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Abstract: Currently, salinity and heat are two critical threats to crop production and food security
which are being aggravated by the global climatic instability. In this scenario, it is imperative to
understand plant responses to simultaneous exposure to different stressors and the cross-talk between
underlying functional mechanisms. Thus, in this study, the physiological and biochemical responses
of tomato plants (Solanum lycopersicum L.) to the combination of salinity (100 mM NaCl) and heat
(42 ◦C; 4 h/day) stress were evaluated. After 21 days of co-exposure, the accumulation of Na+ in plant
tissues was superior when salt-treated plants were also exposed to high temperatures compared to the
individual saline treatment, leading to the depletion of other nutrients and a harsher negative effect
on plant growth. Despite that, neither oxidative damage nor a major accumulation of reactive oxygen
species took place under stress conditions, mostly due to the accumulation of antioxidant (AOX)
metabolites alongside the activation of several AOX enzymes. Nonetheless, the plausible allocation
of resources towards the defense pathways related to oxidative and osmotic stress, along with severe
Na toxicity, heavily compromised the ability of plants to grow properly when the combination of
salinity and heat was imposed.

Keywords: oxidative stress; antioxidant system; Solanum lycopersicum; climate change; salinity; high
temperatures; combined stress

1. Introduction

Human societies, for millennia, have been built around stable and efficient agricultural
practices meeting a wide range of human needs, most notably food, fibers, fuels, and raw
materials. Up until recently, agriculture has been evolving and serving its purpose, but the
increasing world population associated with a frightening scenario of climatic instability
is taking a heavy toll on the ability of this sector to efficiently respond to the needs of our
modern society [1,2]. In fact, the total arable area has been rapidly declining worldwide
due to soil degradation (e.g., heavy salinization, nutrient deficiency, contamination) and
the higher occurrence of drastic climatic events, such as extreme temperatures, drought,
and floods [3,4].

Nowadays, it is estimated that around 4 Mha of European soil is moderately to highly
degraded by secondary salinization, mostly due to irrigation with saline water and poor
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drainage conditions, which is one of the main factors driving the desertification of the
Mediterranean coast [5]. Alarmingly, this trend will escalate even more due to the impacts
of other climate-change-related events projected to be intensified, such as heat and drought
waves. The increases in global temperatures will lead to an increment of irrigation with
poor quality water (e.g., saline) to prevent drought-related crop losses, as a consequence of
low precipitation and reduced extension of watercourses. Moreover, it will cause higher
salt build-ups after evaporation, thus aggravating the soil salinization problem [5–7]. The
Mediterranean Basin, which, throughout this century, is expected to face up to 50 days per
year with maximum daily temperatures above 40 ◦C (an increase of 10–25 days per year,
considering the present scenario), will be particularly affected, resulting in great losses of
agricultural productivity [8].

Up to now, there has been extensive literature regarding the effects of salinity or high
temperatures on the growth and development of several plants, as both conditions can
vastly affect the germination and developmental processes, impair the photosynthetic per-
formance, and compromise water relations and the nutrient balance, ultimately leading to
reduced yield and a loss of viability (as reviewed by Wahid et al. [9] and Parihar et al. [10]).
Indeed, a proper nutrient supply is of extreme importance for optimal development and
growth. However, salinity deeply affects nutrient balance by lowering the assimilation
of potassium (K+), calcium (Ca2+), and magnesium (Mg2+), which are of high importance
in numerous pathways and networks [10,11], while simultaneously increasing the uptake
of sodium (Na+) and chloride (Cl−), which can be highly toxic and interfere with several
essential cellular processes [11]. Nonetheless, and while both stressors may lead to similar
end results in plant growth through different affected pathways, one feature that is com-
monly and similarly affected by the exposure to salt or heat is the cellular redox status. In
fact, the stressors may cause an overproduction of reactive oxygen species (ROS) and/or
the inhibition of antioxidant (AOX) machinery, ultimately leading to a loss of cell viability
and death [12].

However, and despite the knowledge regarding the effects of different abiotic stressors,
in a real environmental context, crops are exposed to a multitude of factors whose impacts
on the plants’ physiological performance are not always easily extrapolated from what
occurs in the presence of an individual stressor [13–17]. Despite that, very few authors
have tackled the impacts of a consistently warmer and more saline environment (either
through soil salinization or poor water quality) on plant species [18–22].

Thus, and considering all that has been mentioned, more studies must focus on impor-
tant crops that are seriously threatened by the changing climate. For instance, countries
in the Mediterranean region are highly associated with tomato (Solanum lycopersicum L.)
production—where it has been cultivated for centuries—with Spain and Portugal consis-
tently being in the top five tomato producers in Europe. However, this crop faces serious
threats, with it being reported that the forecasted climate change will severely affect tomato
yield, with high temperatures and soil salinity being the major stress factors acting in this
region [5,8]. Nevertheless, in this species, only two studies have been conducted so far.
Rivero et al. [21] and Lopez-Delacalle et al. [20] showed that in comparison to individual
treatments, the combination of salt and heat can differentially affect several pathways and
improve water efficiency. However, the use of hydroponic growing systems and persistent
but lower temperatures (35 ◦C) than those considered in current projections might not
accurately reflect the response of a usually potted and summer-grown plant, especially
when these stressors are only applied for a short duration.

In this sense, the main goal of this work is to understand how periodic exposure to high
temperatures (42 ◦C) and irrigation with saline water [100 mM sodium chloride (NaCl)]
affects the performance of tomato plants under pot conditions. To address these objectives,
several biological questions need to be answered throughout this research: (a) How does
the combination of heat and salinity affect the growth and development of tomato plants?
(b) Does this combination of stressors disrupt the redox and nutrient balance of these
plants? (c) How does the AOX system respond to these stress-induced redox fluctuations?
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(d) Is the combination of heat and salinity merely the sum of its parts, or are there new and
complex mechanisms triggered by this situation that need to be carefully considered?

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Seeds of Solanum lycopersicum L. var. cerasiforme (cherry tomato) were surface dis-
infected by immersion in 70% (v/v) ethanol for 5 min, followed by a 5-min incubation
in 20% (v/v) commercial bleach (5% active chloride), containing 0.02% (w/v) Tween®-20
(Sigma-Aldrich®, Steinheim, Germany). Both procedures were performed under constant
agitation, followed by successive clean-ups with deionized water (dH2O). Then, seeds
were placed in Petri dishes (10 cm diameter) containing solidified (0.675% (w/v) agar)
0.5×MS medium, including Gamborg B5 vitamins (pH 5.5–6.0, Sigma-Aldrich®, Stein-
heim, Germany) [23], and left to germinate for 7 days in a growth chamber under controlled
conditions (16 h light/8 h dark, 25 ◦C, 150 µmol m−2 s−1). After this period, plantlets
with similar size and development were transferred to plastic pots filled with 600 mL
Siro Royal universal substrate (SIRO©, Mira, Portugal; physicochemical characteristics in
Supplementary Table S1) and grown under the same controlled conditions as above. To
ensure replicability and avoid competition, three plants were sown per pot. During the first
week, plantlets were acclimated to the new conditions, being irrigated only with dH2O. A
total of 32 pots were prepared.

2.2. Experimental Design

After the 7-day acclimation period, pots were randomly divided into four trays (one
per experimental condition), each containing eight pots, and plants were grown for the
next 21 days under the following treatments:

• CTL (control)—plants were irrigated with dH2O;
• SALT—plants were irrigated every two days with a 100 mM NaCl solution (60 mL per pot);
• HEAT—plants were irrigated with dH2O and daily exposed to 42 ◦C for 4 h in a twin

growth chamber (temperature scaled up to 42 ◦C);
• COMBINED—plants were irrigated every two days with a 100 mM NaCl solution

(60 mL per pot) and exposed to 42 ◦C for 4 h daily in a twin growth chamber (temper-
ature scaled up to 42 ◦C).

The selection of NaCl concentration was based on previous bibliographic records [24–26]
and on preliminary assays performed in our laboratory (Supplementary Figure S1). More-
over, according to Ayers and Westcot [27], the level of salinity applied here (equivalent to
11 dS m−1, measured with CDM210 MeterLab electrical conductivity meter) in the irriga-
tion water is just slightly above the tolerance threshold for moderately sensitive species
(5 to 10 dS m−1 irrigation water electric conductivity), such as tomato. Thus, 100 mM NaCl
is an adequate concentration to impose salt stress while maintaining an environmentally
relevant experimental design. Regarding the heat stress, this was induced by a daily 4 h
exposure to 42 ◦C, based on the projections already mentioned for the Mediterranean
region, and was imposed between the 5th and 9th h of light, mimicking the hottest hours
in a field situation.

2.3. Plant Harvest and Biometric Analysis

After 21 days of growth, plants were collected, thoroughly washed, and divided into
roots and shoots, and the length and fresh weight (fw) of both parts were determined for all
plants. Then, part of the plant material from each replicate of all experimental conditions
was: (i) left to dry in an oven at 60 ◦C until reaching stable weight to determine the dry
weight (dw) and the water content; (ii) immediately used for the estimation of superoxide
anion (O2

−) content; or (iii) frozen and macerated in liquid nitrogen and stored at −80 ◦C
until further use.

Since plant water content was affected by the applied stressors, biochemical parameters
were expressed on a dw basis, estimated from the tissues’ water content.
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2.4. Element Quantification—Na+, K+, Ca2+, and Mg2+

For the quantification of inorganic elements (Na+, K+, Ca2+, and Mg2+), four dried
samples of roots and shoots of tomato plants (each sample comprising three plants) were
crushed with an ultracentrifuge mill at 8000 rpm (ZM 200, Retsch), and then, three sub-
samples (0.3–0.5 g) were digested in a microwave oven with 4 mL of concentrated nitric
acid (HNO3) and 2 mL 30% (w/v) hydrogen peroxide (H2O2). The digestion proceeded at
800 W for 10 min, followed by 5 min at 1000 W and a cooling period of 15 min. Each clear
solution obtained was quantitatively transferred to 50 mL volumetric flasks. The analysis
was performed by flame furnace atomic absorption spectroscopy (FAAS), operated at the
optical and flame parameters recommended for the instrument used (Thermo Scientific,
ICE 3300). Calibration was performed with external standards (in 0.5% HNO3) in the
following ranges: Na+ (0.1–0.8 mg L−1), K+ (0.2–1.6 mg L−1), Ca2+ (0.3–2.5 mg L−1), and
Mg2+ (0.075–0.5 mg L−1). Results were expressed as mg g−1 dw.

2.5. Determination of ROS Content—Superoxide Anion (O2
.−) and Hydrogen Peroxide (H2O2)

The estimation of O2
− content was performed in fresh samples of roots and shoots by

monitoring the nitrite formation from hydroxylamine in the presence of O2
−, in accordance

with the protocol described by Sharma et al. [28]. In order to estimate O2
− levels, a standard

curve was prepared using sodium nitrite, and the absorbance (Abs) was read at 530 nm.
Results were expressed as µmol g−1 dw.

The levels of H2O2 were determined by the titanium sulfate (TiSO4) colorimetric
method in accordance with de Sousa et al. [29]. The Abs of the yellowish complex, formed
when an acidic solution of titanyl ions is mixed with H2O2, was read at 410 nm and results
were expressed as nmol g−1 dw, using 0.28 µM−1 cm−1 as extinction coefficient (ε).

2.6. Estimation of the Lipid Peroxidation (LP) Degree

LP was evaluated in accordance with Heath and Packer [30], based on the determina-
tion of malondialdehyde (MDA) content, an end product of this process [12]. Abs was read
at 532 and 600 nm, with the latter being subtracted from the first to avoid the effects of non-
specific turbidity. MDA content was expressed as nmol g−1 dw, using ε = 155 mM−1 cm−1.

2.7. Quantification of Proline, Ascorbate (AsA), and Reduced Glutathione (GSH)

Proline levels were determined via a ninhydrin-based colorimetric assay, first de-
scribed by Bates et al. [31]. Abs was read at 520 nm, and proline content was estimated
using a standard curve, prepared with known proline concentrations. The results were
then expressed as mg g−1 dw.

Reduced ascorbate (AsA) was quantified through the methodology described by
Gillespie et al. [32], based on the AsA-mediated reduction of the ferric ion (Fe3+) to ferrous
ion (Fe2+), which then forms a complex with 2-2′-bipyridyl, measurable at 525 nm. The same
method was applied to determine the total AsA content, after which samples were treated
with dithiothreitol (DTT) to reduce the oxidized portion of this AOX (dehydroascorbate—
DHA). Results were expressed as µmol g−1 dw after preparing a standard curve with
known AsA concentrations. DHA content was calculated by subtracting the reduced AsA
from the total AsA pool.

The quantification of GSH (free and reduced glutathione) was performed in accordance
with the protocol optimized by Soares et al. [33], which is based on the Glutathione Assay
Kit (CS0260; Sigma-Aldrich®, Steinheim, Germany). Here, the complex formed between
GSH and 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) was measured at 412 nm, and GSH
levels were estimated from a calibration curve prepared with known GSH concentrations.
Results were expressed as nmol g−1 dw.

2.8. Quantification of Total Thiols and Non-Protein/Protein-Bound Thiols Ratio

Total thiol quantification was accomplished as described by Zhang et al. [34], using
DTNB to determine the concentration of sulfhydryl groups (-SH). Non-protein thiol quan-
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tification was performed according to the same method, but with the addition of 10% (w/v)
sulfosalicylic acid to allow for protein precipitation. Both quantifications were done by
measuring Abs412 nm (using ε of 13,600 M−1 cm−1), and the results were expressed as µmol
g−1 dw. Protein-bound thiols were subsequently calculated by subtracting non-protein
thiols from the total thiol content.

2.9. Enzymatic Activity-Superoxide Dismutase (SOD; EC 1.15.1.1), Catalase (CAT; EC 1.11.1.6),
Ascorbate Peroxidase (APX; EC 1.1.11.1), Glutathione Reductase (GR; EC 1.6.4.2), and
Dehydroascorbate Reductase (DHAR; EC 1.8.5.1)

The extraction of the main AOX enzymes was performed, under cold conditions, by
an adaptation of the method described by Fidalgo et al. [35]. Here, ≈200 mg of frozen shoot
and root samples was mixed with 1.5 mL of an extraction buffer composed of 100 mM potas-
sium phosphate buffer (pH 7.3) and supplemented with 1 mM ethylenediamine tetraacetic
acid (EDTA), 8% (v/v) glycerol, 1 mM phenylmethylsulfonyl fluoride (PMSF), 5 mM AsA,
and 2% (w/v) polyvinylpolypyrrolidone (PVPP). After centrifugation (16,000× g for 25 min
at 4 ◦C), the supernatant was collected and used for protein quantification and determina-
tion of enzymatic activity. Soluble proteins were estimated using the method described by
Bradford [36], using bovine serum albumin as standard.

The activity of SOD was determined via a spectrophotometric assay based on the
inhibition of photochemical reduction of nitro blue tetrazolium (NBT) [37]. Here, Abs was
recorded at 560 nm, and the results were expressed as units of SOD mg−1 protein, with one
unit of SOD being defined as the amount of enzyme necessary to cause a 50% inhibition of
NBT photoreduction.

CAT and APX activity were estimated spectrophotometrically by monitoring the
over-time H2O2 (ε240 nm = 39.4 mM−1 cm−1) degradation and AsA (ε290 nm = 0.49 M−1

cm−1) oxidation, respectively. In both cases, H2O2 was added to start the reaction, and
results were expressed as µmol H2O2 min−1 mg−1 protein or nmol AsA min−1 mg−1

protein. These determinations were performed according to the Aebi [38] and Nakano and
Asada [39] methods for CAT and APX activity assessment, respectively, being downscaled
for microplates, as optimized by Murshed et al. [40].

In a similar way, GR and DHAR activity were also determined through spectrophoto-
metric enzyme kinetics, downscaling the Foyer and Halliwell [41] and Ma and Cheng [42]
methods for UV microplates, respectively, as described by Murshed et al. [40]. For GR,
NADPH oxidation was monitored over time at 340 nm after adding oxidized glutathione
(GSSG) to the mixture, and results were expressed as nmol NADPH min−1 mg−1 protein,
using 6.22 mM−1 cm−1 as extinction coefficient. DHAR activity levels were determined by
adding DHA to the mixture and following its reduction to AsA at 265 nm. Results were
expressed as nmol AsA min−1 mg−1 protein, considering ε265 nm = 14 mM−1 cm−1.

2.10. Statistical Analyses

Every parameter was assessed using at least three biological replicates—defined here
as a mixture of the 3 plants of each pot (n ≥ 3)—with at least three technical repetitions per
assay. Results were expressed as mean ± standard error of the mean (SEM). Differences
among treatments were assessed by two-way ANOVA (SALT—0 mM and 100 mM NaCl;
HEAT—25 ◦C and 42 ◦C (4 h d−1)) after checking the normality and homogeneity assump-
tions. When p ≤ 0.05, differences between groups were assessed by Tukey’s post-hoc test.
When significance was found for the interaction, a correction for the simple main effects
was performed. These analyses were carried out using GraphPad Prism version 8.0.2
for Windows (GraphPad Software, San Diego, CA, USA, www.graphpad.com (accessed
on 29 December 2021)), and the results of the ANOVAs are detailed in Supplementary
Materials (Tables S2 and S3).

A principal component analysis (PCA) was performed to assess the similarities be-
tween conditions and the major associations between variables that are responsible for the
observed similarities/differences. For this, the average values for each evaluated parameter
were plotted, and the first two components were used to make biplots. This analysis was

www.graphpad.com
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carried out using XLSTAT 2021.2.2 [http://www.xlstat.com (Accessed on 29 December
2021), Addinsoft USA, New York, NY, USA].

3. Results
3.1. Biometric Analysis—Organ Length, Dry Biomass, and Water Content

The individual stress treatments induced similar growth inhibitions, as seen by the
significant decrease in organ elongation (17% and 26% in SALT; 24% and 27% in HEAT
for roots and shoots, respectively) in relation to the CTL (Figure 1a,d). The exposure to
salt or heat stress also led to identical decreases in dry weight when compared to CTL
plants (Figure 1b,e), with inhibition values of around 40% and 30% in roots and shoots,
respectively. The combination of stressors imposed a more severe negative effect on both
the length and dry weight of tomato plant primary organs (decreases of 46% and 77%; 58%
and 71% in roots and shoots, respectively), compared with the CTL, as better visualized in
Figure 1g, although no significant differences could be found for the interaction between
both factors (Tables S2 and S3). Concerning water content (Figure 1c,f), no effects were
observed in roots, while the treatment with salt, either alone or in combination, led to a
significant reduction in water content in the aerial parts of the plants.
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3.2. Element Quantification—Na+, K+, Ca2+, and Mg2+

Plants from both salt treatments (single or combined) presented a severe increase in the
levels of Na+ in roots (almost 9-fold and 10-fold for SALT and COMBINED, respectively, in
relation to the CTL) as well as in shoots, where plants under combined exposure were, once
again, more affected (accumulation of around 8-fold) than those under individual salinity
stress (accumulation of 5-fold) (Table 1), with statistical significance being attributed to
the interaction between HEAT and SALT (Tables S2 and S3). On the other hand, even
though the heat treatment also resulted in an altered accumulation of Na+ (11% increase
in roots and a 19% decrease in shoots, in comparison with the CTL), its levels were much
lower than those found in SALT and COMBINED. Curiously, the concentration of K+ in
plants exposed to salt, whether single or in combination with heat, decreased 32–39% in
roots and 31–35% in shoots, while heat stress imposed a 14% increment of this element
in roots but a decrease in shoots (14%). A different pattern was observed for Ca2+, which
was accumulated when plants were exposed to heat (14% and 38% in roots and shoots,
respectively) and in the shoots of the individual salt treatment (17%), even though it was
decreased in the roots (34%). However, upon combination, the stressors led to diminished
levels of Ca2+ in both organs when compared to the CTL (63% in roots and 12% in shoots).
Lastly, levels of Mg2+ in heat-stressed plant tissues were either unaltered (roots) or reduced
(by 6% in shoots), while salt stress increased the concentration of this element by 25% and
11% in roots and shoots, respectively. The interaction between stressors was significant
in both organs (Tables S2 and S3), with plants treated simultaneously with salt and heat
presenting 6–10% less Mg2+ than control plants.

Table 1. Effect of 21 days of salt (irrigation with 100 mM NaCl), heat (exposure to 42 ◦C for 4 h d−1),
and combined stresses on the content of Na+, K+, Ca2+, and Mg2+ in roots and shoots of tomato
plants. Values represent mean ± SEM (n ≥ 3). Significant differences (p ≤ 0.05) between treatments
are indicated by different letters.

Parameter CTL SALT HEAT COMBINED

Root Na+ (mg g−1dw) 1.793 ± 0.003 d 15.920 ± 0.021 b 1.990 ± 0.026 c 17.693 ± 0.015 a

Shoot Na+ (mg g−1dw) 5.163 ± 0.5003 c 25.380 ± 0.044 b 4.180 ± 0.012 d 40.050 ± 0.015 a

Root K+ (mg g−1dw) 3.833 ± 0.019 b 2.607 ± 0.015 c 4.800 ± 0.012 a 2.332 ± 0.002 d

Shoot K+ (mg g−1dw) 11.583 ± 0.019 a 8.050 ± 0.015 c 9.917 ± 0.018 b 7.570 ± 0.025 d

Root Ca2+ (mg g−1dw) 0.487 ± 0.004 b 0.323 ± 0.001 c 0.557 ± 0.009 a 0.181 ± 0.001 d

Shoot Ca2+ (mg g−1dw) 2.000 ± 0.015 c 2.343 ± 0.018 b 2.757 ± 0.007 a 1.767 ± 0.012 d

Root Mg2+ (mg g−1dw) 2.547 ± 0.009 b 3.193 ± 0.037 a 2.527 ± 0.007 b 2.397 ± 0.012 c

Shoot Mg2+ (mg g−1dw) 6.097 ± 0.054 b 6.737 ± 0.038 a 5.730 ± 0.052 c 5.473 ± 0.026 d

3.3. ROS Content

Regarding O2
− (Figure 2a,d), all plants exhibited similar levels of this ROS in roots,

independently of the applied treatment. In shoots, its levels were decreased by 20% when
plants were exposed to salt, whilst the combination of both conditions led to a further
reduction (52% in comparison with CTL). Concerning H2O2 (Figure 2b,e), heat stress, either
single or combined with salt, resulted in an equal increment of this ROS in roots (63% in
relation to CTL). In shoots, however, H2O2 levels decreased similarly with all treatments
(33% in SALT and HEAT and 36% in COMBINED) compared to the CTL.
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3.4. LP

LP degree, which was estimated by the MDA content, is shown in Figure 2c,f. When
plants were exposed to the stresses, LP diminished equally in shoots in relation to the
CTL (56%, 52%, and 67% in SALT, HEAT, and COMBINED, respectively). In roots, the
simultaneous exposure to the stressors led to significantly lower values (29%) in comparison
with the CTL.

3.5. Proline, AsA, and GSH

Proline levels were severely affected by salt in shoots (27-fold) and especially affected
in roots (59-fold) in relation to the CTL (Tables 2 and 3). Under the co-exposure scenario, the
accumulation of proline was not as pronounced as the single treatment with salt (with 44-
and 17-fold changes being noted in shoots and roots, respectively), with the ANOVA results
showing significant interaction between SALT and HEAT (Tables S2 and S3). Regarding
heat treatment alone, no significant differences were found in relation to the CTL in either
roots or shoots.

Table 2. Effect of 21 days of salt (irrigation with 100 mM NaCl), heat (exposure to 42 ◦C for 4 h d−1),
and combined stresses on the content of proline, AsA (total, AsA, DHA, and AsA/DHA), GSH,
and thiols (total and protein/non-protein) in roots of tomato plants. Values represent mean ± SEM
(n ≥ 3). Significant differences (p ≤ 0.05) between treatments are indicated by different letters.

Parameter (Roots) CTL SALT HEAT COMBINED

Proline (mg g−1dw) 0.099 ± 0.02 c 5.820 ± 0.114 a 0.088 ± 0.039 c 4.320 ± 0.357 b

Total AsA (µg g−1dw) 7.273 ± 0.500 7.803 ± 0.444 8.607 ± 0.406 8.240 ± 0.633
AsA (µg g−1dw) 1.980 ± 0.665 1.867 ± 0.044 1.933 ± 0.079 1.960 ± 0.269
DHA (µg g−1dw) 5.917 ± 0.173 6.023 ± 0.3868 6.723 ± 0.3480 6.280 ± 0.6201

AsA/DHA 0.338 ± 0.047 0.297 ± 0.012 0.280 ± 0.012 0.263 ± 0.019
GSH (nmol g−1dw) 252.5 ± 13.5 b 233.2 ± 1.95 b 295.0 ± 18.2 ab 374.5 ± 36.4 a

Total thiols (µmol g−1dw) 1.306 ± 0.023 b 1.116 ± 0.038 b 1.785 ± 0.111 a 1.739 ± 0.032 a

Non-protein/Protein thiols 0.232 ± 0.045 0.300 ± 0.050 0.179 ± 0.018 0.146 ± 0.021
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Table 3. Effect of 21 days of salt (irrigation with 100 mM NaCl), heat (exposure to 42 ◦C for 4 h d−1),
and combined stresses on the content of proline, AsA (total, AsA, DHA, and AsA/DHA), GSH, and
thiols (total and protein/non-protein) in shoots of tomato plants. Values represent mean ± SEM
(n ≥ 3). Significant differences (p ≤ 0.05) between treatments are indicated by different letters.

Parameter (Shoots) CTL SALT HEAT COMBINED

Proline (mg g−1dw) 1.112 ± 0.154 c 29.930 ± 2.265 a 0.593 ± 0.023 c 18.540 ± 1.117 b

Total AsA (µg g−1dw) 18.84 ± 0.93 a 13.20 ± 1.65 b 14.19 ± 1.03 ab 12.86 ± 0.47 b

AsA (µg g−1dw) 6.497 ± 0.224 5.340 ± 0.932 4.173 ± 0.376 4.397 ± 0.095
DHA (µg g−1dw) 12.34 ± 0.80 a 7.87 ± 0.73 b 10.01 ± 0.67 ab 8.46 ± 0.38 b

AsA/DHA 0.53 ± 0.03 ab 0.67 ± 0.06 a 0.42 ± 0.02 b 0.52 ± 0.01 ab

GSH (nmol g−1dw) 1039.0 ± 9.8 a 733.1 ± 18.6 c 904.6 ± 41.6 b 870.0 ± 28.2 b

Total thiols (µmol g−1dw) 7.862 ± 0.720 a 7.292 ± 0.350 ab 5.324 ± 0.438 b 8.809 ± 0.198 a

Non-protein/Protein thiols 0.110 ± 0.004 b 0.094 ± 0.009 b 0.194 ± 0.007 a 0.113 ± 0.006 b

Total AsA (Tables 2 and 3) was only negatively affected in the shoots of tomato plants
by salt, single or combined, where significant decreases of around 30%, compared with
the CTL, were recorded (Table 3). Moreover, a 36% and 31% decrease could be found in
the DHA content in shoots of these two treatments (SALT and COMBINED, respectively;
Table 3). Lastly, and although shoots of every treatment tended to present lower reduced
AsA content than the CTL (Table 3), no statistical significance was achieved.

Concerning GSH, the ANOVA results (Tables S2 and S3) showed a positive interaction
between both treatments. Indeed, its content in roots was only altered upon the simul-
taneous exposure to salt and heat, being 48% higher than in the CTL (Table 2). On the
contrary, this thiol was decreased in the shoots of plants exposed to all treatments (Table 3).
However, as can be seen, salinity led to a greater reduction (29%) than those found in HEAT
and COMBINED treatments (13% and 16%, respectively).

3.6. Thiols

Total thiol content is presented in Tables 2 and 3. In roots, heat stress led to an increase
of around 35% in total thiols regardless of salt co-exposure. In shoots, total thiols were only
negatively affected by heat alone (32% compared with the CTL), although a significant
interaction was perceived between SALT and HEAT (Table S3), related to the relatively
higher values found in the COMBINED condition. The ratio between non-protein and
protein-bound thiols remained unaffected, the exception being the shoots of heat-treated
plants (increase of 76% in relation to the untreated plants).

3.7. Enzymatic Activity (SOD, CAT, APX, DHAR, and GR)

Results regarding the activity of the AOX enzymes are presented in Figures 3 and 4.
Although no effect was found for SOD in roots (Figure 3a), significant changes were
observed in shoots (Figure 3c). In fact, when compared with CTL plants, SOD activity was
inhibited by 45% upon single heat exposure, but a higher activity (28%) of this enzyme
was recorded in response to the co-treatment compared to the CTL, with the ANOVA
showing a significant interaction between both stress factors (Table S3). CAT activity was
similarly enhanced in roots of all stressed plants (Figure 3b) up to almost 100%, with a
positive interaction being detected for this organ (Table S2). Contrarily, in shoots, CAT
was inhibited by 26% and 60% in response to single heat and co-exposure, respectively
(Figure 3d), although no interaction was recorded (Table S3).

APX activity (Figure 4a,d) was greatly enhanced in response to the combined action of
the two stress factors in shoots (62%), but mainly in roots, where an increment of 129% in
relation to the CTL was observed. The elevated activity of APX was also reported in roots
upon individual exposure to heat (90%). Regarding DHAR activity (Figure 4b,e), compared
to the CTL, it was noticeably enhanced only by the simultaneous exposure to the stressors
(100% and 112% in roots and shoots, respectively). Indeed, the statistical analysis (Tables
S2 and S3) shows that in both organs, there was a significant interaction between SALT
and HEAT. Lastly, the individual salt stress inhibited GR by 25% in roots; however, when
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combined with heat, an increase of 31% was observed in relation to the CTL (Figure 4c),
with the interaction of both conditions (salt and heat) being significant (Table S2). In shoots
(Figure 4f), the activity of this enzyme was elevated by 51% and 38% in plants under salt
treatment and simultaneous exposure to both stress factors, respectively.
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3.8. Principal Component Analysis (PCA)

To understand how different groups/conditions vary, and also to infer the correlation
between all tested parameters, a PCA was carried out (Figure 5). The data obtained
showed that the first component explained 52.48% and 62.29% of variance in roots and
shoots, respectively, while the second accounted for 30.62% and 20.29%. Furthermore,
it was observed that for roots (Figure 5a), SALT and CTL plants were almost grouped
in the same quadrant (SALT in the fourth and CTL between the first and fourth), while
HEAT and COMBINED plants were grouped separately in the second and third quadrants,
respectively. In shoots (Figure 5b), although some proximity can be observed between SALT
and COMBINED, the four treatments were distributed among the four quadrants (HEAT
in the first, SALT in the second, COMBINED in the third, and CTL in the fourth), revealing
that the dependent variables were affected differently by each experimental condition,
as well as when comparing plant organs. It is also worth noting that more variables are
related to CTL in shoots (namely, water content, CAT, K+, AsA, GSH, and H2O2) than
in roots and that this group of plants is characterized by higher values of length, dry
weight, and MDA in both organs. Interestingly, Na+ is associated with salinity treatments,
especially COMBINED, in both organs and presents opposite relations to K+ and Ca2+ in
roots. Lastly, in S. lycopersicum plants, the differences between the COMBINED and the
remaining treatments concerning the redox status and lack of oxidative damage can be
explained by the perceived negative correlation between MDA content and the general
activation of the AOX system in roots, while in shoots, this was mostly observed for the
enzymatic component of this system, along with proline and thiols.
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4. Discussion

Currently, high temperatures and the salinization of soils and water are amongst the
major environmental factors causing agricultural losses around the globe [43,44]. Despite
these individual stresses having been extensively explored, little is known regarding their
interaction, which frequently occurs simultaneously. Therefore, in this study, the response
of tomato plants (S. lycopersicum var. cerasiforme) to the combination of heat and salinity
was assessed in terms of growth and physiological performance to understand how plants
cope and adjust their metabolism towards their co-occurrence.
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4.1. The Combination of Heat and Salt Led to a Harsher Effect on Growth-Related Parameters

Here, plant growth, concerning root and stem elongation and biomass (Figure 1a,b,d,e),
was impaired upon exposure to both salt and heat, but especially by the co-exposure treat-
ment. Equivalent salt-induced declines in growth-related parameters have been reported in
several crop plants [45–48], including tomato [49]. Such inhibitions are primarily correlated
with a reduced water uptake, along with a negative interference in nutrient and ion ratios
caused by the build-up of salts in the soil. Indeed, Na+ competes with K+ for transporters
(AKT and HKT) due to their similarity in terms of ionic radius and hydration energy [50],
resulting in an overaccumulation of Na+ and a lack of K+. Here, and corroborating previ-
ous studies on tomato [51,52], salt exposure, both individually and combined with heat,
significantly enhanced the uptake of Na+. Once inside the plant, excessive salt becomes
toxic as a result of the growing inability of cells to avoid the accumulation of Na+ and
Cl− ions in the cytoplasm and transpiration stream [10]. Besides K+, it is known that
Ca2+ deficiency is often salt-induced, which may limit the efflux of Na+ to the apoplast
via the Ca2+-dependent Salt Overly Sensitive (SOS) signaling pathway [10,50,53]. Once
again, salt-exposed tomato plants exhibited lower levels of Ca2+. Additionally, and even
though there is still a lot to unravel regarding the plants’ uptake of Mg [54], as well as
the impacts of salinity on this process, it is generally expected to have a negative effect
(Parihar et al. [10]). Curiously, the results presented herein show an opposite pattern, but
a higher uptake of this nutrient might be related to its important role in plant growth,
enzymatic activity, and photosynthesis—both as a key component of chlorophylls and as a
vital player in CO2 fixation [55]—which are usually affected by Na+ toxicity [10]. Lastly,
as the salt accumulation in soil hampers water uptake [47,48,56], by decreasing soil water
potential, it is not surprising that these nutrient disbalances were also accompanied by a
reduced water content (Figure 1f).

Similarly to the previous stressor, high temperatures significantly impaired tomato plants’
growth performance in both shoots and roots. Based on previous records, these heat-induced
impacts are mostly due to disrupted water relations, damaged photosynthetic machinery,
changes in membrane permeability, oxidative stress, and nutrient imbalance [9,44,57–59].
Nonetheless, and even though, in the present study, all ions analyzed (Na+, K+, Ca2+,
and Mg2+) were altered upon heat exposure depending on the analyzed tissue, there ap-
pears to be no significant effect on nutrient uptake when looking at the whole plant—in
accordance with the lack of macroscopic signs of nutrient deficiency. Indeed, the mecha-
nisms by which high temperatures disturb nutrient uptake are still unclear and seem to
be inconsistent [44,60,61]. Additionally, water content (Figure 1c,f) was unaffected by heat,
similarly to other research on different tomato cultivars, namely that by Zhou et al. [14] and
Rivero et al. [21], which is possibly related to the non-limiting irrigation. Nonetheless, it is
important to take into account that, even with a possible enhancement in defense pathways
and a generally unaffected nutrient uptake, heat-stressed plants still presented growth
reduction, which might be related to heat-induced damage in the photosynthetic apparatus,
leading to impaired carbon metabolism and reduced photoassimilate production [9,44].

Interestingly, when both stress factors were applied simultaneously, a stronger negative
effect could be perceived on mineral absorption patterns (Table 1) and, consequently, on
plant growth (Figure 1a,b,d,e,g), similarly to what was found in Arabidopsis thaliana (L.)
Heynh, exposed to an identical combination of stressors [18]. Indeed, Ca2+ and K+ uptake
was decreased in a harsher way than that found in SALT, and curiously, plants exposed to
combined stressors also presented higher concentrations of Na+ than those in the single
treatment. This may be a result of the ability of heat to reduce the activity of nutrient uptake
proteins, most likely due to a lower root conductance or damage in enzymes, allowing for
a greater influx of Na+ and a diminished uptake of Ca2+ and K+ [44,62]. This would limit
the SOS pathway while also increasing the levels of Na+ in the cytosol, which presents a
higher risk of toxicity and increased competition between Na+ and K+ for the binding sites
of several key enzymes, culminating in a severe reduction in plant growth. However, the
knowledge regarding the effects of heat stress on roots is limited, as is that regarding its



Antioxidants 2022, 11, 478 13 of 21

impact on membrane transporters. Moreover, by impairing water uptake and leading to
increased stomatal resistance, salinity could also have negatively influenced transpiration
rate, an important cooling and nutrient distribution mechanism [10,63], increasing the
plants’ susceptibility to heat stress. Although only a few records are available exploring the
dynamics, in terms of physiological and biometrical impacts, of heat and salt co-exposure in
S. lycopersicum, our data contrast with the reports of Rivero et al. [21] and Lopez-Delacalle
et al. [20]. These authors, when exposing tomato plants cv. Optima to 120 mM NaCl
for 72 h at 35 ◦C and cv. Boludo to 75 mM NaCl for 14 days at 35 ◦C, respectively,
showed that the combination of both stressors prompted better growth, photosynthetic
efficiency, and water and nutrient relations than those grown only under saline conditions.
However, it is also important to consider that such contrasting results may arise from
distinct tolerance thresholds between cultivars or varieties, as well as the employment of
different experimental conditions that affect plant response and acclimation differently,
namely growing plants in a soil-based system instead of hydroponics, as well as using a
persistent or periodic exposure to high temperatures. Here, as the increased toxicity of Na+

may be affecting different processes—among them, water relations and photosynthesis (as
supported by the lower concentrations of Mg2+)—growth might have been compromised
due to the disruption of vital mechanisms, whether through a lack of resources or due to
their allocation into defense pathways [e.g., accumulation of AOXs, osmolytes, and HSPs–,
explaining the lack of macroscopic toxicity symptoms and oxidative damage (Section 4.2)],
so that plant survival was ensured under these adverse conditions. In fact, and as reviewed
by Margalha et al. [64], in conditions of disrupted nutrient uptake or ratios, the cross-talk
between the two central nutrient-sensing kinases in plants leads to the induction of the one
that ensures optimal nutrient allocation strategies and the inhibition of the one regulating
nutrient use to promote cell growth and proliferation.

4.2. The Co-Exposure of Tomato Plants to Heat and Salinity, Individually or in Combination, Did
Not Result in a Severe Oxidative Stress Condition

Even though the primary effects of salinity and heat are not related to oxidative
stress, an excessive accumulation of ROS is fairly connected to a decline in growth and
productivity in salt- [10] and heat- [44] exposed plants. However, in the present study,
no major signs of ROS overaccumulation or membrane damage (measured as LP) were
detected in plants subjected to either individual stressor, except in the roots of heat-stressed
plants, where H2O2 levels were enhanced (Figure 2b). Nonetheless, the higher content
of this ROS appears to be in equilibrium with the AOX capacity of tomato plants, as no
oxidative damage, translated into LP, could be detected in this situation (Figure 2a).

Concerning the combined exposure, as in heat-exposed plants, a higher accumulation
of H2O2 was found in roots, though O2

− content remained unaltered; additionally, in shoots,
plants simultaneously subjected to salinity stress and high temperatures experienced
a very noticeable decrease in this ROS in relation to all other experimental conditions
(Figure 2a,b,d,e). In fact, the reduced O2

− content is in accordance with increased SOD
activity—responsible for the dismutation of this ROS into H2O2 [12]. Thus, and while
this would imply an increase in H2O2 content, the levels of this ROS were also reduced,
possibly due to an efficient AOX response (as discussed in Sections 4.3 and 4.4). Although,
in some cases, reduced content of O2

− and/or H2O2 might be related to the production of
other ROS, such as the hydroxyl radical (OH.), which is the main factor causing LP [12], no
signs of oxidative damage could be found, namely in the MDA production (Figure 2c,f),
suggesting that tomato plants are more likely investing in potent defense mechanisms to
prevent salt- and/or heat-induced stresses.

4.3. The Simultaneous Effect of Heat and Salinity on Tomato Plants Results in Differential
Activation Patterns of AOX Metabolites

Under water stress, which is often a consequence of salinity, heat, and drought ex-
posure, plants tend to accumulate compatible organic solutes, such as proline [65]. In
fact, proline is not only a powerful osmoprotectant but also a ROS scavenger—namely
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of OH. and singlet oxygen (1O2)—and a membrane stabilizer [12]. Thus, the exacerbated
increase in the levels of this metabolite in plants exposed to salt, individually and in combi-
nation with heat (Tables 2 and 3), may suggest a major role of proline in tomato’s tolerance
response to this stressor. Such dramatic accumulation has already been documented in
response to different concentrations of salt for several plant models [48,66–70], among them
several distinct tomato varieties [71,72]. Indeed, proline acts on several fronts, including
LP prevention, which probably explains the absence of membrane damage. Curiously,
when both stressors were applied simultaneously, the levels of this osmoprotectant were
noticeably enhanced in relation to CTL and HEAT treatments, but this increase was not as
pronounced as in the SALT situation. Thus, and as already reported by Rivero et al. [21] and
Lopez-Delacalle et al. [20], other defense pathways may be acting in tandem with proline in
this response, as these authors report that decreased proline content (in comparison with
the individual salt treatment) was accompanied by an increase in other osmolytes, such as
glycine betaine. Additionally, considering not only the importance of proline accumulation
but also the role of its catabolism in providing energy to the cell during stress conditions,
particularly under situations of nutrient depletion (30 ATP equivalents are generated from
the oxidation of one proline molecule [73]), it seems that proline metabolism plays an
important role in the response of S. lycopersicum to the combined action of salt and heat
stress. Nonetheless, the lower accumulation of this osmolyte—resulting from either its
catabolism or reduced synthesis (associated with high carbon costs, around 10% of the
plant weight [53])—can also be detrimental to these plants, as proline balances turgor
pressure (affected by excess salt) and acts as a chaperone, preventing protein aggregation
and denaturation as well as enzyme inhibition [73].

Knowing that no relevant symptoms of redox disorders were found upon the exposure
to both stresses, either single or combined, the hypothesis of plant cells being able to ensure
a proper redox state of proteins and other metabolites was raised. AsA, a powerful AOX
involved in ROS scavenging via direct or indirect pathways [74], was not affected by
either stress (individual or combined), in either its synthesis or its regeneration levels
(Tables 2 and 3). In fact, and although the opposite is frequently found [22,75,76], these
results fall in accordance with the similar pattern of activity between the enzymes mediating
AsA oxidation (APX) and its reduction (DHAR). Curiously, in heat-treated plants, especially
in combination with salt, a slight tendency towards a higher oxidation of AsA was observed,
this being in line with higher APX activity. However, in shoots, both salt-related treatments
negatively influenced AsA accumulation, as has already been observed in Brassica napus
L. [77] and Vigna angularis (Willd.) Ohwi and H. Ohashi [78] exposed to 100 mM NaCl.
Nonetheless, as no signs of oxidative stress were detected and no major changes were
found regarding the AsA redox status, it can be hypothesized that AsA biosynthesis might
be only slightly downregulated, allocating energy and resources to other pathways. Indeed,
even in the combined treatment, where APX activity was greatly enhanced, the lower AsA
pool was still sufficient to ensure redox homeostasis of the cell, being accompanied by a
great regeneration effort by DHAR.

The maintenance of reduced conditions within cells is of major importance in stressful
conditions, with thiols (-SH) being excellent stress biomarkers [12]. The major non-protein
thiol is GSH, also regarded as one of the main water-soluble AOXs [12]. Concerning
salt stress, this metabolite appears to be more relevant in the aerial part of the plants, as
no differences could be found in roots in either its content or its regeneration (Table 2).
Nonetheless, in shoots, GSH levels severely decreased (Table 3) alongside a small decrease
in total thiols and the increase in GR activity (Figure 4f) attempting to maintain the GSH
pool. In fact, similar results were already found in several salt-stressed tomato cvs. (Gran
brix and Marmande RAF) [79] and var. (Super 2270) [80]. This points towards a high
oxidation rate, rather than degradation of this thiol, indicating that, since APX and DHAR
activity remained unaltered (Figure 4a,b,d,e), GSH can act directly as a ROS scavenger
or as a substrate for the ROS-scavenging function of glutathione peroxidase (GPX; EC
1.11.1.9), as H2O2 content was lower in this situation (SALT). Although the levels of GSSG
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were not quantified in order to confirm the mentioned hypothesis since the GSH/GSSG
ratio is an important indicator of the cells’ redox status, the thorough analysis of the AsA-
GSH cycle already provides a valid overview concerning GSH metabolism and the plants’
AOX potential.

When under heat stress, either individually or in combination with salt, the levels of
total thiols increased in the roots of tomato plants due to a high accumulation of protein-
bound thiols (Table 2). The main protein thiols are glutaredoxins and thioredoxins [81],
with the latter having already been described as being important players in thermotoler-
ance reactions [82,83] and thus contributing to the maintenance of the redox homeostasis.
Aside from that, it is also important to note that in the combined treatment, GSH levels
arose in roots (Table 2) alongside an overall upregulation of the AsA-GSH cycle (Table 2
and Figure 4a–c), highlighting its important role in ROS-scavenging reactions and in the
maintenance of redox homeostasis. In shoots (Table 3), both temperature-related conditions
presented a similar decrease in GSH content, although the principle behind that reduction
can be different for both situations. Indeed, while the small decrease in GSH content in
the heat treatment can be ascribed to a general irrelevance of the AsA-GSH cycle in this
situation, coupled with a slight, but not significant, reduction in the activity of substrate-
regenerating enzymes, the same did not occur in the combined treatment. Here, there was
a clear induction of all enzymes pertaining to the AsA-GSH cycle (Figure 4), indicating a
major role of this thiol in the proper functioning of this cycle, while also possibly acting
by itself as a ROS scavenger or as a substrate for GPX. Actually, similar results have been
reported when plants were exposed to high temperatures [84], even though a possible
effect of heat stress on the biosynthesis of this thiol was suggested. However, in studies
performed on tomato, heat, both as an individual stressor [85] and in combination with
salt [20], led to an accumulation of this thiol, with or without the activation of the enzy-
matic cycle, granting more strength to the oxidation hypothesis than to that related to
GSH degradation.

4.4. Combined Exposure to the Stressors Resulted in a Prompter Activation of the Enzymatic AOX
Response, Especially the AsA-GSH Cycle Enzymes

Classified as the first line of defense, SOD catalyzes the detoxification of O2
− into

H2O2 (Supplementary Figure S2) [12]. Upon salt exposure, this enzyme was not activated
in tomato plants, which is in accordance with the maintenance of the content of O2

− and
H2O2 in roots. However, a slight tendency for salt-treated plants to present a higher SOD
catalytic activity in shoots is also correlated with the small decrease in O2

− content that is
herein reported. Considering the H2O2-scavenging enzymes (Supplementary Figure S2),
and even though several authors report the enhancement of various AOX enzymes in
response to salt [86–88], only CAT was activated in the present work, and just in roots,
explaining the maintenance of H2O2 in an organ that is commonly associated with salinity-
induced oxidative stress, since it is the first contact point between the plant and the
saline environment.

After exposure to high temperatures, O2
− levels remained unchanged (although a

tendency to increase can be perceived), but a rise in the content of H2O2 was noticed in
roots. This might be related to a SOD-mediated reaction, and while no changes in its
activity were reported, high basal SOD levels could be sufficient to deal with mild stress
conditions. Nonetheless, a tendency for SOD to possess higher activity in this treatment
and organ can be noticed, as supported by Zhao et al. [22] and Liu and Huang [89].
Unsurprisingly, due to ROS accumulation, CAT and APX activities were enhanced in an
effort to detoxify H2O2 and prevent oxidative damage. In fact, heat stress has already been
shown to result in increased APX in roots [90], although for CAT, the opposite pattern
is more common [89–91]. Moreover, APX activation did not result in an insufficient AsA
pool, as both DHAR and GR remained unaffected, with efficient AsA regeneration possibly
being ascribed to monodehydroascorbate (MDHAR, EC 1.6.5.4) action [12]. Contrarily
to what was observed in roots, in shoots, no ROS were overaccumulated, and APX was
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not activated, while SOD and CAT were actually inhibited, effects also documented by
Liu and Huang [89] and Djanaguiraman et al. [92] using 35 ◦C/25 ◦C and 40 ◦C/30 ◦C
(day/night), respectively.

When plants were exposed to the combination of stressors, O2
− levels in roots were

unaffected, which seems to agree with the maintenance of SOD activity also reported
in this organ, an effect that opposes the activation of this AOX enzyme documented by
Zhao et al. [22] in rice roots. Moreover, and though there was an activation of both H2O2-
scavenging enzymes, APX and CAT, the AOX system did not fully detoxify this ROS, since
H2O2 content was still higher than in CTL plants, but not at high enough levels to induce
noticeable oxidative damage. In fact, is it possible that H2O2, under these still-higher
concentrations, might serve as a signaling agent to prepare the plant for subsequent ROS
bursts [93]. In shoots, and similarly to what Lopez-Delacalle et al. [20] reported, SOD was
equally as activated as during the single salinity treatment, thus explaining the highly di-
minished levels of O2

−. Nonetheless, an accumulation of H2O2 would be expected, which
did not occur, possibly due to the enhanced activity of APX, a result also documented
by Lopez-Delacalle et al. [20] in tomato plants, as well as by Koussevitzky et al. [94] and
Zandalinas et al. [95] in A. thaliana, highlighting the importance of this enzyme in plants’
response to combined stress. Oppositely, CAT was inhibited in shoots; however, this might
have little impact on the global AOX response due to its lower affinity to H2O2 [12] and
the ability of these plants to maintain the redox homeostasis through other mechanisms.
Overall, in plants exposed to the combination of salt and heat, the AOX enzymes, espe-
cially the ones involved in the AsA-GSH cycle, seem to be determinant to maintain redox
homeostasis in shoots, while in roots, the enzymatic and the non-enzymatic components
together play an important role in the response of tomato plants to the combined challenge
of heat and salt stress.

5. Conclusions

Considering the data presented here, it is possible to assume that the AOX system,
especially the AsA-GSH cycle, was of major importance in the response of S. lycopersicum
L. plants to the co-exposure to heat and salt. Even so, the combination of these stressors
not only resulted in higher impacts at both growth and biochemical levels, but also led
to a higher accumulation of Na+ than the individual stresses. In fact, when observing the
PCA (Figure 5), the combined treatment was plotted apart from all other treatments, with
the main differences being associated with the higher accumulation of Na+ in both organs,
which is paralleled by a decrease in the uptake of Ca2+ and K+, as well as a drastic reduction
in plant growth. Thus, these results might suggest that, along with the accumulation of toxic
ions, the already limited plant resources are being allocated towards defensive pathways
to ensure survival under these adverse conditions, with the high carbon and energy costs
associated with the stimulation of osmolytes and AOX enzymes possibly being another
cause behind the severely reduced growth in co-treated plants. Further studies measuring
the levels of ATP and NADPH are important to further verify this hypothesis.

As a follow-up message, subsequent research should be undertaken to complement
what has been reported here (e.g., analysis of photosynthetic machinery and possible
tolerance traits to these stressors), especially considering analyses at different time points
and developmental stages, to achieve a robust insight into the overall effects of heat
and salinity on crop physiology. Only then would it be possible to develop new and
efficient ways to successfully alleviate the negative effects of these abiotic stresses, thus
minimizing losses in crop productivity. Since tomato plants seemed to heavily invest
in AOX mechanisms to counteract heat and salt co-exposure, the evaluation of AOX-
promoting agents, such as biostimulants, phytohormones, or beneficial elements, could
also represent a feasible tool to increase tomato tolerance to these two stressors.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/antiox11030478/s1, Figure S1: Percentage of germination (a), root length (b), and shoot length (c) of
tomato seedlings grown for 7 days in solid MS nutritive medium, supplemented with different con-
centrations of NaCl (0, 50, 100, 150, and 200 mM). Data presented are mean ± SEM (n ≥ 3). Asterisks
above the error bars indicate significant statistical differences between treatments and the control at p
≤ 0.05, assessed through Tukey post-hoc test, following a one-way ANOVA, Figure S2: Enzymatic
pathways that regulate redox status in plants. Superoxide anion (O2

−), hydrogen peroxide (H2O2),
superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), monodehydroascorbate
reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione
peroxidases (GPX), ascorbate (AsA), monodehydroascorbate (MDHA), dehydroascorbate (DHA),
oxidized glutathione (GSH), reduced glutathione (GSSG), Table S1: Physicochemical characteristics
of the Siro Royal universal substrate (SIRO©, Portugal) used for the plant assay, Table S2: Results of
the two-way ANOVA for all evaluated parameters in roots of Solanum lycopersicum L. var. cerasiforme
after 21 days of exposure to 42 ◦C (4 h per day) and irrigation with (100 mM) or without NaCl.
Parameters where significant differences (p ≤ 0.05) were recorded are highlighted in bold, Table S3:
Results of the two-way ANOVA for all evaluated parameters in shoots of Solanum lycopersicum L. var.
cerasiforme after 21 days of exposure to 42 ◦C (4 h per day) and irrigation with (100 mM) or without
NaCl. Parameters where significant differences (p ≤ 0.05) were recorded are highlighted in bold.
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