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Information Spread and Topic 
Diffusion in Heterogeneous 
Information Networks
Soheila Molaei1, Sama Babaei1, Mostafa Salehi   1,2 & Mahdi Jalili3

Diffusion of information in complex networks largely depends on the network structure. Recent studies 
have mainly addressed information diffusion in homogeneous networks where there is only a single 
type of nodes and edges. However, some real-world networks consist of heterogeneous types of nodes 
and edges. In this manuscript, we model information diffusion in heterogeneous information networks, 
and use interactions of different meta-paths to predict the diffusion process. A meta-path is a path 
between nodes across different layers of a heterogeneous network. As its most important feature the 
proposed method is capable of determining the influence of all meta-paths on the diffusion process. A 
conditional probability is used assuming interdependent relations between the nodes to calculate the 
activation probability of each node. As independent cascade models, we consider linear threshold and 
independent cascade models. Applying the proposed method on two real heterogeneous networks 
reveals its effectiveness and superior performance over state-of-the-art methods.

Many real systems can be modeled by networks where a number of individuals interact through a connection 
graph. Examples of networked systems include the Internet, World Wide Web, the human brain, power grids, 
online social networks, transportation and water distribution networks. Various dynamical phenomena have 
been studied on complex networks including synchronisation1, consensus2, opinion formation3,4 and informa-
tion spread5. Network topology has the major role in how such dynamical processes evolve on networks. Certain 
topologies might facilitate synchronisation or information spread, while some other network structures might 
disrupt such activities6,7.

Information diffusion is one of the widely studied dynamical processed on networks, which has potential 
applications in fields. Information such as a news, innovation, virus or malware, starts from a set of seed nodes 
and propagates throughout the network. There is a rich literature on information diffusion on complex networks, 
where different models and their interplay with network topology have been studied1. Previous research works 
have mainly considered heterogeneous networks. An information network G = (V, E) with V as the set of nodes 
and E as the set of edges, is a homogeneous network if the edges and nodes are of the same type. Networks 
with nodes and/or edges from more than one type are called heterogeneous networks8–10. For example, in DBLP 
network, which is a major bibliography provider in computer science, the nodes are authors, papers, venues 
(journals/conferences). In this network, edges can be author-author relationship when they co-author a paper, or 
author-venue relationship when an author participates in a conference.

Here we model information diffusion or more specifically topic diffusion in heterogeneous information net-
works. To this end, we use the concept of meta-path, which is defined in heterogeneous networks. A meta-path P 
is a path defined over the general schema of the network TG = (A, R), where A and R denote the nodes and their 
relations, respectively. The meta-path is denoted by ... +⟶ ⟶ ⟶A A A

R R R
l1 2 1

l1 2 , where l is an index indicating the 
corresponding meta-path. The aggregated relationship is obtained as R = R1oR2o...Rl between different types of 
nodes A1 to Al + 1, where o is the composition operator. For instance, in DBLP network, each of the 
author-paper-author and author-conference-author relations is considered to be an individual meta-path. 
Figure 1 is an example of “Data mining” topic propagation that authors can be connected to one another through 
different meta-paths in DBLP network.

Recently, much attention has been given to employing non-homogeneous networks in classification and rank-
ing tasks. For instance, sentiment classification of product reviews using heterogeneous networks was addressed 
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by Zhou et al.11. In this process, a heterogeneous network connects the users, products, and words, based on which 
the learning process is conducted using sentiment classification. In this regard, Zhou et al.11 proposed a co-ranking 
method which classifies the authors and documents separately based on random walks. Angelova et al.12  
presented a new classification method for the DBLP heterogeneous network. Mining of heterogeneous networks 
was addressed in a number of studies13–15. For example, Boccaletti and others16 studied mining of homogeneous 
information networks through their decomposition into multiple homogeneous networks. The idea of citation 
recommendation using mining in heterogeneous networks was proposed by Liu et al.17. Heterogeneous networks 
have also been employed in healthcare. Some papers18–20 focused on epidemic spreading on heterogeneous net-
works. Considering an epidemic threshold, Wang and Dai21 addressed virus spreading in heterogeneous networks 
based on the well-known susceptible-infected-susceptible model. Moreover, it was shown by Yang et al.22 that by 
considering heterogeneity between people, a heterogeneous network is created which is resistant against epidemic 
spread of virus. Epidemic spreading is important issue that was considered in other networks likes time-varying 
networks23 and adaptive network24. Nadini et al.23 used SIR and SIS models and investigated effects of modular 
and temporal connectivity patterns on epidemic spreading.

Link prediction in heterogeneous networks has also been addressed. Shakibian and Moghadam Charkari25 used 
meta-paths for prediction and Jalili and Orouskhani26 formulated drug response prediction as a link prediction 
problem using kernelised Bayesian multitask learning algorithm. Some works have considered information diffu-
sion on these networks. Sermpezis and his colleagues27 used degree distribution for the process of information dif-
fusion assuming that diffusion takes place between two nodes at random times. Zhou and Liu28 presented a social 
influence based clustering framework has been presented for analyzing heterogeneous information networks. 
Moreover, a heterogeneous network model was proposed for new product diffusion in two stages by Li and Jin29;  
the first stage is transition of information concerning new products to customers through advertisement, and the 
second stage is changing customer priorities through persuasive advertisements.

As another definition, heterogeneous networks are referred to as multilayer networks, where the nodes and/
or edges can be of different types. In many studies in this field, the concept of heterogeneous networks has been 
used to present a different definition for the infrastructure networks, based on which the concepts of diffusion are 
explained. Multilayer networks with all nodes from the same type are often called multiplex networks; a number 
of works have considered link prediction problem in multiplex networks16,26.

Some works have studied topic diffusion in heterogeneous networks. The concept of similarity based on 
meta-paths (known as Pathsim), between each two nodes was utilised and predictions were made by general-
ising the Linear threshold (LT) model by Gui and et al.30. Pathsim was considered as a weight between each two 
nodes in this method through which predictions were conducted31,32. In our proposed method, each meta-path 
instance is considered as a path by considering different meta-paths, and the conditional probability model is 
used to calculate the activation probability of each node. Also, two different diffusion models are used including 
Independent Cascade (IC) and LT. In these models, first all nodes are considered to be inactive. Then, an initial 
set of seed nodes are activated and LT/IC is used to activate the subsequent nodes. In IC model, an inactive node 
is activated under the influence of the active node with the highest probability of influence33. In this model, a 
probability is assigned to each active node for activating its neighbors; the probability of activation of node w 
triggered by node v is denoted as P(v|w). Every newly-activated node v attempts to trigger its inactive neighbors. 
If successfully triggered, node w is activated in the next step and triggers its inactive neighbors. Once a node is 
activated, it has a single chance to independently influence each of its neighbors. In LT mode, each inactive node 
is activated if the portion of its activated neighbors is more than a threshold θ ∈ [0, 1]34. Indeed, an inactive node 
is activated if and only if the total weight of all its activated neighbors exceeds a given threshold θu, as equation (1).

∑ θ>=
ε∈

W
(1)v

u v u,
u

where εu is the active neighbors of node u and Wu,v represents the weight of the link between nodes u and v. 
Watts35 studied the role of threshold values and network structure in the information diffusion. Gui et al.30 

Figure 1.  An Example of a heterogeneous network, where “Data mining” topic propagates along different types 
of relationships among authors. Black nodes are authors who have already pursued the topic, while gray nodes 
represent authors that may pursue the topic at the next timestamp.
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proposed a model called Multi-Relational Linear Threshold Model - Relation Level Aggregation (MLTM-R), 
which studied how LT model behaves in heterogeneous networks. Our proposed model is compared to this 
model. The major contributions of this study are:

	 1.	 We propose two novel topic diffusion models in heterogeneous networks considering different meta-paths, 
meaning that the influence of each relation is individually learned.

	 2.	 The dependency of active nodes to inactive ones is considered and conditional probability is employed to 
obtain the possibility of activation of each inactive node.

	 3.	 Two frequently used models (LT and IC) are studied in heterogeneous networks and their behavior is com-
pared in two real datasets. We show that IC model has more accurate answer than LT model in properly 
modeling topic diffusion in heterogeneous networks.

Methods
This study incorporates conditional probability for calculating the activation probability of inactive nodes by 
neighboring active nodes. This is in fact known as information propagation probability which defines the prob-
ability that an active node activates an inactive neighbor. This propagation probability is calculated considering 
meta-paths and using Bayesian framework. It is assumed that inactive nodes are dependent on the active ones. 
IC and LT models are employed for the process of information distribution. The stages involved in the pro-
posed method are briefly presented in algorithm 1 with every stage being explained separately in the following 
subsections.

Datasets.  A time-stamp of a year is defined for both datasets, based on which the training set and the test set 
are created as explained in the followings:

•	 DBLP (computer science bibliography)36: Objects indicate authors in this network. Different meta-path 
such as APA (Author-Paper-Author), ACA (Author-Conference-Author), APAPA (Author-Paper-Author-Pa-
per-Author), and ACACA (Author- Conference -Author- Conference -Author) are considered. Different top-
ics are extracted from this dataset, and information diffusion about a specific topic is investigated. This dataset 
include information from 1954 to 2016.

•	 PubMed Dataset37,38: In this network, the authors are represented by objects and meta-paths APA and 
APAPA are used. The dataset consists of information from 1950 to 2013. Information of both datasets is given 
in Table 1.

Evaluation criteria.  All nodes with published papers on our particular topic of interest are tagged as active and 
the rest as inactive. Assuming the nodes to be predicted at time t, the training and test sets are considered as 
follows:

Training set: Those within the time period from t − 4 to t − 2 are considered as the training set.
Test set: Those within the time period from t − 1 to t are considered as the test set. Additionally, the nodes 

tagged as active up to the time t − 2 are considered as the seed nodes that are activated initially in the start of the 
diffusion process.

We use Precision and Recall, F-score, and Recall criteria to assess the performance. These metrics are defined 
as follows.

=
+

=
+

− =
∗ ∗

+
Precision TF

TF FP
Recall TP

TP FN
F Score Precision Recall

Precision Recall
, , 2 ( )

(2)

where True Positive (TP) is the active nodes that are correctly tagged as active by the algorithm, True Negative 
(TN) is the inactive nodes that are correctly tagged as inactive by the algorithm, False Positive (FP) is the active 
nodes that are falsely tagged as inactive by the algorithm, and False Negative (FN) is the inactive nodes that are 
falsely tagged as active by the algorithm.

In IC model, let St ⊆ V be the set of nodes that are activated at step t ≥ 0, with S0 = S. At step t + 1, every node 
u ∈ St may activate its out-neighbors v ∈ V with a propagation probability of P(v|u). One should also consider the 
activation threshold for LT model. We study how the diffusion process depends on the threshold value. Initially, 
the optimal threshold limit is required to be calculated from the training set in order to obtain the evaluation 
criteria according to the third step of the algorithm 1. Figure 2 shows the F-scores as a function of the threshold 
value when considering diffusion of the selected topics in DBLP dataset. As it is seen, one can often obtain an 
optimal value for the threshold for which the F-score is the highest. Note that F-score scales in the range [0, 1], 
where 1 indicates the best performance. This optimal threshold varies across different topics, which indicates that 
different topics have different propagation mechanisms in this dataset. The obtained optimal threshold value is 

Dataset Authors Papers

DBLP 215222 105372

PubMed 1219686 459726

Table 1.  Information of DBLP and PubMed datasets used in this work.
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then applied to the test set to assess the performance. We also use recall measure to obtain the optimal threshold 
and the results are similar to those obtained based on F-score (results not shown here).

Calculating propagation probability of Nodes.  Propagation probabilities for all edges and nodes are 
calculated in this stage. In order to calculate the activation probability of each node according to its neighboring 
nodes, the influence probabilities of each node and edge are calculated considering meta-paths.

Edge Propagation Probability: In heterogeneous networks, different routes are available for meta-paths. Hence, 
for every pair of nodes v1 and v2 in meta-path k, the edge probability is equal to the number of path instances 
between the two nodes divided by all the existing path instances between them, as shown in equation 3.

Figure 2.  F-Score as a function of the threshold of LT model in DBLP dataset for selected topics. The figure 
shows F-score for topics (a) Data Mining, (b) Machine Learning, (c) Social Networks, (d) Healthcare, (e) DNA 
and (f) Infectious Disease. The optimal threshold for each topic is the one with the highest F-score.

Algorithm 1.  Heterogeneous Probability Model (HPM).
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	 1.	 Calculate Probability for nodes:
•	 Find P for each pair of nodes v1 and v2
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	 2.	 Create Propagation Flow Graph (PFG)
•	 For t from T0 to Tf

•	 Insert edge from active nodes to inactive ones in the main graph
•	 Delete any edges between active nodes (there is no dependency between active nodes)
•	 Delete any edges between inactive nodes (there is no dependency between inactive nodes)

	 3.	 Calculate Propagation probabilities
•	 For t from T0 to Tf

•	 For IC Model:
•	 For each inactive nodes do:

•	 Based on flow graph and αk- find ε|P v( { })i vi
•	 For M = 1 to n: calculate ε|P v( { })i vim
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α
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•	 For M = 1 to n:
If node(vi) was activated by one of active neighbors:
Select max ( ε|P v( )i viM

) which activated vi and consider vi as active. 
else:
Select max ( ε|P v( )i viM

) of neighbors and consider vi as inactive.

ε ε| = 
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| 
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n
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•	 For LT Model:
•	 For each inactive node do:

•	 Based on flow graph and αk - find ε|P v( { })i vi
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•	 If ≥P v Tr( )i , consider vi as active.

	 4.	 Learn αk for each Meta-path k
•	 For t from T0 to Tf:

α α ϕ
∂
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k

	 5.	 Calculate F-Score and Recall measures as equation (2)
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The above fraction can be considered as the information propagation probability between nodes v1 and v2. In equa-
tion (3), Pk(v1, v2) denotes the probability of the edge between nodes v1 and v2 connecting in meta-path k. nu is the 
total number of existing nodes and →nv v

k
1 2

 represents the path instances between these nodes in meta-path k.
Node Propagation Probability: The strength of each node, i.e. the amount of information propagation the node 

is capable of, according to each meta-path is expressed by:
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For instance, an author with a higher number of published papers should be assigned higher influence 
strength for information spread. Probability of propagation from node v1 to node v2 in meta-path k is expressed 
using equation (5).

| = =
∑

→

∈ →

P v v P v v
P v

n

n
( ) ( , )

( ) (5)

k
k

k
v v
k

r nei v r
k1 2

1 2

2 v

2 1

2

Propagation flow graph.  The activation probability is assumed to be conditional as only an active node 
is capable of activating an inactive one, meaning that the direction of flow is always from the active node to the 
inactive one. Hence, the network is considered to be of Bayesian type. Additionally, we assume that active nodes 
are independent as an inactive node can only be activated by an active neighboring nodes and no flow may occur 
between two active nodes; hence no edge is considered between them. An implicit graph, with an example shown 
in Fig. 3, known as Propagation Flow Graph (PFG) is considered in this work. It should be noted that in order to 
calculate the node and edge propagation probabilities, the relationships between all nodes, both active or inactive 
ones are taken into account. In each state, if a node is activated, it is added to the PFG.

In our example shown in Fig. 3, nodes V2 and V4 are activate V1 as there are links from V2 and V4 to V1 on 
PFG. However, V3 can only be activated by V4 as there is no link from V1 to V3 on PFG. As V1 is activated in the 
first step, it can also affect V3 in the next step.

Propagation Probability.  In this section, the activation probability for each node is calculated according 
to IC and LT diffusion model.

IC Model.  In IC model, each inactive node has a single change to be activated by one of its active neighbors. 
In other words, if an inactive node is not activated by a recently activated neighbor node, it will not be consid-
ered in the next steps for being activated. Here, among the neighboring nodes of an inactive node that activated 
this node, the one with the maximum probability is selected as the activating node. Otherwise, if the state of an 
inactive node does not change we select the maximum probability of neighbors as the probability of this inactive 
node. The propagation probability from active neighboring nodes (εv) to an inactive node vi through a given 
meta-path k is obtained according to:

ε
ε

ε
| =

















=
P v

P v

P
( { }) max

( , )

( ) (6)

k
i v

k
i v

k
vM 1:ni

iM

iM

As mentioned before, we assume that active nodes are independent since no flow may occur between two 
active nodes. Since the overall probability is obtained as the sum of meta-paths, the overall activation probability 
of node v can be obtained as:

∑ α=
=

=
P v P v( ) ( )

(7)k

m number of metapaths

k
k

1

which means that a coefficient αk is assigned to each meta-path to obtain the overall probability. Among the active 
neighboring nodes of inactive node vi, the one with the maximum probability is selected as the activating node 
for node vi.

Figure 3.  An illustrative example of Propagation Flow Graph where authors (active and inactive nodes) are 
connected to one another through papers (P). Edge of PFG illustrates that inactive nodes can be affected by 
active nodes.
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LT Model.  As a more intuitive and closer assumption to the real world, LT model assumes that a node is acti-
vated if at least certain percentage of its neighbors have already been activated. In DBLP network for example, this 
means that the total number of studied papers from different authors can influence the author to publish a paper 
on a particular topic. The general type of LT model is as equation (1). On the other hand, due to assuming the 
conditional probability, we can obtain the probability of each inactive node. In this section, we keep the properties 
of LT model and conditional probability together. In this case, calculations of propagation probability through 
active neighboring nodes of node vi are as follows:
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It is obvious that each node vi should have more ε∏ |= P v( )q
n

i v1 iq
 for obtaining more influence. This means that 

with higher probability, the neighbors of node vi will have more influence on it, which leads to:
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We can infer that if multiplication of the neighbors’ probability of an inactive node vi becomes more than the 
threshold λvi

, the inactive node is more likely to be activated. Let us multiply a constant value υ in both sides of 
equation 10 which does not change the final result:
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By making logarithm from both sides of the above equation, we have equation (12) as:
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Equation (12) shows that by considering Wi as υ ε|log P v( ( ))n i viq  we kept the LT conditions and also we used 
conditional probability.

Learning model.  Since information diffuses from active to inactive nodes, the flow of propagation is consid-
ered as a directed graph from active to inactive nodes. Moreover, due to their active state, no edge is considered 
between active nodes. Hence, according to PFG, the probability of all nodes is obtained through individual mul-
tiplication of active and inactive nodes. In the following, we explain the learning process used for IC and LT 
models.

IC model.  If Ut is the set of all graph nodes, Vt the set of active nodes and Rt the set of inactive nodes at time t, 
the propagation probability for nodes is obtained by:

∏ ∏ ∏ ε= − |
∈ ∈ ∈

P U P v P r( ) ( ) (1 ( { }))
(13)

t
t T v V r R

r
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The objective is to maximise P(Ut); the probability of active nodes (P(Vt)) as well as that of unity minus the 
probability of inactive nodes (1 − P(r|{εr})) should be maximised to obtain the best results. For convenience, the 
function can be converted to log-likelihood function as:
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LT model.  Similar to the log-likelihood function in IC model, this can also be obtained when using LT as 
influence model. The resulting equation is as follows:
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Ultimately, both models use equation (16) for calculating the coefficient of each meta-path (αk).
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Example.  In this section, we provide the above analysis on a sample network shown in Fig. 3. In this network, 
nodes V2 and V4 are active nodes, and thus can influence the inactive nodes V1, V3, V5 and V6, and activate 
them. Considering two meta-paths APA and APAPA, the probability of activation for each node can be calculated 
as follows:
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where the values of αAPA and αAPAPA are learned for the corresponding meta-paths. Assuming the learned values 
for αAPA and αAPAPA as 0.6 and 0.4, respectively, the final activation probability is obtained as:

Figure 4.  Process of activating inactive nodes affected by active neighbors for “Data Mining” topic.

Figure 5.  F-Score of the proposed method (HPM) with IC and LT as diffusion models (HPM-IC and HPM-LT) 
and the state-of-the-art method (MLTM-R) on DBLP dataset.

Figure 6.  Recall of the methods on DBLP dataset.
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Figure 7.  The number of correctly predicted active authors (TP) for the selected topics on DBLP dataset.

Figure 8.  The number of authors who have been tagged incorrectly as active (FP) or inactive (FN) for the 
selected topics on DBLP dataset.

Figure 9.  F-Score of the proposed method (HPM) with IC and LT as diffusion models (HPM-IC and HPM-LT) 
and the state-of-the-art method (MLTM-R) on PubMed dataset.
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Figure 10.  Recall of the methods on PubMed dataset.

Figure 11.  The number of correctly predicted active authors (TP) for the selected topics on PubMed dataset.

Figure 12.  The number of authors who have been tagged incorrectly as active (FP) or inactive (FN) for the 
selected topics on PubMed dataset.
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Experimental Results
As mentioned for DBLP example, the authors are connected to one another according to the specified meta-path. 
For topic diffusion in such a graph, initially we need to select a special topic like “data mining”. The authors with 
papers related to the selected topic are considered as active nodes. These authors affect their neighbors in a way 
that of an inactive node (author) might be encouraged to write a paper in this filed affected by active author(s). If 
a neighbor writes paper in this field, they will be active and will then affect their neighbors.

Figure 4 shows an example in which in the first step nodes V2 and V4 are activated by “data mining” topic. 
Node V2 can activate node V1 while node V4 can activate nodes V3, V5 and V6. In this example, node V4 
activates node V5, hence node V5 is persuaded to write paper in “data mining” topic. In this section, we apply 
the proposed model on two real datasets and discuss the results. We consider two popular datasets, DBLP and 
PubMed, which include information on authors, papers and venues. We also consider some topics including 
data mining, machine learning, social networks, healthcare, DNA, and infectious disease, for which the diffusion 
process is modeled. The topic selection is mainly due to their convenient frequency in the datasets and the con-
siderable amount of data available for comparison and conclusion.

DBLP.  In this dataset, information diffusion is investigated on the selected topics. The results of the proposed 
method is compared to the state-of-the-art method introduced by Gui et al.30, known as MLTM-R. Figures 5 and 6 
compare the performance of the proposed model, Heterogeneous Probability Model (HPM), with MLTM-R in terms 
of F-score and Recall, respectively. Note that the original MLTM-R method is based on LT model for diffusion, while 
HPM works for both LT and IC models. As it can be seen, HPM significantly outperforms MLTM-R by providing 
much better F-score and Recall when IC model is used. An improvement of about 30–50% is obtained in HPM as com-
pared to MLTM-R. Furthermore, these results show that one can obtain much better performance when IC model is 
used rather than LT. This indicates that IC model is better capable of modeling topic diffusion in this dataset.

Figure 7 compares TP, i.e., the number of correctly predicted active authors, of the methods. It also include 
the actual TPs for different years, where the closer is the predicted value to these actual values, the better is the 
performance of the method. As it is seen, the proposed method with IC model (HPM-IC) has the closest pre-
dicted values to the actual ones, followed by HPM-LT and then MLTM-R. This performance is observed across 
all the selected topics and all years. Figure 8 shows the number of authors who have been incorrectly identified 
as active or inactive, where HPM-IC has the lowest values (i.e., the best performance) while MLTM has the worst 
performance.

PubMed.  We apply the methods on PubMed dataset with the same selected topics. Figures 9 and 10 show the 
F-score and Recall of the methods, respectively. Similar to the other dataset, HPM significantly outperforms 
MLTM-R in all topics. Also, HPM-IC performs better HPM-LT. Figures 11 and 12 show the correctly identified 
active authors (TP) and incorrectly identified active and inactive authors (FN and FP), respectively. As it is seen, 
similar to the other dataset, HPM-IC has the best performance.

Analysis.  Compared to MLTM-R method30, HPM-LT and HPM-IC methods significantly improve the F-score 
and Recall of the prediction, which is mainly due to the following reasons. MLTM-R uses pathsim to calculate 
the weight of each edge. Pathsim is not accurate in some cases31,32, as it does not obtain similarity value (or obtain 
low similarity scores) between two similar nodes in certain circumstances. However, in our proposed method, 
each meta-path instance is considered as a path by considering different routes between nodes, which eliminates 
the problems of Pathsim as there is no need to calculate the similarity for weights. The proposed method instead 
uses the conditional probability model to calculate the activation probability of each node. The inactive nodes are 
considered to be dependent on the active neighboring nodes. This is a realistic scenario as if an author decides to 
write a paper about an issue, they should have already be aware of the existence papers written by others (active 
nodes). Unlike the other method, in the proposed algorithm we separately consider the node and edge influence. 
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The node influence is considered by having IC and LT models in which activation of inactive nodes is based on 
neighboring active nodes. The edge influence is considered as the extent to which the relation between two nodes 
is important for diffusion process i.e. a relation is more impressive if larger number of multipaths are found 
between two nodes. Topological properties of networks have significant influence on the way information propa-
gates on them. DBLP has larger average degree than PubMed and having more connections facilitates spread. Our 
results also confirms this as the performance of the methods is better for DBLP than PubMed.

Better performance of the proposed strategy over of the previous model is due to considering information 
extracted from meta-paths. A meta-path is a path between any two nodes from different layers of an heteroge-
neous network. As meta-path traverses between different type of object, it can extract useful information on the 
structure of the network. method based on meta- paths have already been used for network analysis such as link 
prediction5. Our experiments shows that meta-paths are also important in the way information spread across lay-
ers and different object types. We also consider importance of the nodes by taking into account the paths passing 
through them (equation 4).

Our proposed method use meta-paths with different lengths. Two non-adjacent nodes of the same type, e.g. 
two authors in DBLP example, might be connected through meta-paths of length two or three. For example, 
in DBLP network when two authors who do not have any co-authored papers, both have papers with another 
authors, there is a meta-path of length two between these two authors. Considering such meta-paths allows one 
to account for such indirect connections between the nodes and taking into account the cross-layer information 
at the same time.

Conclusion
This paper studied information spread and diffusion of scientific topics in heterogeneous networks. To this end, a 
novel method called HPM, was developed based on meta-paths and conditional probability. Moreover, propaga-
tion flow graph was defined to illustrate the diffusion flow from active to inactive nodes. Propagation probability 
was then calculated based on this graph and the coefficients of meta-paths were learned using the log-likelihood 
function. We considered two well-known diffusion models: Linear Threshold (LT) and Independent Cascade (IC) 
models. In LT model, inactive nodes are activated if the portion of their active neighbors is higher than a certain 
threshold. In IC model, the recently activate nodes activates its inactive neighbors with a certain probability. We 
considered the problem of topic diffusion in two real-world networks: DBPL and PubMed. The performance of 
the proposed model was compared with a state-of-the-art method, where our experimental results showed that 
the proposed method significantly outperform the other one. Also, Using IC as the diffusion model led to better 
performance than LT model.
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