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Shikonin, a natural product isolated from the roots of Lithospermum erythrorhi-
zon, exhibits pharmacological effects against inflammation, ulcers, infections, and
tumors. In the present study, we aimed to investigate the antitumor effects of
shikonin on the human melanoma cell line, A375SM, and in an in vivo mouse
xenograft model. We examined the anticancer effects of shikonin by in vitro ex-
periments (MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay,
4′,6-diamidino-2-phenylindole (DAPI) stain, annexin V/ propidium iodide (PI) stain, and
protein analysis of apoptosis and mitogen-activated protein kinase (MAPK) pathways).
Further, the anticancer effect in vivo was confirmed through a xenograft model. Our results
showed that shikonin inhibited the proliferation of melanoma cells in a dose-dependent
manner. In addition, shikonin significantly increased nucleus and chromatin condensa-
tion and early/late apoptosis. Shikonin also increased the pro-apoptotic proteins and
decreased the anti-apoptotic proteins. Additionally, shikonin was overexpressed in MAPK
pathways. Investigation of the effects of shikonin in a mouse xenograft model not only
showed decreased A375SM tumor volume but also increased apoptosis as determined by
terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Furthermore,
pathologic changes were not observed in the liver and kidney of mice. Collectively, the
study indicated that shikonin inhibited the proliferation of the human melanoma cells by
inducing apoptosis, mediated by MAPK pathway and that it is a potential candidate for an
anticancer drug against melanoma cancer.

Introduction
Melanoma is a type of skin cancer that begins in melanocytes and accounts for 10% of all skin cancer cases
worldwide. Although it is less common than other types of skin cancer, melanoma is associated with high
fatality as it accounts for more than 75% of deaths from skin cancer [1]. Risk factors for melanoma include
excessive exposure to ultraviolet (UV) rays of the sun, which results in DNA damage in melanocytes lo-
cated in the basal layer of the epidermis, weakened immune system, and dysplastic nevi [2,3]. Currently,
treatment options for melanoma include surgery, chemotherapy, radiation therapy, and immunotherapy,
and early-stage melanomas can be successfully treated in most cases with surgical therapy. However, these
therapies are not very effective in the treatment of unresectable melanomas, or metastatic melanomas, ow-
ing to their high resistance to the currently available chemotherapy and radiation therapy [4,5]. Moreover,
both therapies are associated with a number of side effects, as normal cells are also affected during the pro-
cess [6,7]. Therefore, development of novel therapeutics with fewer side effects is warranted. Studies are
currently underway to develop anticancer agents from natural products to reduce undesirable side effects
[8–10].
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Shikonin (Figure 1A) is a natural product isolated from Lithospermum erythrorhizon, which belongs to the family
Boraginaceae, and it has long been used in the treatment of inflammation, burns, ulcers, infections, and cancer in
China [11,12]. Previous studies have reported the anticancer effects of shikonin, including its involvement in p27 and
p53 regulation and cytochrome c release in colon cancer [13], in addition to the induction of apoptosis via extracellular
signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK) in leukemia [14,15].

Apoptosis is a form of programmed cell death, protecting an organism by removing damaged, virus-infected, or
cancerous cells, and includes processes such as cytoplasmic shrinking, extensive plasma membrane blebbing, and nu-
clear condensation [16,17]. Apoptotic pathways may be classified into the mitochondrial-mediated intrinsic and cell
death receptor-mediated extrinsic pathways; caspases generated by the combined action of these two pathways ac-
tively lead to apoptosis. Key apoptosis inhibitors include Bcl-2 and Bcl-xL, whereas key inducers include Bcl2 (B-cell
lymphoma-2)-associated X protein (Bax), Bid, and Bim [18,19]. The activation and function of caspases, involved in
the caspase-cascade system, are regulated by various molecules, such as the apoptotic inhibitor proteins, Bcl-2 fam-
ily proteins, calpain, and Ca2+ [20]. In addition, caspase-3 mediates the cleavage of poly (ADP-ribose) polymerase
(PARP) during cell death [21]. Loss of apoptotic control in cells allows them to proliferate and become cancerous;
conversely, unregulated apoptosis leads to degenerative diseases [22]. Therefore, investigations are underway to iden-
tify anticancer compounds with apoptosis inducing and regulating effects, so that they may be applicable for cancer
treatment [23–25]. Additionally, mitogen-activated protein kinases (MAPKs) are serine/threonine kinases that are
involved in cellular response to stress, differentiation, proliferation, and apoptosis [26]. The major MAPK pathways
include ERK1/2, JNK, and p-38 MAPK pathways, and are responsive to various cell stimulations. ERK1/2 pathways
are involved in cell proliferation and survival, whereas JNK and p-38 pathways are responsive to stress such as DNA
damage, osmolarity changes, and chemotherapeutic drugs [27–29]. One of the major consequences of the exposure
of p-38 MAPK signaling to stress is apoptosis. p-38 MAPK induces apoptosis through two different mechanisms,
promoting the transcription of pro-apoptotic genes and direct activity of Bcl-2 family proteins [30].

Although the anticancer effect of apoptosis induced by p53 regulation in A375-S2 melanoma cells has been reported
previously [31], few studies have investigated the induction of apoptosis via MAPK pathway and its anticancer effect
in A375SM melanoma cells. Therefore, in the present study, in vitro experiments were conducted to examine the
inhibitory effect of shikonin on the proliferation of A375SM melanoma cells and to determine whether the inhibition
of proliferation was mediated by the MAPK apoptotic pathway. Furthermore, in vivo experiments were performed
to study the effects of shikonin in physiological systems.

Methods
Reagents and cell lines
Dulbecco’s modified Eagle’s medium (DMEM), purchased from Welgene (Gyeongsan, Korea), was used for
cell culture, and fetal bovine serum (FBS) and penicillin were purchased from Gibco BRL (Grand Island, NY,
U.S.A.). A375SM melanoma cells (catalog no. 80004) were purchased from Korea Cell Line Bank (KCLB). Can-
cer cells were cultured in DMEM containing FBS (5%) and penicillin/streptomycin (1%), at 37◦C under 5%
CO2. Other general reagents, such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and
4′,6-diamidino-2-phenylindole (DAPI), were purchased from Sigma–Aldrich Co. (St. Louis, MO, U.S.A.). Fluores-
cein Isothiocyanate (FITC)-Annexin-V detection kit (catalog no. 556420) was purchased from BD Pharmingen™
(San Diego, CA, U.S.A.). Primary antibodies for Bax (rabbit, 1:1000, #2772), Bcl-2 (rabbit, 1:1000, #4223), PARP (rab-
bit, 1:1000, #9542), ERK1/2 (rabbit, 1:1000, #9102), p-ERK1/2 (rabbit, 1:1000, #9101), JNK (rabbit, 1:1000, #9252),
p-JNK (rabbit, 1:1000, #4668), p38 (rabbit, 1:1000, #9212) and phosphorylated p38 (p-p38; rabbit, 1:1000, #9211), and
secondary antibodies for rabbit IgG (rabbit, 1:1000, #7074) were purchased from Cell Signaling Technology (Beverly,
MA, U.S.A.), andβ-actin (mouse, 1:1000, sc-47778) and mouse IgG (mouse, 1:1000, sc-516102) were purchased from
Santa Cruz Biotechnology Inc. (Dallas, TX, U.S.A.). Shikonin was purchased from Sigma–Aldrich Co. (St. Louis, MO,
U.S.A., purity > 98% as determined by HPLC) and dissolved in dimethylsulfoxide (DMSO), and stored at −20◦C.

MTT assay
MTT assay was performed to examine the inhibitory effect of shikonin on melanoma cells viability. A375SM
melanoma cells were plated on 96-well plates at 2 × 104 cells/ml and incubated for 24 h. The cells were then treated
with different concentrations of shikonin (0, 1, 2, 3, and 4 μM) for 24 h. Next, 40 μl of MTT solution (5 mg/ml) was
added into the wells of 96-well plates containing cells treated with shikonin for 24 h, and the plates were incubated for
2 h at 37◦C under 5% CO2. After incubation, the MTT reagent was removed, and the cells were treated with DMSO
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(100 μl/well) to completely dissolve the formazan product formed in the wells. Absorbance was measured at 595 nm
using an ELISA reader (Bio-Rad Laboratories Inc., Hercules, CA, U.S.A.).

DAPI staining
DAPI was performed to examine the morphological changes in the nucleus that specifically occur upon the induction
of apoptosis. A375SM cells were plated on 60-mm dishes at 1 × 105 cells/ml and kept undisturbed for 24 h to ensure
proper adhesion. The cells were then treated with different concentrations of shikonin (0, 2, and 4μM) and incubated
for another 24 h. Thereafter, the cells were washed with PBS and fixed with 4% formaldehyde solution for 15 min. The
cells were washed again with PBS, and 2 ml of DAPI reagent was added. The cells were examined under a fluorescence
microscope (Zeiss Fluorescence Microscope, Thornwood, NY, U.S.A.) at 200× magnification. DAPI-positive cells
were counted in one microscopic field and expressed as a percentage of the total number of cells.

Flow cytometry analysis
Annexin V/propidium iodide (PI) staining was performed to quantitatively analyze the level of apoptosis induced by
shikonin in melanoma cells. A375SM cells were treated with different concentrations of shikonin (0, 2, and 4 μM)
and incubated for 24 h. The cells were detached using trypsin-EDTA and were centrifuged (290×g) to obtain cell
pellets. The pellets were washed with PBS and centrifuged once again; the resulting cell pellets were suspended in 1×
binding buffer up to a concentration of 2 × 105 cells/ml, and were incubated with annexin-V and PI for 15 min. The
cells were analyzed using the FACSCalibur™ flow cytometer (BD Biosciences, NJ, U.S.A.).

Western blotting
Western blotting was performed to determine the expression of apoptosis-related proteins. A375SM cells were incu-
bated in 75T flasks for 24 h at 37◦C under 5% CO2, and then treated with different concentrations of shikonin (0,
2, and 4 μM). The cells were detached with trypsin-EDTA and centrifuged. After washing with PBS, the cells were
centrifuged again, followed by the addition of cell lysis buffer (Invitrogen, CA, U.S.A.) to the pellets and incubation of
the same for 20 min at 4◦C. The lysates were centrifuged and supernatants were collected for use in the experiments.
The concentration of extracted protein was measured using the Bradford protein assay. Extracted proteins were sep-
arated by electrophoresis in 12% sodium dodecyl sulfate/polyacrylamide gel and then transferred to nitrocellulose
membranes. After protein transfer, the membranes were blocked in 5% skim milk for 2 h and incubated overnight at
4◦C with primary antibodies (diluted 1:1000). The membranes were subsequently incubated with secondary antibod-
ies (diluted 1:1000), including rabbit IgG or mouse IgG antibodies, for 2 h. Each protein band was examined using
enhanced chemiluminescence (ECL)-detection reagents (Pierce, Rockford, IL, U.S.A.), and the density was measured
using ImageJ Launcher (provided by NCBI).

Xenograft establishment
BALB/c nude male mice (18–22 g, 4 weeks old) were purchased from Nara Biotech (Seoul, Korea). The use of animals
in the present study was approved by the Institutional Animal Care and Use Committee of Kongju National University
(KNI 2020-2, Chungcheongnam-do, Korea). All in vivo experiments were performed in Kongju National University
(Chungcheongnam-do, Korea) in accordance with relevant guidelines and regulations. The mice were housed under
a 12-h day/night cycle at 23 +− 3◦C and 50 +− 10% humidity. For xenograft, A375SM cells were injected into each
shoulder of the mice at the concentration of 5 × 106 cells/ml in PBS. After tumor formation, the mice were divided
into two groups (n=5), and injected with shikonin (0 and 4 mg/kg) intraperitoneal every 3 days. Tumor volume was
measured every 3 days using a Vernier caliper (Mitutoyo Corporation), and tumor volume was calculated using the
formula: volume = {(width + length) × 0.5}3. All mice were killed using CO2 gas (30% per min, 3 min) at the end
of 30 days, and tumors were excised and weighed.

Hematoxylin and Eosin staining
After fixing the liver and kidney in 10% formaldehyde, paraffin blocks were prepared and 5-μm sections were pre-
pared. Tissue sections were stained with Hematoxylin and Eosin (H&E) and examined at 200× magnification under
a light microscope.

TUNEL assay
Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed to determine whether
shikonin administration induced apoptosis in tumor cells. First, 5-μm tissue sections were deparaffinized with xylene
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and hydrated with ethanol. Each slide was then washed with PBS and incubated with 100μl of proteinase K (20μg/ml)
for 15 min at room temperature. Thereafter, equilibration buffer and biotinylated nucleotide mix was mixed with rTdT,
and 100μl of the mixture was added to each slide, followed by incubation for 1 h at 37◦C. Next, endogenous peroxidase
was blocked by incubating the slides with a mixture of 0.3% H2O2 and PBS for 5 min, followed by incubation with
HRP–conjugated streptavidin for 30 min at room temperature. After washing with PBS, the slides were incubated
with 3,3′-diaminobenzidine tetrahydrochloride (DAB) solution for 10 min, mounted, and examined through light
microscopy (200×).

Immunohistochemistry
Immunohistochemistry was performed to determine the expression of apoptosis-related proteins in tumor cells. First,
5-μm tissue sections were deparaffinized with xylene and hydrated with ethanol. Then, the sections were washed with
PBS, and endogenous peroxidase was blocked with 0.3% H2O2. After washing with PBS, blocking was performed with
skimmed milk, and the sections were incubated overnight with primary antibodies (anti-p-p38, diluted 1:100) at 4◦C.
After a washing step, the sections were incubated with secondary antibodies (rabbit-IgG, 1:100) at room temperature
for 2 h, followed by incubation with DAB and H2O2. Subsequently, the sections were stained with Hematoxylin,
mounted, and examined by light microscopy (200×).

Statistical analysis
All experimental results are expressed as mean +− standard deviation. Comparisons between groups were done us-
ing ANOVA, followed by t test analysis. Results that differed from the control group with P<0.05 were considered
statistically significant.

Results
Effects of shikonin on viability of A375SM melanoma cells
MTT assay was performed to determine the effects of shikonin on melanoma cells viability. After treatment with
1, 2, 3, and 4 μM shikonin for 24 h, the viability of A375SM cells was 91, 64, 47, and 41%, respectively, compared
with that of the DMSO-treated control, showing a decrease with increasing concentration of shikonin. Treatment
with concentrations exceeding 2 μM shikonin resulted in a significant reduction in cell viability (Figure 1B). After
treatment with shikonin, morphologic changes were also observed, including cytoplasmic shrinkage and membrane
blebbing (Figure 1C).

Examination of morphological changes in A375SM melanoma cells upon
shikonin treatment
To determine whether the decrease in cell viability was due to apoptosis, A375SM cells were treated with 0, 2, and 4μM
shikonin for 24 h, and nuclei were stained with DAPI. Fluorescence microscopy showed no remarkable change in the
control cells, although many DAPI-positive cells were observed in the shikonin-treated cells (Figure 2A). Quantifica-
tion of DAPI-positive cells revealed 18% in the 4 μM shikonin-treated cells, which was significantly higher compared
with 4% DAPI-positive cells of the control group (Figure 2B).

Induction of apoptosis in A375SM melanoma cells upon shikonin
treatment
DAPI staining suggested that the decreased viability of cancer cells after shikonin treatment may be attributed to
apoptosis. Hence, early apoptosis and late apoptosis rates were measured by flow cytometry following annexin-V/PI
staining (Figure 2C). Early apoptosis rate increased from 4.01 to 10.32%, and then to 24.13%, with increasing shikonin
concentration. Late apoptosis rate was 11.34, 13.78, and 18.61% for the 0, 2, and 4 μM-treated cells, respectively,
thereby demonstrating that shikonin treatment increases both early and late apoptosis rates (Figure 2D).

Examination of apoptosis-related protein expression in A375SM
melanoma cells upon shikonin treatment
Western blotting was performed to determine the expression level of apoptosis-related proteins. The expression of
Bax, a key inducer of apoptosis, was higher in the shikonin-treated cells compared with the control cells. The expres-
sion of Bcl-2, an inhibitor of apoptosis, tended to decrease in the shikonin-treated cells compared with that in the
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Figure 1. Effect of shikonin in human melanoma cell

(A) Chemical structure of shikonin. (B) A375SM cells were seeded in 96-well plates, incubated for 24 h and then treated with

various concentrations of shikonin for 24 h. Cell viability was measured by MTT assay. (C) Morphologic changes in A375SM

cells treated with various concentrations of shikonin for 24 h were analyzed under a light microscope (scale bar, 10 μm)

Control cells were treated with DMSO. Data are presented as mean and standard deviation (SD) for three samples. Signifi-

cance was determined by Student’s t test, *P<0.05, compared with the control. Abbreviations: DMSO, dimethylsulfoxide; MTT,

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

Figure 2. Induction of apoptosis in melanoma cells upon treatment with shikonin

(A) A375SM cells were seeded for 24 h and then incubated with indicated concentrations of shikonin for 24 h. Cells were fixed and

stained with 1× DAPI solution. Cell morphological characteristics were analyzed using a fluorescence microscope (scale bar, 10

μm). (B) The bar graph represents the average of four fields under a fluorescence microscope, and the percentage of DAPI-positive

cell among all cells. (C) A375SM cells were seeded for 24 h. After treating with the indicated concentration of shikonin for 24 h, the

cells were collected and stained with Annexin-V/PI, and then analyzed by flow cytometry. (D) Bar graph depicting the percentage

of live, necrotic, early, and late apoptotic cells. (Q1: live, Q2: necrotic, Q3: early apoptotic, Q4: late apoptotic). Data are presented

as mean and standard deviation (SD) for three samples. Significance was determined by Student’s t test, *P<0.05, compared with

the DMSO-treated control.

© 2021 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

5



Bioscience Reports (2021) 41 BSR20203834
https://doi.org/10.1042/BSR20203834

Figure 3. Western blot analysis of apoptosis-related proteins in melanoma cells

(A) A375SM cells were treated with indicated concentrations of shikonin for 24 h and harvested to measure expression levels

of Bcl-2, and activation of Bax and cleaved-PARP were detected by Western blot analysis. (B–D) Bar graph was generated by

quantifying blots from three independent experiments using ImageJ and normalizing the intensity of the bands to the DMSO-treated

control. Significance was determined by Student’s t test, *P<0.05, compared with the DMSO-treated control.

control cells. Fragmentation was observed through increased expression of the cleaved fragment of PARP, which is
known to be involved in DNA repair and is a caspase substrate (Figure 3).

Induction of apoptosis via MAPK pathway in A375SM melanoma cells
upon shikonin treatment
Western blotting was performed for ERK, JNK, and p38 proteins, which are major participants in the MAPK path-
way, to determine the underlying mechanism of apoptosis induction. An increased expression of phosphor-ERK1/2,
phosphor-JNK, and phosphor-p38 was observed in the shikonin-treated cells compared with that in the control group.
Total-ERK1/2, total-JNK, and total-p38 tended to decrease in the shikonin-treated cells (Figure 4A). Quantification
of these proteins showed that the level of phosphorylation of these proteins increased with increasing concentrations
of shikonin (Figure 4B).

Effects of shikonin on xenograft tumors
To determine the in vivo effect of shikonin on tumors, we utilized a mouse xenograft model. A375SM cells were
cultured and subcutaneously injected into both shoulders of mice. After confirming tumor formation, the mice were
divided into two groups (0 and 4 mg/kg shikonin) [32]. Shikonin administration was initiated once the tumor attained
a volume of approximately 90 mm3. Intraperitoneal administration of shikonin, once every 3 days, was performed for
a total of 30 days. A decreased tumor volume was observed (Figure 5A), although there was no significant reduction in
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Figure 4. Western blot analysis of MAPK pathway in melanoma cells

(A) A375SM cells were treated with indicated concentrations of shikonin for 24 h and harvested to measure expression levels of

MAPK pathways; ERK, JNK, and p38 proteins were detected by Western blot analysis. (B) Bar graph was generated by quantifying

blots from three independent experiments using ImageJ and normalizing the intensity of the bands to the DMSO-treated control.

Significance was determined by Student’s t test, *P<0.05, compared with the DMSO-treated control.

Figure 5. Effects of shikonin on melanoma tumor growth

Nude mice bearing A375SM cells as a xenograft model were treated with shikonin (4 mg/kg) for 30 days, and (A) tumor volume,

(B) weight, and (C) body weight were determined. Each value represents the mean +− SE. Student’s t test (*P<0.05, control animals

were treated with PBS consisting of 0.1% DMSO).

tumor weight, as per measurements following autopsy (Figure 5B). No significant reduction in weight was observed
in the shikonin-treated mice compared with that of the control group (Figure 5C).

Induction of apoptosis in melanoma tumors by shikonin administration
TUNEL assay was performed to determine whether shikonin induced apoptosis in melanoma tumors in mice.
Results showed no significant change in the control mice, although TUNEL-positive cells were observed in the
shikonin-treated mice (Figure 6A). Quantification of these TUNEL-positive cells indicated that their abundance was
approximately 2.8-times more in the shikonin-treated mice compared with that in the control group (Figure 6B).
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Figure 6. Shikonin induced apoptosis in melanoma tumor tissues

(A) Apoptosis was measured in tumor tissues using the TUNEL assay and (C) phospho-p38 expression was measured in tumor

tissues by immunohistochemistry. (B) TUNEL-positive and (D) p-p38-positive cells were observed under a light microscope and

are shown as the average of four fields. Significance was determined by Student’s t test, *P<0.05, compared with the untreated

control. (E) Histological toxicity analysis of the liver and kidney in nude mice by H&E staining. Slides were observed under a light

microscope (scale bar, 10 μm).

Effects of shikonin administration on apoptosis-related proteins in
melanoma
Immunohistochemical staining was conducted to determine the effects of shikonin on apoptosis-related proteins
in melanoma. Examination of p-p38, a key protein in the MAPK pathway, showed that its expression was clearly
increased in the shikonin-treated mice, compared with that in the control group (Figure 6C). Quantification of
p-p38-positive cells revealed that the cells were approximately 3.0-times more abundant in the shikonin-treated mice
compared with that in the control mice (Figure 6D).
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Examination of histopathological changes in the liver and kidney after
shikonin administration
H&E staining was performed to determine whether shikonin administration induced toxicity in the liver and kidney
of mice. No significant difference in the liver and kidney (Figure 6E) was observed in mice from the shikonin-treated
group and control group.

Discussion
Shikonin is a flavonoid found in L. erythrorhizon, a perennial herbaceous plant belonging to the family Borag-
inaceae, and is known to have physiological effects, particularly therapeutic effects on inflammation, burns, and
infections [11,12]. It has also been reported to exhibit anticancer effects on several cancers [13–15]. However, few
studies have investigated its anticancer effect on melanoma. Therefore, the present study investigated the inhibitory
effect of shikonin on the proliferation of A375SM melanoma cells and determined whether the anticancer effect was
mediated by apoptosis.

The effect of shikonin on melanoma cells viability was determined by MTT assay of A375SM cells treated with 1,
2, 3, and 4 μM shikonin, which does not affect normal cells [33], for 24 h. Results showed a significant reduction
in viability upon treatment with more than 2 μM shikonin (Figure 1B). Induction of apoptosis is characterized by
morphological changes like apoptotic bodies, including chromatin and nuclear condensation resulting from DNA
fragmentation and cell membrane bubbling [34]. Therefore, to determine whether the inhibitory effect of shikonin
on the proliferation of melanoma cells was due to apoptosis, DAPI staining was performed. A375SM cells, treated
with 2 and 4 μM shikonin, showed an increased number of apoptotic bodies, a characteristic feature of apoptosis
(Figure 2A). Quantification of the DAPI-positive cells revealed that the percentage of apoptotic bodies in the cells of
the treatment groups was higher (4.50, 17.28, and 18.95%) than that in the control group, and increased in a shikonin
concentration-dependent manner (Figure 2B).

During the early stages of apoptosis, nuclear condensation and cell membrane bubbling occur simultaneously, re-
sulting in the translocation of phosphatidylserine (PS) from the inner leaflet to the outer leaflet of the cell membrane.
Annexin-V binds to PS and allows the staining of early and late apoptotic cells [35]. In contrast, PI primarily at-
taches to the nucleus, selectively staining late apoptotic and necrotic cells, rather than live cells or early apoptotic
cells [36]. To measure the rate of apoptosis, A375SM cells were treated with 0, 2, and 4 μM shikonin and stained with
annexin-V and PI (Figure 2C). The total amount of apoptotic cells (the sum of early and late apoptotic cells) increased
with increasing shikonin concentration (15.35, 24.10, and 42.74%), and the differences were significant (Figure 2D).
Therefore, shikonin inhibited the proliferation of A375SM melanoma cells, possibly due to induction of apoptosis.

Bcl-2 family proteins are important for apoptosis regulation, and comprise pro-apoptotic proteins, such as Bax,
Bad, and Bid, and anti-apoptotic proteins, such as Bcl-2 and Bcl-XL. Apoptosis regulation is dependent on the ratio
of pro-apoptotic to anti-apoptotic proteins [37]. Furthermore, PARP is a nuclear protein involved in DNA repair, and
is activated by DNA damage. Caspase activation induces apoptosis and leads to fragmentation of PARP, resulting in
the expression of cleaved-PARP. Thus, cleaved-PARP is considered an important marker of apoptosis [38–40]. The
expression of pro-apoptotic protein Bax was increased in the shikonin-treated cells, whereas the expression of the
anti-apoptotic protein Bcl-2 was reduced in control cells. Moreover, the expression of cleaved-PARP increased in a
shikonin concentration-dependent manner (Figure 3). Therefore, shikonin seemed to induce apoptosis by increasing
the expression of Bax and cleaved-PARP, and inhibiting the expression of Bcl-2 protein.

MAPKs are serine/threonine kinases that are responsive to extracellular stimuli. Proteins involved in the MAPK
pathway can be largely divided into ERK1/2, JNK, and p38 kinases, and regulate a number of physiological functions
[24]. ERK1/2 is primarily involved in cell survival and proliferation; it inhibits apoptosis in response to stress and is
induced by stimuli such as tumor necrosis factor (TNF) [41] and radiation [42]. However, overexpression of ERK1/2
by DNA-damage stimuli, such as UV rays, induces apoptosis [43]. Although apoptosis induction through ERK activa-
tion has not been clearly elucidated, up-regulation of p53 by activated ERK during apoptosis has been demonstrated
to promote apoptosis, depending on the cell line and stimuli [44]. In view of this evidence, Western blotting was
performed to determine whether apoptosis induced by shikonin is mediated by the MAPK pathway. A significant
increase was observed in the expression of p-ERK1/2, p-JNK, and p-p38 in the shikonin-treated cells compared with
that in the control cells (Figure 4). Therefore, apoptosis induction by shikonin in A375SM melanoma cells appeared
to be mediated by the expression of ERK and JNK proteins in the MAPK pathway, specifically by the expression of
p38.
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To determine whether the in vitro anticancer effect of shikonin, is extended to in vivo conditions, xenograft tumors
were grown in mice. Although a significant reduction in tumor tissue volume was observed over the shikonin admin-
istration period (Figure 5A), no such reduction in tumor weight was observed after the completion of administration
(Figure 5B). TUNEL assay was performed to determine whether the volume reduction could be associated with apop-
tosis, and the number of TUNEL-positive cells was found to be significantly increased in the shikonin-treated mice
compared with that in the control mice (Figure 6A). A previous study investigating the anticancer effect of shikonin
treatment on cancer cells reported that apoptosis was induced via the p-p38 pathway [45]. In the present study, exam-
ination of changes in p-p38 expression in tumor cells by immunohistochemical staining showed an increased number
of p-p38-positive cells in the shikonin-treated mice compared with that in the control mice (Figure 6B). These results
indicated that apoptosis was induced due to increased expression of p-p38 in tumor cells, and increased shikonin
dosage or longer administration period seemed to eventually result in reduction in tumor volume and weight.

In conclusion, the results of the present study demonstrated that shikonin inhibited the proliferation of A375SM
melanoma cells by inducing early and late apoptosis. Apoptosis was induced by increased expression of Bax and
cleaved-PARP and decreased expression of Bcl-2 proteins. Apoptosis induction by shikonin was associated with
MAPK pathway proteins, ERK, JNK, and p38, in vitro and in vivo. Therefore, our findings indicate that shikonin, a
natural flavonoid, has potential as an anticancer agent against A375SM melanoma.
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