them

more confidently.

For the lasso and ridge models, hyper-parameter tuning was

applied with a grid search over lambda values from 0.00001 to

0.1 over 50 evenly interspersed values (with alpha fixed to 1 and

0, respectively). The parameter space explored for the xgboost

models was eta = 0.1 or 0.3, max tree depth = 2 or 4, features

used by each tree were set to 0.8, sub-sampling of sequences was

set to 0.5 and 0.75 (i.e., half the sequences or three quarters),

the number of rounds was set to 30 or 100, a gamma value of 0

was applied, and the minimum child weight was set to either 0.5

or 1. All possible combinations of these hyper-parameter values

were tested.

Stacked models (or meta-models) were constructed from the

three (Lasso, Ridge, and xgboost) best primary models (or

base models) using the “caretEnsemble” package. This

combines the best base models using a linear regression based

approach. The resulting ensemble classifiers use the predictions

(probability values of being functional) of the different valida-

tion sets (described above), which were used to evaluate the

different base models. To estimate performance of the ensemble

model, a bootstrap sampling procedure is applied (n = 50). For

each bootstrap iteration (with replacement), the dataset was

split into training and validation sets, subsample the training

set to the minority class, train the model, and evaluate perfor-

mance on the validation set. This is used to obtain weights for

the different base models in order to obtain the final ensemble

model.
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Evaluating model performance

Model predictions during hyper-parameter tuning (grid search)

as well as the final model evaluations on the random library

testing set were evaluated with the precision–recall AUC evalua-

tion metric. A model was constructed for each parameter set,

and it was trained and tested on multiple dataset splits (as

described above). For each split the evaluation metrics were

calculated. To select the best final model, the simplest model

that was one standard error from the best model was selected to

prevent over-fitting that can occur in the best model. The order-

ing of models from simplest to most complex was done accord-

ing to the caret package model specifications. For boosted trees,

lowest number of iterations, followed by most shallow tree

depth was used as the criterion. For the penalized generalized

logistic regressions, they were ordered first on the L1 penalty

followed by the L2 penalty. True-positive rate (TPR) is defined

as the ratio of true positives over the sum of true positives and

false negatives (all positives). False-positive rate (FPR) is

defined as the ratio of false positives over the sum of false posi-

tives and true negatives (all negatives). FPR is also expressed as

1-specificity where specificity is ratio of true negatives over all

negatives.

Structures of TAD interactions

The structures of multiple complexes of transactivation domains

(TADs) binding their respective partners were collected from the

PDB whose codes are provided within parentheses: Tfb1-VP16

(2K2U), NcoA–1-STAT6 (1OJ5), MDM2-p53 (1YCQ), CBP-CREB

(1KDX), TFIIB-VP16 (2PHG), PC4-VP16 (2PHE), Gal11-Gcn4

(2LPB), and Med25-VP16 (2KY6). Structures of the complexes were

aligned based on the helical region of the respective TAD that they

contain, centered on the central hydrophobic residue of the helix.

The surfaces on the interaction partners were colored according to

their electrostatic potential (blue: positively charged, red: negatively

charged in Appendix Fig S9).

Spot-dilution assay

Yeast cell cultures expressing DTAD HSF1 fused to a corresponding

TAD sequence were grown to mid-log phase in the YPDA medium.

An 1 ml aliquot was taken from each culture and washed twice with

sterile water by centrifuging samples for 5 min at 1,000 × g.

Washed cells were re-suspended in sterile water to an OD600 = 0.3.

A fivefold or threefold (see figure labeling) serial dilution for each

culture was prepared in sterile 96-well plates. Using a replica-plater,

the diluted cultures were transferred to Petri dishes with solid

media. Replica plates were incubated at 30°C or 37°C. Images were

taken after 42 h of growth, and the same imaging settings were used

for all captures. Strains carrying specific plasmids were either indi-

vidually constructed or randomly selected from the pool at the

colony growth stage. The sequence of all constructs was confirmed

by individual DNA sequencing.

Data availability

The TAD predictor is available online at https://github.com/cn

jr2/tad-prediction/. Datasets are available as Tables EV1–EV8.

Expanded View for this article is available online.
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