Ther Adv Respir Dis

2019, Vol. 13: 1–7 DOI: 10.1177/ 1753466619888119

© The Author(s), 2019.

Article reuse guidelines: sagepub.com/journalspermissions

Chun-guo Jiang^(D), Qiang Fu and Chun-ming Zheng

pulmonary fibrosis alone

Abstract

Background: Combined pulmonary fibrosis and emphysema (CPFE) is a syndrome characterized by the coexistence of upper lobe emphysema and lower lobe fibrosis. However, whether CPFE has a higher or lower mortality than idiopathic pulmonary fibrosis (IPF) alone is still not clear. In this study we conducted a meta-analysis to assess the survival rate (SR) of CPFE *versus* IPF alone in clinical trials.

Prognosis of combined pulmonary fibrosis

and emphysema: comparison with idiopathic

Methods: We performed a systematic search of PubMed, Embase, and the Cochrane Central Register of Controlled Trials for trials published prior to 31 March 2018. Extracts from the literature were analyzed with Review Manager version 5.3.

Results: Thirteen eligible trials were included in this analysis (involving 1710 participants). Overall, the pooled results revealed that no statistically significant difference was detected in the 1-year [relative risk (RR) = 0.98, 95% confidence interval (CI): 0.94-1.03, p=0.47], 3-year (RR = 0.83, 95% CI: 0.68-1.01, p=0.06), and 5-year (RR = 0.80, 95% CI: 0.59-1.07, p=0.14) SRs of CPFE versus IPF alone.

Conclusions: CPFE exhibits a very poor prognosis, similar to IPF alone. Additional studies are needed to provide more convincing data to investigate the natural history and outcome of patients with CPFE in comparison to IPF.

The reviews of this paper are available via the supplemental material section.

Keywords: combined pulmonary fibrosis and emphysema, idiopathic pulmonary fibrosis, metaanalysis, survival rate

Received: 7 August 2019; accepted in revised form: 18 October 2019.

Introduction

The characteristics of combined pulmonary fibrosis and emphysema (CPFE) is the combination of pulmonary emphysema in the upper lobes and fibrosis mainly in the lower lobes. A series of eight patients with combined emphysema and pulmonary fibrosis on chest computed tomography (CT) was initially described by Wiggins and colleagues.¹ Cottin and colleagues first described the phrase CPFE by conducting a retrospective study that contained 61 patients with emphysema in the upper lobes and diffuse pulmonary fibrosis in the lower lobes on chest CT.² CPFE has been described both in patients with idiopathic pulmonary fibrosis (IPF) and in other forms of pulmonary fibrosis. CPFE is characterized by a history of heavy smoking, exertional dyspnea, preserved pulmonary volume, and reduced diffusion capacity, and occurs predominantly in men. High-resolution computed tomography (HRCT) plays a pivotal role in diagnosis. Just as with IPF, CPFE can also frequently cause lots of complications, such as pulmonary arterial hypertension, lung cancer, and acute lung injury.³

Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic interstitial lung disease of unknown cause. In the absence of lung transplantation, the 3-year and 5-year mortality rates have been reported to

Correspondence to: Chun-guo Jiang

Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongti Nanlu, Chaoyang District, Beijing 100020, China

jiang_cg@163.com Qiang Fu

Department of Internal Medicine, Beijing Institute of Respiratory Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China

Chun-ming Zheng

Medical Research Center, Beijing Institute of Respiratory Diseases, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China

1

journals.sagepub.com/home/tar

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Figure 1. Flow diagram of the study selection process in the meta-analysis.

be approximately 50% and 80%, respectively.^{4,5} Compared with other chronic lung fibrotic diseases, IPF appears to have the worst prognosis. CPFE also has a poor prognosis, with a survival time of 2.1–8.5 years after diagnosis,³ while the median survival of 5 years is reported to range from 35% to 80%.^{2,6} However, in the existing literature, the effect of CPFE on survival rate is abhorrent and it is still not clear whether CPFE has a lower or higher mortality than IPF alone. In this study we conducted a meta-analysis of available published literature to assess the survival rate (SR) of CPFE *versus* IPF alone in clinical trials.

Methods

Search strategy

We performed systematic searches of the medical literature for articles published in electronic databases including PubMed, Embase, and the Cochrane central register of controlled trials prior to 31 March 2018 according to a standardized protocol. Search terms were 'emphysema' and 'idiopathic pulmonary fibrosis'. In addition, the reference lists of all the relevant studies and reviews were also checked by hand.

Study selection

Two reviewers (CJ and QF) independently evaluated the inclusion and exclusion criteria, and references for eligibility were determined by both reviewers. Disagreements were resolved by consensus. Eligibility criteria were as follows: (1) studies evaluating CPFE *versus* IPF; (2) articles that provided relevant survival data, Kaplan–Meier survival curves, or both. Studies presenting insufficient data were excluded as were duplicates, non-English studies, conference abstracts, editorials, reviews, case reports, or small case series (less than five patients).

Data extraction and quality assessment

Data were systematically extracted from the selected studies and entered onto a data extraction form designed before beginning the study. Trial characteristics including first author, publication year, country, the sample size, proportion of male patients, mean age of included patients, meaning of CPFE, duration of follow-up, and SRs at 1 year, 3 years, and 5 years were recorded to allow for exploration of potential reasons for any heterogeneity detected between trial results. If possible, the raw value for the survival rate was recorded. When these rates were unavailable, the survival rates were estimated from survival curves. No attempt was made to include unpublished data. The methodological qualities of the eligible studies were evaluated with the Newcastle Ottawa Quality Assessment Scale (NOS).7 NOS scores of 0-3, 4-6, and 7-9 were considered to indicate low, moderate, and high quality, respectively.

Data synthesis and analysis

The data were analyzed using Review Manager (version 5.3) software by the Cochrane Collaboration (Oxford, England). As primary outcomes, the variances of 1-year, 3-year, and 5-year SRs of CPFE *versus* IPF alone were expressed as a combined relative risk (RR) with a 95% confidence interval (CI). When the *p* value of the χ^2 test was more than 0.05 or I^2 was less than 50%, the fixed-effect model weighted by the Mantel–Haenszel method was used. Otherwise, the random effect model was applied in the case of significant heterogeneity. A p < 0.05 was considered statistically significant.

Results

Study identification

The process of identifying eligible studies is schematically illustrated in Figure 1. A total of 1114 citations from the initial search were found, of which 19 studies were retrieved for further assessment after title and abstract evaluation. Among

als.
a

Study	Location	Group	Sample size, <i>n</i>	Male	Age (years)	Duration of follow-up on survival (years)	NOS
Mejía <i>et al.</i> ⁸	Mexico	CPFE IPF alone	31 79	30 49	67 ± 7 63 ± 10	6.6	9
Akagi <i>et al.</i> 9	Japan	CPFE IPF alone	26 33	23 22	65.1 ± 8.5 66.5 ± 9.2	15	9
Kurashima <i>et al.</i> ¹⁰	Japan	CPFE IPF alone	129 233	NA NA	NA NA	10	8
Ryerson <i>et al.</i> ¹¹	USA	CPFE IPF alone	29 336	20 239	$\begin{array}{c} 69.9 \pm 8.7 \\ 69.0 \pm 8.6 \end{array}$	8	9
Ye et al. ¹²	China	CPFE IPF alone	70 55	68 38	$\begin{array}{c} 64\pm9\\ 66\pm8\end{array}$	4	8
Sugino <i>et al.</i> ¹³	Japan	CPFE IPF alone	46 62	43 46	$\begin{array}{c} 71.4 \pm 6.7 \\ 73.7 \pm 6.3 \end{array}$	8	9
Kim et al. ¹⁴	Korea	CPFE IPF alone	26 42	23 24	$67.6 \pm 2.2 \\ 68.2 \pm 1.7$	11.5	9
Sato <i>et al.</i> ¹⁵	Japan	CPFE IPF alone	55 45	53 38	$\begin{array}{c} 71.8 \pm 7.3 \\ 69.9 \pm 7.1 \end{array}$	5	9
Zhang <i>et al.</i> ¹⁶	China	CPFE IPF alone	87 105	76 66	$\begin{array}{c} 66\pm8.5\\ 60\pm4.3 \end{array}$	5	8
Sato <i>et al.</i> ¹⁷	Japan	CPFE IPF alone	12 5	NA NA	NA NA	3.5	7
Papaioannou <i>et al.</i> ¹⁸	Greece	CPFE IPF alone	29 62	26 43	75 72	1	8
Kohashi <i>et al.</i> ¹⁹	Japan	CPFE IPF alone	34 13	NA NA	NA NA	6.8	9
Portillo <i>et al.</i> ²⁰	Spain	CPFE IPF alone	29 37	29 26	71 ± 7 72 ± 10	10.5	9

Data are mean $\pm\,$ standard error of the mean.

CPFE, combined pulmonary fibrosis and emphysema; IPF, idiopathic pulmonary fibrosis; *n*, number of pairwise comparisons; NOS, Newcastle Ottawa Quality Assessment Scale.

these papers, four that compared CPFE and pulmonary fibrosis and two that lacked extractable survivable data were excluded. Ultimately, 13 publications met the inclusion criteria and were included in the meta-analysis.^{8–20}

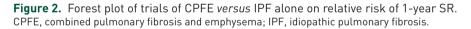
Detailed characteristics of the included trials are shown in Table 1. The 13 studies contained a total of 1710 participants (603 in the CPFE group and 1107 in the IPF alone group) published between 2009 and 2017. Two of the trials were conducted in Europe,^{18,20} two in North America,^{8,11} and the remaining nine trials in east Asia.^{9,10,12–17,19} The number of participants in each study ranged from 17 to 365 individuals. The proportion of male patients varied between 69% and 100% in the CPFE group, and between 57% and 74% in the IPF alone group. The mean age of individuals ranged from 64.0 to 75.0 years in the CPFE group, and from 60.0 to 73.7 years in the IPF alone group. The duration of follow-up on survival was between 1 and 15 years. The NOS was used to evaluate the quality of the selected studies. All studies were graded as high quality, with scores ranging from 7 to 9 (Table 1).

1-year SR comparison of CPFE versus IPF alone

Twelve trials reported the 1-year SR comparison of CPFE *versus* IPF alone.^{8–15,17–20} There were no statistically significant differences in the 1-year SR between the CPFE group and the IPF alone group (RR = 0.98, 95% CI: 0.94–1.03, p=0.47). Heterogeneity was not evident, as assessed by the statistics ($I^2 = 19\%$, p=0.26) (Figure 2).

3-year SR comparison of CPFE versus IPF alone

Eleven trials reported the 3-year SR comparison of CPFE *versus* IPF alone.^{8–15,17,19,20} Statistically significant differences in the 3-year SR between the CPFE group and the IPF alone group were not observed (RR = 0.83,95% CI: 0.68-1.01, p=0.06). Heterogeneity was substantial, as assessed by the statistics ($I^2 = 77\%, p < 0.00001$) (Figure 3).

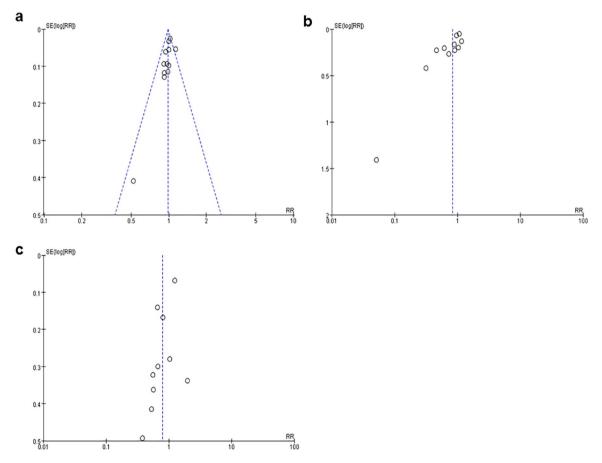

5-year SR comparison of CPFE versus IPF alone

Ten trials reported the 5-year SR comparison of CPFE *versus* IPF alone.^{8-11,13-16,19,20} The combined results of the trials revealed that the CPFE group had no significant differences in the 5-year SR compared with the IPF alone group (RR = 0.80, 95% CI: 0.59-1.07, p=0.14). Heterogeneity was substantial, as assessed by the statistics ($I^2 = 79\%$, p < 0.00001) (Figure 4).

Publication bias

The funnel plots for publication bias appeared to be symmetrical (Figure 5). These results indicated no evidence of publication bias for 1-year, 3-year, and 5-year SRs compared with the IPF alone group.

	CPF	E	IPF alo	ne		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	Year	M-H, Fixed, 95% Cl
Mejía et al 2009	22	31	61	79	6.7%	0.92 [0.71, 1.19]	2009	
Akagi et al 2009	26	26	33	33	5.8%	1.00 [0.94, 1.07]	2009	+
Kurashima et al 2010	123	129	217	233	30.2%	1.02 [0.97, 1.08]	2010	•
Ryerson et al 2013	21	29	265	336	8.2%	0.92 [0.73, 1.16]	2013	
Sugino et al 2014	36	46	53	62	8.8%	0.92 [0.76, 1.10]	2014	
Kim et al 2014	24	26	41	42	6.1%	0.95 [0.84, 1.07]	2014	-+
Ye et al 2014	54	70	44	55	9.6%	0.96 (0.80, 1.16)	2014	-
Seijiro Sato et al 2016	41	55	34	45	7.3%	0.99 [0.79, 1.24]	2016	
Kohashi et al 2016	34	34	13	13	3.8%	1.00 (0.90, 1.11)	2016	+
Papaioannou et al 2016	29	29	54	62	6.9%	1.14 [1.02, 1.27]	2016	-
Suguru Sato et al 2016	5	12	4	5	1.1%	0.52 [0.23, 1.16]	2016	
Portillo et al 2017	25	29	32	37	5.5%	1.00 [0.82, 1.21]	2017	+
Total (95% CI)		516		1002	100.0%	0.98 [0.94, 1.03]		4
Total events	440		851					
Heterogeneity: Chi ² = 13.5	9, df = 11	(P = 0.	26); I ² = 1	9%				
Test for overall effect: Z = 0	1.72 (P = 1	0.47)						0.1 0.2 0.5 1 2 5 10 CPFE IPF alone



	CPF	E	IPF alc	one		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Mejía et al 2009	5	31	40	79	4.1%	0.32 [0.14, 0.73]	2009	
Akagi et al 2009	22	26	24	33	12.1%	1.16 [0.89, 1.52]	2009	+-
Kurashima et al 2010	106	129	180	233	14.7%	1.06 [0.96, 1.18]	2010	+
Ryerson et al 2013	14	29	157	336	9.6%	1.03 [0.70, 1.53]	2013	+
Sugino et al 2014	18	46	39	62	9.3%	0.62 [0.41, 0.94]	2014	
Kim et al 2014	17	26	31	42	10.7%	0.89 [0.64, 1.24]	2014	
Ye et al 2014	19	70	32	55	8.7%	0.47 [0.30, 0.73]	2014	
Seijiro Sato et al 2016	17	55	19	45	7.4%	0.73 [0.43, 1.23]	2016	
Suguru Sato et al 2016	0	12	4	5	0.5%	0.05 [0.00, 0.81]	2016	·
Kohashi et al 2016	32	34	13	13	14.4%	0.96 [0.84, 1.10]	2016	+
Portillo et al 2017	15	29	21	37	8.6%	0.91 [0.58, 1.43]	2017	
Total (95% CI)		487		940	100.0%	0.83 [0.68, 1.01]		•
Total events	265		560					
Heterogeneity: Tau ² = 0.0	17; Chi ² =	44.32,	df = 10 (F	< 0.00	001); I ² =	77%		
Test for overall effect: Z =	1.90 (P =	0.06)						0.01 0.1 1 10 100 CPFE IPF alone

Figure 3. Forest plot of trials of CPFE *versus* IPF alone on relative risk of 3-year SR. CPFE, combined pulmonary fibrosis and emphysema; IPF, idiopathic pulmonary fibrosis.

	CPF	E	IPF alo	one		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Mejía et al 2009	4	31	27	79	5.9%	0.38 [0.14, 0.99]	2009	
Akagi et al 2009	14	26	9	33	8.8%	1.97 [1.02, 3.82]	2009	
Kurashima et al 2010	101	129	146	233	14.7%	1.25 [1.09, 1.43]	2010	-
Ryerson et al 2013	5	29	109	336	7.2%	0.53 [0.24, 1.20]	2013	
Sugino et al 2014	10	46	24	62	9.1%	0.56 (0.30, 1.06)	2014	
Kim et al 2014	7	26	20	42	8.2%	0.57 (0.28, 1.15)	2014	
Seijiro Sato et al 2016	14	55	17	45	9.6%	0.67 [0.37, 1.21]	2016	
Zhang et al 2016	38	87	69	105	13.5%	0.66 [0.50, 0.88]	2016	
Kohashi et al 2016	23	34	11	13	12.9%	0.80 [0.58, 1.11]	2016	
Portillo et al 2017	13	29	16	37	10.1%	1.04 [0.60, 1.79]	2017	_ _
Total (95% CI)		492		985	100.0%	0.80 [0.59, 1.07]		•
Total events	229		448					
Heterogeneity: Tau ² = 0.1	16; Chi ² =	43.19	df = 9 (P	< 0.00	001); l² =	79%		
Test for overall effect: Z =								0.01 0.1 1 10 100
								CPFE IPF alone

Figure 4. Forest plot of trials of CPFE *versus* IPF alone on relative risk of 5-year SR. CPFE, combined pulmonary fibrosis and emphysema; IPF, idiopathic pulmonary fibrosis.

Figure 5. Funnel plot to assess for evidence of publication bias. (a) Funnel plot for the studies on 1-year SR; (b) Funnel plot for the studies on 3-year SR; (c) Funnel plot for the studies on 5-year SR.

Discussion

To our knowledge, this is the first meta-analysis to examine the prognosis of CPFE *versus* IPF alone. There is no statistically significant difference in the 1-year, 3-year, and 5-year SRs of CPFE *versus* IPF alone in this meta-analysis. The results indicate that the mortality of patients with CPFE is similar to those with sole IPF.

Sharing common pathogenetic mechanisms of cigarette exposure and genetic susceptibility, IPF often coexists with emphysema.²¹ Compared with sole IPF, the coexistence of IPF and emphysema leads to relatively preserved lung volume and markedly impaired diffusion capacity. The conflicting results were obtained from single studies based on whether the presence of emphysema affects mortality for patients with pulmonary fibrosis. It is reported by Mejía and colleagues that the survival of patients with isolated IPF is better than those with CPFE.8 Sugino and colleagues also reported similar findings.13 Conversely, some reports have found no significant difference in mortality.¹¹ Kurashima and colleagues described a worse survival in patients with IPF which made things even more complex.¹⁰ The reasons for these conflicting findings may include the relative proportion of IPF pathology in patients in the CPFE group, the type and extent of clinically meaningful emphysema,²¹ the retrospective nature of the studies, different enrollment criteria, and control group selection. Our meta-analysis has reduced the level of controversy to a certain extent.

Several limitations of this study should not be ignored. These results may include publication bias, as the number of studies analyzed was still small, although it has provided data from more than 1700 patients. Furthermore, the heterogeneous patient populations (i.e. different causes of pulmonary fibrosis showing various natural history) may represent a variety of prognoses because of imprecise definitions of CPFE. In our metaanalysis, almost all CPFE patients in the articles we adopted were compliant with IPF diagnostics, the outcomes of which may be worse than the widely defined CPFE. Finally, a subgroup analysis of controlling for confounders was not conducted because of a lack of stratified data reported in the trials.

Conclusion

This meta-analysis shows that CPFE has a very poor prognosis, similar to IPF alone. However, additional studies are needed in order to provide more convincing data to investigate the natural history and outcome of patients with CPFE in comparison to IPF.

Author contributions

CJ, QF, and CZ contributed equally to this study. QF contributed to data collection, analysis, and

interpretation, and preparation of the manuscript. CZ designed the study, contributed to the introduction, and reviewed/edited the manuscript. CJ served as the guarantor of the paper, and takes responsibility for the integrity of the work as a whole, from inception to published article. All authors read and approved the final manuscript.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by grants from the National Natural Science Foundation of China (No. 81400044).

Conflict of interest statement

The authors declare that there is no conflict of interest.

ORCID iD

Chun-guo Jiang D https://orcid.org/0000-0003-4577-7529

Supplemental material

The reviews of this paper are available via the supplemental material section.

References

- 1. Wiggins J, Strickland B and Turner-Warwick M. Combined cryptogenic fibrosing alveolitis and emphysema: the value of high resolution computed tomography in assessment. *Respir Med* 1990; 84: 365–369.
- Cottin V, Nunes H, Brillet PY, et al. Combined pulmonary fibrosis and emphysema: a distinct underrecognised entity. Eur Respir J 2005; 26: 586–593.
- 3. Jankowich MD and Rounds SIS. Combined pulmonary fibrosis and emphysema syndrome: a review. *Chest* 2012; 141: 222–231.
- Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011; 183: 788–824.
- Raghu G, Weycker D, Edelsberg J, et al. Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2006; 174: 810–816.
- Cottin V. The impact of emphysema in pulmonary fibrosis. *Eur Respir Rev* 2013; 22: 153–157.

- Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur J Epidemiol* 2010; 25: 603–605.
- Mejía M, Carrillo G, Rojas-Serrano J, *et al.* Idiopathic pulmonary fibrosis and emphysema: decreased survival associated with severe pulmonary arterial hypertension. *Chest* 2009; 136: 10–15.
- 9. Akagi T, Matsumoto T, Harada T, *et al.* Coexistent emphysema delays the decrease of vital capacity in idiopathic pulmonary fibrosis. *Respir Med* 2009; 103: 1209–1215.
- Kurashima K, Takayanagi N, Tsuchiya N, et al. The effect of emphysema on lung function and survival in patients with idiopathic pulmonary fibrosis. *Respirology* 2010; 15: 843–848.
- Ryerson CJ, Hartman T, Elicker BM, et al. Clinical features and outcomes in combined pulmonary fibrosis and emphysema in idiopathic pulmonary fibrosis. Chest 2013; 144: 234–240.
- Ye Q, Huang K, Ding Y, et al. Cigarette smoking contributes to idiopathic pulmonary fibrosis associated with emphysema. *Chin Med J (Engl)* 2014; 127: 469–474.
- Sugino K, Ishida F, Kikuchi N, *et al.* Comparison of clinical characteristics and prognostic factors of combined pulmonary fibrosis and emphysema versus idiopathic pulmonary fibrosis alone. *Respirology* 2014; 19: 239–245.
- Kim YJ, Shin SH, Park JW, et al. Annual change in pulmonary function and clinical characteristics of combined pulmonary fibrosis and emphysema and idiopathic pulmonary fibrosis: over a 3-year follow-up. *Tuberc Respir Dis (Seoul)* 2014; 77: 18–23.

- Sato S, Koike T, Hashimoto T, et al. Surgical outcomes of lung cancer patients with combined pulmonary fibrosis and emphysema and those with idiopathic pulmonary fibrosis without emphysema. Ann Thorac Cardiovasc Surg 2016; 22: 216–223.
- Zhang L, Zhang C, Dong F, et al. Combined pulmonary fibrosis and emphysema: a retrospective analysis of clinical characteristics, treatment and prognosis. *BMC Pulm Med* 2016; 16: 137.
- Sato S, Tanino Y, Misa K, *et al.* Identification of clinical phenotypes in idiopathic interstitial pneumonia with pulmonaryemphysema. *Intern Med* 2016; 55: 1529–1535.
- Papaioannou AI, Kostikas K, Manali ED, et al. Serum levels of surfactant proteins in patients with combined pulmonary fibrosis and emphysema (CPFE). PLoS One 2016; 11: e0157789.
- 19. Kohashi Y, Arai T, Sugimoto C, *et al.* Clinical impact of emphysema evaluated by high-resolution computed tomography on idiopathic pulmonary fibrosis diagnosed by surgical lung biopsy. *Respiration* 2016; 92: 220–228.
- Portillo K, Perez-Rodas N, García-Olivé I, et al. Lung cancer in patients with combined pulmonary fibrosis and emphysema and idiopathic pulmonary fibrosis. A descriptive study in a Spanish series. Arch Bronconeumol 2017; 53: 304–310.
- Tzilas V, Tzouvelekis A, Papiris S, *et al.* Idiopathic pulmonary fibrosis and emphysema: between scylla and charybdis. *Respiration* 2016; 92: 215–217.

Visit SAGE journals online journals.sagepub.com/ home/tar

SAGE journals