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a b s t r a c t 

Hydrostatic properties of partially saturated granular materials at the pore scale are evaluated by the lattice 

Boltzmann method (LBM) using Palabos implementation of the multi-component multiphase Shan-Chen model. 

Benchmark cases are presented to quantify the discretization errors and the sensitivity to geometrical and 

physical properties. This work offers practical guidelines to design LBM simulations of multiphase problems in 

porous media. Namely, a solid walls retraction procedure is proposed to reduce discretization errors significantly, 

leading to quadratic convergence. On this basis the equilibrium shapes of pendular bridges simulated numerically 

are in good agreement with the Young-Laplace equation. Likewise, entry capillary pressure and meniscus profiles 

in tubes of various cross-sectional shapes are in agreement with analytical predictions. The main points of this 

article are summarized as: 

• Benchmark cases for a multi-component Lattice-Boltzmann method are illustrated to be a guideline to calibrate 

the method in hydrostatic conditions. 
• A wall retraction procedure is introduced to minimize discretization errors. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

a r t i c l e i n f o 

Method name: Benchmark cases for a multi-component Lattice-Boltzmann method in hydrostatic conditions, Wall retraction 

procedure 

Keywords: Capillarity, Pore scale, Simulation, Two-phase flow, Lattice Boltzman 

Article history: Received 25 July 2020; Accepted 2 October 2020; Available online 9 October 2020 

h

2

(

DOI of original article: 10.1016/j.advwatres.2020.103709 
∗ Corresponding author at: University Grenoble Alpes (UGA), CNRS, Grenoble INP, 3SR, F-380 0 0 Grenoble, France. 

E-mail address: eduard.puig-montella@univ-grenoble-alpes.fr (E.P. Montellà). 

ttps://doi.org/10.1016/j.mex.2020.101090 

215-0161/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

 http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.mex.2020.101090
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2020.101090&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.advwatres.2020.103709
mailto:eduard.puig-montella@univ-grenoble-alpes.fr
https://doi.org/10.1016/j.mex.2020.101090
http://creativecommons.org/licenses/by/4.0/


2 E.P. Montellà, B. Chareyre and S. Salager et al. / MethodsX 7 (2020) 101090 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specifications Table 

Subject Area: Engineering 

More specific subject area: Soil mechanics – Partially saturated media 

Method name: – Benchmark cases for a multi-component Lattice-Boltzmann method in hydrostatic 

conditions 

– Wall retraction procedure 

Name and reference of 

original method: 

– The multicomponent Shan and Chen method Lattice Boltzmann method: 

[1] X. Shan, H. Chen, Lattice boltzmann model for simulating flows with multiple phases 

and components, Physical Review E 47 (3) (1993) 1815. 

[2] X. Shan, H. Chen, Simulation of nonideal gases and liquid-gas phase transitions by 

the lattice boltzmann equation, Physical Review E 49 (4) (1994) 2941 

– The Mayer and Stowe-Princen (MS-P) model 

[3] R. P. Mayer, R. A. Stowe, Mercury porosimetrybreakthrough pressure for penetration 

between packed spheres, Journal of colloid Science 20 (8) (1965) 893–911. 
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Introduction 

Fully resolved numerical solutions to multiphase pore-scale problems are used increasingly in 

simulation domains extracted from 3D imaging. There is, simultaneously, a growing interest in the 

development of simplified methods based on pore-network idealizations since simulating spatio- 

temporal evolutions at the REV scale would require tremendous computational resources when 

intricate couplings are at play. This was done primarily for low-porosity materials (typically rock 

materials) [1,2] . Extensions of the pore network approach to granular media appeared more recently

and they still rely on strong assumptions and simplifications [3–5] . In the pore-network approach

the movements of phases and interfaces are governed by local rules such as the entry capillary

pressure, the capillary pressure – saturation curve and the capillary forces. When the local capillary 

pressure is larger than the entry capillary pressure of a pore throat the non-wetting phase penetrates

it invading the pore body. Several approaches can be considered to compute the entry capillary

pressure. The most common approximations are the Haines incircle method and the Mayer–Stowe–

Princen(MS-P) method [3–5] . Unfortunately, these approximations predict just a single pressure value 

missing crucial information before and after the invasion that could be provided with an accurate

local capillary pressure - saturation relationship. Establishing those local rules is another use-case 

for fully resolved solutions – for elementary microstructures in that case. The lattice Boltzmann 

method (LBM) is frequently used for producing well resolved solutions. In this study we assess

the accuracy of a multiphase LBM scheme for the solution to hydrostatic problems. A background

motivation of this work is the extension of pore-network methods to deformable granular media,

following the strategy employed previously for saturated flow [6] . We therefore focus on elementary

microstructures. Nevertheless the conclusions in terms accuracy and mesh dependency apply equally 

well to simulations of REVs. It is, thus, worth mentioning that this benchmark is intended to serve as

validation of the numerical simulation method to be applied in a practical situation. More specifically,

this benchmark is used to justify the mesh resolution and flow conditions employed in [7] , where

the pore space is decomposed into small subsets of three spheres (pore throats) that are solved

independently to determine the main hydrostatic properties. 

The LBM is a mesoscopic model capable of simulating fluid dynamics in complex geometries [8] .

Many works using the LBM have focus on a single saturating fluid phase and proven to be successful

[9–11] . However, multiphase LB models in partial saturation have less satisfactory results due to the

complexity of phases interactions. Several multiphase LB models have been proposed in the literature: 

the color model [12] , the pseudopotential (Shan-Chen) model [13,14] or the free-energy model [15] .

The so-called Shan-Chen model has single- and multi-component variants which both apply to the 

problem of immiscible phases. The single-component method is simpler. It has been used to simulate,

for instance, flow in porous media with realistic rock geometries [16,17] or the hysteretic response of

idealized sphere-pack systems in drainage-imbibition [18] . More recently, [19] investigated with this 

method the meniscus profile and the effect of contact angle on fluid displacement through polygonal

capillary tubes. According to [20] however, the gas-liquid interfaces tend to be more diffused in
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ingle component simulations, which may hinder the approach of strongly immiscible situations.

ewer studies have applied the multicomponent method [21,22] although it is supposed to reflect

he fluid composition more accurately [23] . Very few authors - if any - examined the accuracy of the

ulticomponent scheme for hydrostatic solutions. In this paper, the multicomponent Shan and Chen

odel is employed using the open-source lattice Boltzmann library Palabos [24] to complement the

esults and conclusions of previous studies and benchmarks [23,25] . 

The paper is organized as follows: in section Numerical method , the lattice Boltzmann method and

he Shan-Chen model are briefly described; section Model calibration explains the way that surface

ension and contact angle can be computed and tuned; in the section Validation LBM results are

ompared to analytical solutions for capillary tubes and pendular bridges between spheres; finally,

onclusions are drawn in last section. 

umerical method 

attice Boltzmann method 

In this section we provide a brief explanation of the LB method. The LBM has its origin in the

attice gas automata (LGA) [26] , a kinetic model based on discrete space-time field. While LGA method

escribed the evolution of individual particles on a lattice, the LBM solves a discrete kinetic equation

Boltzmanns equation) for a particle distribution function f σ ( x , t) . Where the superscript σ indicates

he fluid component, x refers to the lattice node and tis the time. In the LBM, the motion of fluid is

escribed by the lattice Boltzmann equation. Based on the simple and popular Bhatnagar–Gross–Krook

BGK) collision operator [27] , the standard LB equation can be expressed as follows: 

f σk ( x k + e k �t , t + �t ) − f σk ( x k , t ) = 

−�t 

τσ
( f σk ( x k , t) − f 

σ,eq 

k 
( x k , t)) (1)

here τσ is the rate of relaxation towards local equilibrium, f 
σ,eq 

k 
is the equilibrium distribution

unction, �tis the time increment, e k are the discrete velocities which depend on the particular

elocity model, in this work, D3Q19 (three-dimensional space and 19 velocities) model is used, and

 varies from 0 to Q − 1 representing the directions in the lattice. The left-hand side of Eq. (1) describes

he streaming step (particles move to the nearest node following its velocity direction) whereas the

ight-hand side stands for the collision operator (particles arriving to the nearest node modify their

elocity towards a local equilibrium). The collision operator correspond to the viscous term in the

avier–Stokes equation. For the D3Q19 model, the discrete velocity set e k is written as: 

e k = 

{ 

(0 , 0 , 0) 

(±1 , 0 , 0) , (0 , ±1 , 0) , (0 , 0 , ±1) 

(±1 , ±1 , ±1) 

} 

w k = 

{ 

1 / 3 

1 / 18 

1 / 36 

} 

k = 0 

k = 1 , ..., 6 

k = 7 , ..., 18 

(2)

here w k are the weight factors. 

The local equilibrium f 
σ,eq 

k 
depends on the lattice type and the macroscopic variables ρσ =

 

k f 
σ
k 

(density) and ρσ u 

σ = 

∑ 

k f 
σ
k 

e k (momentum) [28] . The equilibrium distribution can be seen as

n expansion of the Maxwell–Boltzmanns distribution function for low Mach numbers: 

f 
σ,eq 

k 
= ρσ w k 

{
1 + 

1 

c 2 s 

( e k · u 

σ,eq ) − 1 

2 c 2 s 

( u 

σ,eq · u 

σ,eq ) + 

1 

2 c 4 s 

( e k · u 

σ,eq ) 2 
}

(3)

here c s = 

1 √ 

3 
is the speed of sound and u 

σ,eq is the equilibrium velocity defined as [13,14] : 

u 

σ,eq = u 

′ + 

τσ F σ

ρσ
(4)

here u 

′ = 

∑ 

σ
ρσ u σ

τσ∑ 

σ
ρσ

τσ

is an effective velocity and F σ is the total force (including body forces and

he fluid–fluid interactions that will be presented in Pseudopotential model section) acting on each

omponent. 
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Pseudopotential model 

The interactions between components (or phases) in the Shan and Chen model are defined by

pairwise interaction forces. These forces modify the collision operator through an equilibrium velocity 

and produce a repulsive effect between the phases. We focus on biphasic mixtures (i.e., σ= 1,2),

described two distributions f σ
k 

( x , t) . Hereafter, ρw 

and ρnw 

will refer to the wetting and non-wetting

phases. ρo is defined as the reference density which is kept at ρo = 1 . The non-local force responsible

for the fluid-fluid interaction is expressed as: 

F σ (x ) = −�( x ) 
∑ 

σ̄

G σ σ̄

∑ 

k 

�k (x + e k ) e k (5) 

where �k is the interparticle potential that induces phase separation and G σ σ̄ is the interaction

strength between components σ, ̄σ . 

Previous works [14,29–31] have employed several interparticle potentials. For simplicity, we 

consider �k = ρk , as done in other papers [18] . The interactions within each component, G 11 and

G 22 , are set equal to zero for biphasic mixtures. On the other hand, the interactions between

components, G 12 = G 21 , are set positive in order to induce a repulsive force between the phases.

Low values of G 12 lead to dissolution processes seen in typical miscible mixtures. On the contrary,

significantly high values of G 12 result into almost immiscibile binary mixtures with sharp interface 

prone to numerical instability. Thus, special attention must be paid when choosing the interaction 

strength as it controls the surface tension and immiscibility of the mixture. The interaction force

given by Eq. (5) leads to a non-spherical pressure tensor ¯̄P deduced from the condition: −∇ ̄̄P + ∇ 

¯̄P o =
F σ (x ) + F σ̄ (x ) , where ¯̄P o = 

¯̄Ic 2 s (ρσ + ρσ̄ ) is the ideal pressure tensor [32,33] . The components of the

pressure tensor can be computed as: 

P i j (x ) = c 2 s [ ρσ (x ) + ρσ̄ (x )] I i j + 

G 

2 
�σ

N−1 ∑ 

k =0 

w k �
σ̄ (x + c k ) c ki c k j + 

G 

2 
�σ̄

N−1 ∑ 

k =0 

w k �
σ (x + c k ) c ki c k j (6)

Following Eq. (6) , the non-ideal equation of state (EOS) can be determined as: 

p = c 2 s 

∑ 

σ

ρσ + c 2 s 

∑ 

σ σ̄

G σ σ̄ �σ �σ̄ (7) 

Model calibration 

Contact angle 

The fluid-solid interaction is implemented in the Shan-Chen model by a mid-grid bounce back 

scheme applied on the boundaries [34] . This scheme assigns fluid properties to the solid wall. Among

them, the pseudo wall density ρwall (non-real density assigned to the nodes of the solid boundary)

controls wettability [19,35,36] . The interparticle potential at the wall in Eq. (5) is � = ρwall ). We

perform simulations of static droplets on a flat solid surface and we analyze the dependence of

ρwall on the contact angle. Simulations are performed in a 150 ×150 ×150 lattice domain. Once the

simulation is stable and converged, the base length ( b) and the height ( h ) are measured. Knowing the

geometrical characteristics of the droplet allows us to determine the contact angle θ
2 = tan −1 ( 2 h 

b 
) [37]

(see Fig. 1 (b)). Some error is introduced during the base measurement due to the thickness of the

interface layer in the vicinity of the solid wall. In order to overcome the problem, the base and

height of the droplet are determined from a reference point located 2 lattice units away from the

wall ( Fig. 1 (a)). Moreover, as further discussed in Numerical method section, ρw 

/ρo = 0 . 7 is the density

threshold used for positioning the interface (dark line in Fig. 1 (a)). 

Surface tension 

Surface tension is adjusted by tuning the interaction between different fluid species. The typical 

numerical set-up to investigate the surface tension consist of a series of spherical drops with different



E.P. Montellà, B. Chareyre and S. Salager et al. / MethodsX 7 (2020) 101090 5 

Fig. 1. (a): Detail of the fluid-fluid-solid phase transitions in a droplet test. The interface between the non-wetting fluid (blue) 

and the wetting fluid (red) is defined by the contour line ρw /ρo = 0 . 7 (black dark line). The bottom part of the image is the 

solid wall (orange). The interface forms a contact angle of approximately 102 ◦for a ρwall /ρo = 1 . 2 at a reference point situated 2 

lattice units above the solid wall (green marker). (b): contact angle versus pseudo density ρwall of the solid wall. 

Fig. 2. (a): P ressure along a line crossing a spherical droplet ( x -axis). (b): the evolution of (normalized) capillary pressure with 

droplet size, the slope of this line defines surface tension. 
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adii inside a domain with periodic boundary conditions. The droplet and the surrounding fluid are at

est and the pressure difference inside and outside the droplet is balanced by the surface tension

ccording to the Young–Laplace law ( p c = 

2 γ
R ). Fig. 2 (a) depicts the pressure along a line passing

hrough the center of the droplet. There are two significant drops in pressure when the line crosses

he interface [38] , it denotes to surface tension. The pressure difference �pcorresponds to capillary

ressure. Fig. 2 (b) shows the variation of p c versus 1 /R in dimensionless terms ( R o is the radius of

he smallest droplet), where the linear relationship is evidenced. The slope of the linear fit is the

nterfacial tension γ ∗, which is determined as γ ∗ = 

γ

ρo c 2 s R o 
for Gρo = 1 . 25 . Different surface tension

alues are assessed for different interaction strength parameters G (see Fig. 3 ). 

Surface tension can be also be determined based on a two-phase system with a flat interface

aving a constant pressure in both phases far from the interface [39] . This technique has been adopted

n many works relying on the single-component Shan–Chen model [14,32,38,40] . Literature on the

ulticomponent model is more scarce yet the flat interface has also been used in that case [35] .
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Fig. 3. Dependency of surface tension on the interaction strength G . The black line represents the integral of Eq. (10) across a 

flat interface, the red dots correspond to the droplet test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We reproduced it for comparison with the droplet test. The logic of the analysis is as follows. The

pressure inside the bulk phases corresponds to the scalar quantity p. However, near the interface,

due to the surface tension contribution, the pressure is defined as a tensor incorporating different

pressure components. Moreover, in order to ensure the mechanical stability, the gradient of the 

pressure tensor must be zero everywhere in the fluid [41] . The symmetry of the surface requires

that pis a diagonal tensor p(x ) = p xx e x � e x + p yy e y � e y + p zz e z � e z with p xx ( x ) = p zz ( x ) , where x and

zcorrespond to horizontal directions parallel to the flat interface, y refers to the axis orthogonal to the

planar interface and e j is a unit vector in the j-direction. Furthermore, p xx and p zz are function of y only,

while p yy is a constant: 

p xx (y ) = p zz (y ) = p T (y ) (8) 

p yy (y ) = p N (y ) = p (9) 

where p T and p N are the transverse and normal components of the pressure. Both p T and p N can be

computed using Eq. (6) . 

Surface tension is obtained by integrating the difference between p T and p N along a line crossing

the interface [39] : 

γ = 

∫ ∞ 

−∞ 

(P N − P T ) dy = 

∫ ∞ 

−∞ 

(p − p T (y )) dy (10) 

The results from droplet test and the flat interface test are compared in Fig. 3 , they are in good

agreement. 

Note on interface thickness 

The numerical thickness of the interfaces, as seen in Fig. 1 is often considered an issue in

the multicomponent Shan-Chen model. Physically inter-molecular interactions lead to a fluid-fluid 

interface thickness, i.e. a region where the two phases coexist even though they are considered

immiscible from a macroscopic point of view. On this basis the fact that the multicomponent Shan

Chen model produces diffused interfaces is not strictly unphysical (see Fig. 1 (a)). In many applications

however the real interface thickness is well below all characteristic lengths of the problem (such

as pore size or radius of curvature), hence negligibly small, and then the interface is considered a

single surface. In LBM however the thickness of the simulated interface does not correspond to the
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Fig. 4. Outline of the wall retraction method. In the LBM mesh the solid boundary is retracted by 2 lu with respect to its real 

position, such that the fluid-fluid contour ρw /ρo = 0 . 7 is nearly coincident with the physical boundary. 
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hysical thickness in general. Previous works [42,43] have evidenced that a fluid-fluid interface of 4–

 lu is required for numerical stability, which could be neglected only at the price of extreme mesh

efinement and tremendous computational effort. Some works [23,25] have attempted to increase the

ccuracy at fluid-solid interface by introducing new boundary models. Despite the effort s and the

etter results obtained near the solid region, numerical artifacts are still found to decrease the global

ccuracy. In order to overcome this issue we propose to redefine the solid boundaries based on a

all retraction logic, including a part of the fluid-solid interface in the region normally occupied by

he solid phase in the physical problem (as shown in Fig. 4 ). This is tested in the next section in the

ontext of capillary tubes. 

alidation 

Simple numerical simulations are performed and compared with analytical solutions in order to

alidate the model. Detailed results are presented for quasi-static displacement of interfaces inside

ylindrical tubes and fluid bridges between two spherical bodies. 

nvasion of capillary tubes 

In order to gain better understanding of multiphase flow at the pore scale, it is common to

dealize the pores throats as cylindrical capillary tubes [44] . Immiscible flow in such capillary tubes

as been simulated with various cross-sectional shapes ( Fig. 5 ). The dimensionless capillary pressure

p ∗c = 

p c L c 
γ is defined with reference to the following characteristics lengths: L c is the radius for the

ircular cross-section, the side length for the square, the distance between two vertices for the triangle

nd curved triangle. The fluid displacement corresponds to drainage (invasion by the nw -phase) and it

s imposed by including mass sink terms in the time integration: wetting phase density is decreased

hile non-wetting phase density is increased [18] . In order to keep the flow quasistatic the density

s only modified when its fluctuation on one time iteration, at interface nodes, is less than a fixed

olerance ( T ol < 

| ρit −ρit+1 | 
ρo ). Otherwise the solution is considered out-of-equilibrium and the mass sink

s delayed. 
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Fig. 5. Geometry of the simulated capillary tubes. From left to right: circular, square, triangle and curved boundaries cylinders. 

On the top row the cylindrical solid walls are displayed translucent to show the interface shape. The middle row illustrates 

the meniscus shape inside the cylinder. The solid walls are removed for clarity. The bottom row shows the phase distribution 

in each cylindrical cross-section. The wetting phase (displayed in blue) is retained differently in the corners depending on the 

cross-sectional shape. 

 

 

 

 

 

 

 

 

 

MS-P method 

The Mayer and Stowe-Princen (MS-P) model predicts the capillary pressure and the curvature of 

the arc meniscus of a fluid droplet of infinite length inside a cylindrical tube [45–47] . The assumptions

of the MS-P method are that that capillary pressure is uniform and that there is no longitudinal

curvature away from the main terminal meniscus. Under these assumptions the cross-sectional radius 

of curvature R (see Fig. 11 ) defines the total curvature and, after Young-Laplace equation, 

p c = γ /R (11) 

Furthermore, the balance of forces at equilibrium implies a relationship between capillary pressure 

and surface tension. The force due to the pressure difference on the cross-sectional area must balance

the force from surface tension at the interfaces. Thus, 

p c A nw 

= γ (P s cosθ + P ns ) (12) 

where P s is the length of the line between the non-wetting phase and the solid, P ns is the perimeter of

the interface between the wetting phase and the non-wetting phase, and A nw 

is the area filled with

the non-wetting phase. The MS-P method consist in deducing R by combining Eqs. (11) and (12) : 

R = 

A nw 

P s cosθ + P ns 
(13) 

From now on the MS-P is considered exact for cylindrical throats and used as a reference for

comparisons. The errors in LBM solutions will be evaluated using two possible approaches: 

Error p = 

p MSP − p LBM 

e 

p MSP 
(14) 

where p LBM 

e is the entry pressure obtained in the saturation curves ( Fig. 7 ). 

Error k = 

k MSP − k LBM 

k MSP 
(15) 

where k MSP is the curvature defined by the MS-P (the inverse of the radius of Eq. (13) ) compared with

the curvature of the main meniscus after achieving the entry pressure. k LBM is defined in Appendix A . 

Results 

The entry capillary pressure p LBM 

e in the LBM simulations is deduced from drainage curves similar

to the plots in Fig. 7 , where V is the volume occupied by the wetting phase within the tube. The
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Fig. 6. Entry capillary pressure predicted by LBM and total number of time iterations for different values of the tolerance. The 

error starts to increase significantly from Tol = 10 −5 % 

Fig. 7. Primary drainage of square-shaped capillary tubes with different discretizations. 
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imensionless capillary pressure increases until the nw -phase breaks through, it then reaches a

tationary value of p c which corresponds to the entry pressure p LBM 

e . The drainage of the circular

ube has been repeated with different values of tolerance ( T olmentioned above) to quantify the

erturbation by dynamic effects. The total number of iterations and the difference between p LBM 

e and

he MS-P prediction for the different tolerance values are plotted on Fig. 6 . Note that the difference is

ot expected to vanish even with very small tolerance since geometrical discretization errors adds to

he error relatively independently of dynamic effects. In the sequel of this study we set the tolerance

alue to 10 −5 , as it leads to marginal dynamic errors. 

Several mesh discretizations have been tested: 40 ×40 ×160, 70 ×70 ×256, 90 ×90 ×320 and

10 ×110 ×384 (last value along the axis of the tube). From now on they are referred to as L c =
0 l u, L c = 70 l u,L c = 90 l u, and L c = 110 l u, respectively. The pressure-volume evolution for each mesh

ize are compared in Fig. 7 (for the square-shaped tube). The errors with respect to the MS-P

rediction are given by Fig. 8 . When the numerical solid wall coincides with the physical wall (no

all retraction) the convergence is superlinear, with an exponent of approximately 1.4. When the

nterpretation includes wall retraction by two lattice units, the error is smaller and the convergence
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Fig. 8. Convergence of the LBM result with mesh refinement, with regard to error defined in Eq. (15) . Each simulation is ran 

in parallel using 8 cores. L c is defined as the distance between the numerical walls (unchanged by wall retraction). 

Fig. 9. Difference in capillary pressure between LBM theoretical value deduced from meniscus geometry, as a function of the 

ρw contour selected to define the interface. Sub-figure on the upper-right corner shows details of the density contours. On the 

right, interface profiles for different ρw are superimposed. Both results correspond to a square cylinder. 

 

 

 

 

 

 

 

 

 

 

becomes quadratic, which is a substantial improvement. This technique was used systematically for 

all simulations presented in the next sections. 

A justification of the optimal retraction length is possible by selecting different iso-density surfaces 

in the result to represent the interface. A consistent definition of the interface should satisfy Eq. (12) .

Selecting a value of ρw 

/ρo to define the interface enables the determination of the geometrical

parameter A nw 

,P s , and P ns in that equation. The optimal contour is the one which minimizes the

deviation from Eq. (12) . Based on Fig. 9 the optimum is ρw 

/ρo = 0 . 7 , which corresponds approximately

to the average density between both phases. In our results this specific value of density was generally

reached approximately two nodes away from the solid nodes, which led to the decision to retract

the walls by two lattice units. This value is only valid for Gρo = 1 . 25 . Different interaction strength

parameters (i.e. other surface tensions) would result in thicker or thinner interfaces, in such case, the

same procedure should be repeated to determine the position of the new retraction wall. 

The various cross-sectional shapes have been simulated with domain sizes 80 ×80 ×256 lu 3 . The

results are compared to the MS-P solution in Fig. 10 . We find a reasonable agreement between the
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Fig. 10. Deviation of LBM results from MS-P for the different cross-sectional shapes for L c = 80 . 

Fig. 11. Staircased walls causing non-symmetry of the LBM solution (unequal filling of the corners). 
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e

imulations and the analytical solution overall. However, larger errors are observed for triangular

nd curved cross-sections. This can be partly attributed to the artificial roughness introduced by

he staircased surfaces. These cross-sections are not aligned to the regular lattice grid. Furthermore,

ue to the bounce-back boundary condition, these cases lead to mesh-dependent results. In fact,

n asymmetry is evidenced in Fig. 11 , where the remaining liquid retained in the corners of the

quilateral triangle is different in some parts. Nonetheless, Fig. 11 shows relatively similar numerical

nd analytical profiles. 

This mesh dependency is frame dependent: it depends on the orientation of the throat with

espect to the axis of the grid. The evolution of the errors with rotation is shown in Fig. 12 , which

eveals that the frame-dependent effects are actually small (of the order of 1%, dominated by other

rrors). 
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Fig. 12. Error on pressure and curvature versus orientation of the throat (relative to LBM grid). p ∗c = 

p c L 
γ . 

Fig. 13. Evolution of the error on pressure by applying MS-P versus distance from the main meniscus. 

 

 

 

 

 

 

 

 

To conclude this section, we review the hypothesis stating that MS-P solution is valid for cylinders

of infinite extension. Due to computation limitations, short domains had to be considered. In order

to test the accuracy of the numerical results under these conditions, the error on pressure has been

plotted along the cylinder. In other words, capillary pressure was computed using Eq. (12) for various

positions of the cross-section in the final, nearly fully invaded, configuration. On the left part of Fig. 13

we observe that the remaining fluid in the corners is parallel to the cylinder walls (no longitudinal

curvature). It is concluded that H/L > 1 is sufficient to approach the situation assumed for the MS-

P method, i.e. the cross-section must be behind the main meniscus by a distance approximately

equivalent to the throat aperture. 
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Fig. 14. (Left) volume versus capillary pressure for a pendular bridge from LBM and from the numerical solution of Laplace- 

Young equation. The relative error (right) is the difference between the simulated volume and the theoretical volume 

normalized by the initial volume V (p ∗c = 0 . 3) . 
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endular bridge 

The shape and volume of a pendular bridge between two spheres have been obtained from the

BM and compared to the theoretical solution for a range of capillary pressure. 

The simulation setup was as follows: a droplet of the wetting phase was inserted between two

dentical spheres of radius R with a gap equal to 0 . 14 × R . Once a stable state was reached the volume

f the liquid bridge was reduced slowly, by an imposed mass sink, until p ∗c = 

p c R 
γ = 0 . 3 . The shape

f the pendular bridge when p ∗c = 0 . 3 is compared to the direct solution of Young–Laplace equation

48] in Fig. 15 . They show strong similarity. After reaching p ∗c = 0 . 3 the LBM simulation was continued

y further reducing the amount of wetting phase and recording the volume of the simulated bridge

or quantitative comparison with Young–Laplace solution. This was continued until breakage of the

ridge. 

Fig. 14 shows the volume-pressure dependency until breakage. The LBM simulation and the

aplace–Young solution follow a very similar trend, with the relative error generally less than 10 −2 . 

Likewise, the critical distance S c (sphere separation that leads to breakage of the bridge) can be

ompared. S c can be obtained on a theoretical basis: it is the distance beyond which the Laplace-

oung problem degenerates into a solutionless problem (practically approached by the upper bound

f the actual solutions). Previous works [48] have shown that S c is approximately proportional to

he cubic root of the volume of the bridge. This empirical relation is also compared to the results.

ig. 16 shows the rupture distance obtained by the different methods. The LBM follows a correct trend

et the distance is systematically underestimated, by 4% approximately. It is less accurate than the

ubic approximation. The systematic underestimation can be explained by the difficulty to approach

 mechanically unstable solution numerically. 

onclusions 

The hydrostatic properties and pore-scale morphology of immiscible phases have been obtained

y the multicomponent Shan–Chen LBM for systematic comparisons with other methods. This article

rovides estimates of discretization errors and guidelines to calibrate the method and minimize errors.

Two-fluid-phase flow through capillary tubes has been analyzed and compared to the solution

iven by the MS-P method. Entry pressure, curvature and interface profile obtained from LB

imulations converge to the analytical solution with mesh refinement. The capillary bridges simulated

etween 2 spheres also converge to the solution obtained directly from Laplace–Young equation, in

erms of both shape and rupture distance. Discretization errors are introduced in part because of the

olid boundaries: curved surfaces are modeled as stair-cased lines, which may not approximate the
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Fig. 15. Overlapped capillary bridge profiles obtained numerically and analytically. 

Fig. 16. Dimensionless rupture distances ( S ∗) of fluid bridges between two spheres as a function of the dimensionless liquid 

bridge volume ( V ∗), calculated from Laplace-Young equation, LBM simulations and the cubic law. 
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urved wall properly if the lattice resolution is not fine enough. In addition the numerical thickness of

he fluid interfaces around the solids is also a source of error. These discretization errors were found

o scale nearly linearly with mesh size, and relatively independently of rotations of the grid frame.

or the error due to interfacial thickness we showed (section Results ) that a significant reduction was

ossible with appropriate geometrical corrections of the solid boundaries. This correction leads to

hrink the size of all solid objects by a mesh-dependent length to minimize the mesh-dependency

f the result. This technique has been used systematically throughout this study and proved to give

atisfactory results. 

The aim is to progressively improve the local rules introduced in pore-network approaches from

he analysis of elementary subsets, following [49] . Indeed, this article is meant to be a validation of

he multicomponent Shan–Chen model to simulate multiphase flow in porous media and justify the

esh resolution and flow conditions used in [7] where an sphere packing is decomposed into a series

f subsets that are solved separately using the LBM. 
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ppendix A Appendix 

hysical and LBM units 

Correlating physical properties to lattice units is an essential task in order to simulate physical

roblems. Moreover, choosing the right conversion will avoid stability problems and help us to have

ccurate results. As suggested in [50–52] , physical units can be related to lattice units through unit

onversion or dimensionless numbers such as the Reynold, the Froude or the Bond number. The

arameters involved in the physical and the LB systems are summarized in Table A.1 . 

Conversion factors for length, time, velocity and density are: C x = 

�x 
δx 

,C t = 

�t 
δt 

,C v = 

�x 
�t 

δt 
δx 

and C ρ =
ρ
ρlb 

. Similarly, we can find expressions for the kinematic viscosity C ν = C 2 x /C t , and pressure C p = C 2 x /C 2 t .

inematic viscosity is also related to the relaxation time τas 

ν = c 2 s 

(
τ − 1 

2 

)
�x 2 

�t 

δt 

δx 2 
(A.1)

The method presented above is consistent and can be applied to find other quantities [51] .

evertheless, one important constraint must be kept in mind. LBM is limited to low Mach numbers

ue to compressibility effects that lead to numerical instabilities [50,53] . In order to conduct

umerical simulations of quasi-compressible flows and reduce the numerical error, lattice Boltzmann

elocities should be significantly smaller than the speed of sound ( v lb << c s ). Dimensionless numbers

re extensively used to overcome this limitation. The first step consist of converting the physical

ystem into a dimensionless system. After that, dimensionless units are transformed into lattice units.

or the sake of clarity, let us use the Bond number to illustrate the unit conversion in terms of
Table A.1 

Physical and lattice units used during numerical simulations. 

Quantity Physical parameter SI units LB parameter 

Distance between nodes �x m δx 

Time step �t s δt

Velocity v m/s v lb 
Density ρ kg/m 

3 ρlb 

Kinematic viscosity ν m 

2 /s νlb 

Pressure p kg/(m s 2 ) p lb 
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Fig. A1. Fluid-fluid interface deformed due to surface tension. Mean curvature is determined by performing a force balance 

in a volume element V . Surface Sand contour Cresult from the intersection between V and the interface. n represents the unit 

outward vector normal to S, dl the unit vector tangent to Cand t the unit vector normal to Cand tangent to S. 

 

 

 

 

 

•

•

•

•

•

dimensionless number. Bond number relates capillary and gravitational forces and is defined as: 

Bo = 

ρgL 2 

γ
(A.2) 

where ρis the fluid density, gis the gravity, L a characteristic length and γ the surface tension. Bomust

have the same value regardless the system of units. Thus, Bo = 

ρgL 2 

γ = 

ρlb g lb L 
2 
lb 

γlb 
is able to correlate the

lattice and physical units. 

Curvature analysis 

In order to analyze the multiphase flow it is crucial to study the shape of the fluid-fluid interface.

Thus, in this section we introduce a method to determine the interface curvature following [54] . 

Given a fluid-fluid interfacial surface Senclosed by an arbitrary volume element V such as the one

displayed in Fig. A.1 , we can perform a force balance on V : Inertial force = Body force + Hydrodynamic

force exerted on S + Surface tension force exerted along C , equivalently ∫ 
V 
ρ

D u 

Dt 
d V = 

∫ 
V 

f d V + 

∫ 
S 

k(n ) + ̂

 k ( ̂  n ) d S + 

∫ 
C 
γ t d l (A.3) 

where, 

dlrefers to a length increment along the closed curve Cthat forms its boundary (see Fig. A.1 ), 

ρis the fluid density, 

γ is the surface tension, 

the stress vector representing the force exerted by fluid 2 on S(see Fig. A.1 ) is: 

k(n ) = n · T (A.4) 

the stress vector representing the force exerted by fluid 1 on Sis: 

ˆ k ( ̂  n ) = ˆ n · ˆ T = −n · ˆ T (A.5) 

The stress tensors are defined by means of the local fluid pressure and velocity gradient as 

T = −p I + ν[ ∇u + (∇u ) T ] ̂  T = − ˆ p I + ˆ ν[ ∇ ̂  u + (∇ ̂  u ) T ] (A.6) 
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Neglecting the acceleration and body forces leads to ∫ 
S 

[ k(n ) + ̂

 k ( ̂  n )] d S + 

∫ 
C 
γ t d l = 0 (A.7)

By assuming hydrostatic equilibrium, Eq. (21) is reduced to T = −p I and 

ˆ T = − ˆ p I respectively (no

iscous contribution). Thus, Eq. (22) can be rewritten as: ∫ 
S 

p c n d S + 

∫ 
C 
γ t d l = 0 (A.8)

here p c is the pressure difference between the two fluids. Eq. (23) states that pressure jump across a

tatic interface is balanced by the curvature at the interface, which is an integral form of the Young-

aplace equation p c = −γ∇ · n (where ∇ · n is the curvature), thus 

γ

∫ 
S 
(−∇ · n ) n d S + γ

∫ 
C 

t d l = 0 , (A.9)

nd since ∇ · n is constant in hydrostatic conditions 

(−∇ · n ) 

∫ 
S 

n d S + 

∫ 
C 

t d l = 0 . (A.10)

Finally, the curvature of the interface can be obtained numerically by evaluating both integrals on

he basis of LBM results, given a volume element (as in Fig. A.1 ): 

∇ · n = 

‖ ∫ C t dl‖ 
‖ ∫ S n dS‖ (A.11)
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