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The human respiratory tract hosts a diverse community of cocirculating
viruses that are responsible for acute respiratory infections. This
shared niche provides the opportunity for virus–virus interac-
tions which have the potential to affect individual infection risks
and in turn influence dynamics of infection at population scales.
However, quantitative evidence for interactions has lacked suit-
able data and appropriate analytical tools. Here, we expose and
quantify interactions among respiratory viruses using bespoke
analyses of infection time series at the population scale and coin-
fections at the individual host scale. We analyzed diagnostic data
from 44,230 cases of respiratory illness that were tested for 11 tax-
onomically broad groups of respiratory viruses over 9 y. Key to our
analyses was accounting for alternative drivers of correlated infec-
tion frequency, such as age and seasonal dependencies in infection
risk, allowing us to obtain strong support for the existence of neg-
ative interactions between influenza and noninfluenza viruses and
positive interactions among noninfluenza viruses. In mathematical
simulations that mimic 2-pathogen dynamics, we show that tran-
sient immune-mediated interference can cause a relatively ubiqui-
tous common cold-like virus to diminish during peak activity of a
seasonal virus, supporting the potential role of innate immunity in
driving the asynchronous circulation of influenza A and rhinovirus.
These findings have important implications for understanding the
linked epidemiological dynamics of viral respiratory infections, an
important step towards improved accuracy of disease forecasting
models and evaluation of disease control interventions.
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The human respiratory tract hosts a community of viruses that
cocirculate in time and space, and as such it forms an eco-

logical niche. Shared niches are expected to facilitate interspecific
interactions which may lead to linked population dynamics among
distinct pathogen species (1, 2). In the context of respiratory in-
fections, a well-known example is the coseasonality of influenza
and pneumococcus, driven by an enhanced susceptibility to sec-
ondary bacterial colonization subsequent to influenza infection (3,
4). Indeed, respiratory bacteria–bacteria and bacteria–virus inter-
actions, and the underlying mechanisms by which they arise, are
extensively studied (5–8). In contrast, evidence for the occurrence
of virus–virus interactions remains scarce and the potential
mechanisms are elusive, demanding greater research attention.
The occurrence of such interactions may have profound economic
implications, if the circulation of one pathogen enhances or di-
minishes the infection incidence of another, through impacts on
the healthcare burden, public health planning, and the clinical
management of respiratory illness.
Early interest in the potential for interference among taxo-

nomically distinct groups of respiratory viruses stemmed from
epidemiological observations of the temporal patterns of infec-
tion in respiratory virus outbreaks (9–11). More recently, the

influenza A virus (IAV) pandemic of 2009 further galvanized
interest in the epidemiological interactions among respiratory
viruses. It was postulated that rhinovirus (RV) may have delayed
the introduction of the pandemic virus into Europe (12, 13),
while the pandemic virus may have, in turn, interfered with ep-
idemics of respiratory syncytial virus (RSV) (14, 15). Clinical
studies utilizing coinfection data from diagnostic tests have also
suggested virus–virus interference at the host scale (13, 16, 17).
The role of adaptive immunity in driving virus interferences

that alter the population dynamics of antigenically similar virus
strains is well known (18, 19). For example, antibody-driven
cross-immunity is believed to restrict influenza virus strain di-
versity, leading to sequential strain replacement over time (20).
Such antibody-driven virus interactions might even shape the
temporal patterns of RSV, human parainfluenza virus (PIV),
and human metapneumovirus (MPV) infections, which are tax-
onomically grouped into the same virus family (21). However,
where antigenically distant virus groups are concerned, the mech-
anisms are obscure, although the variety of possibilities in-
cludes innate immunity, resource competition, and other cellular
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processes (22–25). Recent experimental models of respiratory vi-
rus coinfections have demonstrated several interaction-induced
effects, from enhanced (26) or reduced (22, 23) viral growth to
the attenuation of disease (23, 24). It has also been shown that cell
fusion induced by certain viruses may enhance the replication of
others in coinfections (26).
However, despite epidemiological, clinical, and experimental

indications of interactions among respiratory viruses, quantita-
tively robust evidence is lacking. Such evidence has been hard to
acquire, due to a paucity of consistently derived epidemiological
time-series data over a sufficient time frame to provide well-
powered analyses, and the lack of analytical approaches to dif-
ferentiate true virus–virus interactions from other drivers of
coseasonality, such as age-dependent host mixing patterns (27,
28) and environmental factors associated with virus survival and
transmission (29–31). As a result, studies evaluating virus–virus
interactions from epidemiological time series have thus far not
accounted for such alternative drivers of coseasonality.
Here, we apply a series of statistical approaches and provide

robust statistical evidence for the existence of interactions among
respiratory viruses. We examined virological diagnostic data
from 44,230 episodes of respiratory illness accrued over a 9-y
time frame in a study made possible by the implementation of
multiplex-PCR methods in routine diagnostics that allow the
simultaneous detection of multiple viruses from a single respi-
ratory specimen. Each patient was tested for 11 virus groups (28,
29), providing a single, coherent data source for the epidemio-
logical examination of infection dynamics of both cocirculating
viruses in general and coinfection patterns in individual patients.
Using these data, our study addresses the following questions: 1)
Is there statistical evidence of virus–virus interactions in the
temporal patterns of infection at the population scale?, 2) Is
there statistical evidence of virus–virus interactions in coin-
fection patterns at the individual host scale?, and 3) Is a short-
lived immune-mediated interference at the scale of individual
hosts sufficient to induce asynchronous seasonal patterns of in-
fection at the population scale?

Results
The Overall Prevalence of Any Viral Respiratory Infection among
Patients with Respiratory Illness Is Relatively Stable over Time, Despite
Strongly Varying Prevalences of Individual Viruses. We first evaluated
the total monthly infection prevalences across all viral respiratory
infections from 2005 to 2013. As typically observed in tem-
perate regions, the proportion of patients with respiratory ill-
ness testing positive to at least one respiratory virus peaked
during winter, with the exception of the influenza A H1N1
pandemic in the summer of 2009 (Fig. 1A). Nevertheless, even
during the influenza pandemic, the overall viral infection
prevalence among patients remained broadly stable due to a
simultaneous decline in the contribution of noninfluenza viruses
to the total infection burden (Fig. 1B). Throughout the 9-y
study period, because of seasonal fluctuations in the magni-
tude and timing of peaks in prevalences of individual viruses
(Fig. 2), the dominating virus varied on a month-by-month basis
(Fig. 1B).

Respiratory Viruses Exhibit Cross-Correlations at the Population Level
That Are Independent of Seasonality. We evaluated correlations in
the monthly prevalence time series for each pair of respiratory
viruses. We first employed a simple bivariate nonparametric
cross-correlation analysis by estimating Spearman’s rank corre-
lation coefficients and observed 26 significant virus–virus corre-
lations, 13 negative and 13 positive (Fig. 3, squares containing −
or +, respectively). The estimated cross-correlations fall outside
the 2.5% and 97.5% quantile intervals of correlation distribu-
tions generated under the null hypothesis of no interaction (see
SI Appendix, Tables S1 and S2 and Methods for details). How-

ever, examining whether these are genuine virus–virus interac-
tions (mediated at either the host or population level) required
us to address several methodological limitations in this relatively
simple approach: It fails to account for autocorrelation in the
time series of individual viruses, or for potentially confounding
factors which might independently explain correlations, and it
can produce spurious negative correlations with proportional
data or, alternatively, spurious positive correlations with absolute
infection counts.
Traditional analytical methods are unable to address all of

these limitations simultaneously, so we developed an approach
that extends a multivariate Bayesian disease-mapping framework
to infer interactions between virus pairs (32). This framework
estimates pairwise correlations by modeling observed monthly
virus counts relative to what would be expected in each month.
Patient covariates age, gender, and general practice versus hos-
pital origin (as a proxy for illness severity) were used to estimate
expected counts within each month for each virus independently,
capturing age and typical seasonal variability in infection risk. For
example, viral exposure events may be seasonally (anti-) corre-
lated due to similarities (differences) in the climatic preferences of
viruses (25, 26), and, in some cases, due to age-dependent contact
patterns driven by extensive mixing of children in daycare centers
and schools (27, 28). The remaining unexplained variation in-
cludes temporal autocorrelations and dependencies between
viruses. Modeling temporal autocorrelation through a hierarchical

0

25

50

75

100

In
fe

ct
io

n 
st

at
us

 (%
)

R
el

at
iv

e 
pr

ev
al

en
ce

05 06 07 08 09 10 11 12 13

A

B

Year

RV
IAV
RSV
IBV
CoV
AdV
MPV
PIV3
PIV1
PIV4
PIV2

Jan Jul Jan Jan Jan Jan Jan Jan JanJulJulJan Jul Jul Jul Jul Jul Jul

0

25

50

75

100
05 06 07 08 09 10 11 12 13

Fig. 1. Temporal patterns of viral respiratory infections detected among
patients in Glasgow, United Kingdom, 2005 to 2013. (A) Percentage of pa-
tients diagnosed with a single viral infection (white), a viral coinfection
(gray), or determined to be virus-negative (black) by multiplex RT-PCR in
each calendar month from 2005 to 2013 (6-mo intervals depicted by vertical
lines; Jan = January, Jul = July). (B) Relative virus prevalences in each cal-
endar month, from 2005 to 2013; note total virus counts may sum to more
than those informing single infection prevalences due to coinfections, and
test frequency denominators vary slightly across viruses. During the first
wave of the United Kingdom’s influenza A pandemic [A(H1N1)pdm09] in
2009, infections with influenza A virus were relatively more prevalent among
the patient population than noninfluenza virus infections (highlighted by
black box). RV = rhinoviruses (A–C); IAV = influenza A virus (H1N1 and H3N2);
IBV = influenza B virus; RSV = respiratory syncytial virus; CoV = human coro-
naviruses (229E, NL63, HKU1); AdV = human adenoviruses; MPV = human
metapneumovirus; PIV3 = parainfluenza 3 virus; PIV1 = parainfluenza 1 virus;
PIV4 = parainfluenza 4 virus; PIV2 = parainfluenza 2 virus. See also Table 1.
Virus groups are listed in descending order of their total prevalence.
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autoregressive model (32), we were able to directly estimate the
between-virus correlation matrix adjusted for other key alternative
drivers of infection.
This bespoke approach revealed many fewer statistically sup-

ported epidemiological interactions, with negative interactions
between IAV and RV and between influenza B virus (IBV) and
adenovirus (AdV) (Fig. 3, blue squares), as well as positive in-
teractions between RSV and MPV and between PIV1 and PIV2
(Fig. 3, red squares) (SI Appendix, Tables S3 and S4). These
interactions can be seen empirically as asynchronous (Fig. 2 A
and B) and synchronous (Fig. 2 C and D) prevalence trends in
the raw data. We did not detect epidemiological interactions
among other possible virus pairs. We note the lack of interaction
between the genetically related but antigenically dissimilar pair
IAV/IBV, in line with inconsistent patterns of infection asyn-
chrony over the 9-y time frame of our study (SI Appendix, Fig.
S1). See Methods for further details.

Within-Host Virus Mixing Patterns Are Nonrandomly Distributed across
the Patient Population, Indicating Virus–Virus Interactions Operate at
the Scale of Individual Hosts. To infer virus–virus interactions at the
level of individual hosts, we applied multivariable binary logistic
regression to the diagnostic records of virus-positive patients. We
designed our analysis to eliminate the influence of Berkson’s bias,
which can lead to spuriously large or small odds ratios (ORs) when
inferring disease–disease associations from hospital-based case-
control data (33). To account for any influence of this potential
selection bias, we restricted our analysis to the virus-positive pa-
tient subset (see Methods for further details).
We infer signatures of virus–virus interactions from the non-

random patterns of virus mixing captured by coinfection in-
formation by assessing whether the propensity of a given virus X
to coinfect with another virus Y was higher, lower, or equal to the
overall propensity of any (remaining) virus group to coinfect with
virus Y. We adjusted for the effects of age, gender, patient origin
(hospital versus general practice), and the time period (with re-
spect to the 3 major waves of the 2009 IAV pandemic). To dis-
tinguish interactions between explanatory and response viruses
from unrelated seasonal changes in infection risk, we also ad-
justed for the monthly background prevalence of response virus
infections.
As our data did not allow us to infer the directionality of virus–

virus interactions, and nor did we have an a priori basis to inform
this, we first performed 72 statistical tests to evaluate all 36 virus-
pair hypotheses in 9 virus models (IAV, IBV, RV, RSV, human
coronaviruses [CoV], AdV, MPV, PIVA [PIV1 and PIV3], and
PIVB [PIV2 and PIV4]; see Table 1 for details). Due to com-
paratively low infection frequencies, PIVs were regrouped into
PIVA (human respiroviruses) and PIVB (human rubulaviruses).
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Fig. 2. Comparative prevalences of viral infections detected among pa-
tients in Glasgow, United Kingdom, 2005 to 2013. Prevalence was measured
as the proportion of patients testing positive to a given virus among those
tested in each month. (A and B) Asynchronous seasonality, explained by
negative epidemiological interactions. (C and D) Synchronous seasonality,
explained by positive epidemiological interactions. ρ = significant correla-
tion coefficients from Bayesian multivariate disease mapping analysis of
viral infection time series shown in Fig. 3. See Table 1 for a full description
of the viruses.
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Fig. 3. Negative and positive interactions among influenza and non-
influenza viruses at population scale. Significant unadjusted correlations from
bivariate cross-correlation analysis applying Spearman’s rank method to
monthly viral infection prevalences are shown in gray, with negative and
positive correlations indicated by − and +, respectively, and noncorrelated virus
pairs in white. Significant support for virus–virus interactions based on corre-
lations derived from Bayesian disease mapping analysis adjusting for fluctua-
tions in testing frequency, temporal autocorrelation, and alternative drivers of
correlated seasonality are shown in blue (negative) and red (positive).
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Of the 72 pairwise tests, 17 yielded ORs with P < 0.05 before
correction for multiple testing: 4 negative interactions (OR < 1)
among 3 virus pairs involving influenza and 13 positive interactions
(OR > 1) among 8 pairs of noninfluenza viruses (Fig. 4A) (note that
not all significant interactions were bidirectional). We then applied
Holm’s method (34) to control the familywise error rate. This
confirmed the existence of 2 within-host interactions: a negative
interaction between IAV and RV (OR = 0.27, P < 0.001) and a
positive interaction between AdV and PIVB (OR = 3.99, P <
0.001). See SI Appendix, Tables S15–S17 and Methods for details.
We also used a permutation method to test the global null

hypothesis that there were no interactions among any of the
remaining 5 virus groups (IBV, CoV, MPV, RSV, and PIVA). The
distribution of P values tended significantly toward zero, providing
strong evidence for the existence of further interactions (P =
0.0021; Fig. 4B). This indication of the likely existence of addi-
tional virus–virus interactions, that lie beyond the power permitted
by our data, is consistent with the large number of candidate in-
teractions (17 virus pairs in total) that yielded P < 0.05. Only
3 interactions (95% CI = 0 to 8) were expected when applying the
permutation test of the global null hypothesis to all 72 tests. See SI
Appendix, Figs. S2 and S3 and Methods for further details.

Transient Immune-Mediated Cross-Protection Can Generate Linked
Asynchronous Transmission Dynamics of Influenza and RV. Our sta-
tistical analyses provide strong support for a negative interaction
between seasonal IAV and the relatively ubiquitous RV, at both
population and individual host scales. This negative interaction
may be driven by virus competition for susceptible cells, for ex-
ample as a consequence of influenza-induced destruction of cell-
surface receptors (35) and/or cell death (36), or as a consequence
of virus-induced innate immune responses, such as the secretion
of interferon (IFN), which can cause noninfected neighboring
cells to adopt a protective antiviral state (23, 24). Such biological
mechanisms would render the host resistant, or only partially
susceptible, to subsequent viral infection. This prompted us to
ask whether a short-lived, host-scale phenomenon could explain
the prominent declines in the prevalence of RV among the pa-
tient population during peak influenza activity (Fig. 2A).
To address this question, we performed epidemiological sim-

ulations of the cocirculatory transmission dynamics of a seasonal
influenza-like virus, such as IAV, and a nonseasonal common
cold-like virus, such as RV, using ordinary differential equation
(ODE) mathematical modeling (see SI Appendix, Fig. S4 and

Table S18 and Methods for details). Our simulations show that a
temporary reduction in host susceptibility to a secondary com-
mon cold-like virus infection, a “refractory period,” caused by a
primary influenza-like virus infection is sufficient to produce an
observable epidemiological impact. For example, a refractory
period of just 2 d caused a 23% decrease in common cold-like
virus incidence during peak influenza-like virus activity, while a
refractory period of 7 d generated as much as a 61% decrease in
common cold-like virus incidence (Fig. 5A). Notably, these
simulations produced asynchronous temporal patterns of in-
fection qualitatively similar to our empirical observations, such
that the periodic decline in common cold-like virus infections
coincides with peak influenza-like virus activity (Fig. 5B).

Discussion
In this study, we demonstrated the presence, and examined the
nature, of virus–virus interactions at both the epidemiological
and individual host level by examining the diagnostic results of
patients that were simultaneously tested for 11 respiratory viruses.
Our study provides the most comprehensive quantitative support
to date for the existence of interactions among taxonomically
broad groups of respiratory viruses, building on earlier work on
pathogen–pathogen interactions in the context of wildlife (37),
childhood diseases (1, 38), and community ecology (39, 40). We
reveal statistical support for the existence of both positive and
negative interspecific interactions among respiratory viruses at
both population and individual host scales. Our findings extend the
established paradigms that have focused on bacteria–bacteria and
bacteria–virus relationships (5) to the virus–virus case and dem-
onstrate that respiratory virus interactions are not only restricted to
previously described competitive interference forms (21).
By studying the coinfection patterns of individual patients, our

analyses support an interference between influenza and non-
influenza viruses operating at the host scale. This finding supports
the potential role of innate immunity, such as through the antiviral
action of IFN, as early discussions on virus–virus interactions
had postulated (25, 41). Capturing this potentially immune-
mediated interference in mathematical simulations representing
the cocirculation of a seasonal influenza-like virus and a ubiquitous
common cold-like virus, we demonstrated that a short-lived pro-
tective effect, such as that induced by IFN (25), is sufficient to in-
duce the observed asynchronous seasonal patterns we observe for
IAV and RV (Fig. 2A). Many factors could contribute to interfer-
ences observed at the population scale through the removal of
susceptible hosts (1, 38). Such effects will likely act on a timescale
(on the order of days to weeks) that is similar to our proposed bi-
ological mechanism and might therefore act alternatively or in
tandem to generate epidemiological interactions.
We detected a further negative interaction at the population

level between IBV/AdV which was not corroborated at the indi-
vidual host scale. While IBV has a (albeit inconsistent) seasonal
pattern, typically peaking in winter months, AdV typically peaks
around May. However, because our Bayesian hierarchical model
adjusts for virus seasonality on a month-by-month basis, it is not
seasonal differences that explain the negative relationship between
this virus pair. In the absence of a seasonal driver or a host-scale
mechanism, it is possible that the lack of cooccurrence of IBV and
AdV is explained by other ecological drivers. For example, con-
valescence or hospitalization induced by one virus may reduce the
susceptible pool at risk of exposure to other viruses, as previously
discussed by others in the context of childhood diseases (1, 38).
Both IAV and IBV viruses exhibited only negative interactions

at both host and population levels, although the specifics dif-
fered. That they differ in their exact pairwise interactions is
unsurprising when considering that these viruses are antigenically
distinct, constitute different taxonomical genera, and exhibit dif-
ferent viral evolutionary rates (20, 42), as well as differences in
their respective age distributions of infection and some aspects of

Table 1. Details of virus detections by multiplex real-time RT-
PCR assays

Abbreviation
Virus nomenclature according to the

International Committee on Taxonomy of Viruses

RV Rhinoviruses (A–C)
IAV Influenza A virus*
IBV Influenza B virus
RSV (Formerly) respiratory syncytial virus†

CoV Human coronaviruses (229E, NL63, HKU1)
AdV (Formerly) human adenoviruses‡

MPV Human metapneumovirus
PIV3 (Formerly) human parainfluenza 3 virus§

PIV1 (Formerly) human parainfluenza 1 virus§

PIV4 (Formerly) human parainfluenza 4 virus¶

PIV2 (Formerly) human parainfluenza 2 virus¶

*A generic assay detecting seasonal H3N2 and H1N1 subtypes and one spe-
cific to A(H1N1)pdm09.
†(Currently) human orthopneumovirus.
‡(Currently) human mastadenoviruses (A–G).
§(Currently) human respiroviruses (1 and 3).
¶(Currently) human rubulaviruses (2 and 4).
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clinical presentation (43, 44). Furthermore, these viruses exhibit
inconsistent patterns of cocirculation (45–47) (see also SI Ap-
pendix, Fig. S1) and thus their cooccurrence with other respiratory
viruses is expected to vary. Based on these differences between
IAV and IBV, it is feasible that their ecological relationships with
other viruses have evolved differently.
Of further note is the lack of interaction detected between

IAV and IBV, since there is some suggestion from global data of
a short lag between their outbreak peaks. However, epidemio-
logical data are inconsistent in that they report both asynchrony
and codominance (46, 47). We believe that a lack of confirmation
of interference between IAV and IBV is consistent with current
virological understanding. These viruses are genetically and anti-
genically different; although studies have identified cross-reactive
B cell and T cell epitopes in conserved regions of the viral genome
(48), sufficient natural cross-protection has not been demon-
strated (48, 49). It is, however, possible that their ecological re-
lationship depends on the particular strains cocirculating. Further
work is needed to better understand how the existence and nature
of virus–virus interactions varies at the level of virus strains. On
the other hand, some evidence exists in support of immune-driven
interference between H1N1 and H3N2 subtypes of influenza A
(46, 47). Our data did not permit reliable analysis at this level of
virus differentiation because low and inconsistent numbers of in-
fluenza cases were routinely subtyped.
Age patterns of infection may provide important insights into the

opportunity for, or alternatively the consequences of, virus–virus
interactions. A lag in epidemic peaks across children and adults has
been observed in the case of RSV (50, 51). Such a lag between ages
may influence the potential for interaction with other cocirculating
viruses, or it may reflect niche segregation as a consequence of viral
interference. Although an interference between RSV and IAV has
been proposed (9, 11, 48), a hypothesis recently supported in an
experimental ferret model (21), this was not supported by our data.
It is possible that such an effect was masked because our analysis did
not enable stratification of effects by age, a step that is anticipated to
severely limit the statistical power of our highly comprehensive
analysis of virus–virus interactions. More detailed investigation to
address more precisely when, and among whom, virus–virus in-
teractions occur will be an important challenge for future research.
Our study describes positive interactions among respiratory

viruses at the population scale. These positive epidemiological
interactions were not mirrored at the host scale, which suggests
they are independent of host-scale factors and may instead be
explained by variables that were not captured by our study. For ex-
ample, some respiratory viruses, such as RSV and MPV, are known
to enhance the incidence of pneumococcal pneumonia (6, 52). It is
possible that we are observing an intermediary effect of secondary
bacterial infections, which may lead to enhanced hospitalization with
both viruses, rather than a direct virus–virus interaction.
Although not mirrored at the population level, our 72 pairwise

tests did detect the existence of positive interactions among 8 pairs
of viruses, including strong statistical support for AdV/PIVB fol-
lowing Holm’s correction for multiple comparisons. This finding is
consistent with a recent, smaller-scale clinical study of children
diagnosed with pneumonia, which detected 2 pairs of positively
associated noninfluenza viruses (17). Plausible mechanisms of
positive virus–virus interactions include enhanced viral growth
through syncytia formation of a coinfecting virus (22), the virus-
mediated down-regulation of IFN, which may promote invasion by
opportunistic viruses (41), and the virus-induced release of cyto-
kines such as interleukin 10, which prevents the detrimental effects
of dysregulated immune responses and might lead to immuno-
suppression and enhanced susceptibility to secondary viral infec-
tions (53, 54). That most interactions detected at the host scale
were not supported at the population level is not surprising given
that interaction effects are reliant on coinfection, or sequen-
tial infections, occurring within a short time frame. The relative
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Fig. 4. Host-scale interactions among influenza and noninfluenza viruses.
(A) Statistically supported negative (OR < 1) and positive (OR > 1) virus–virus
interactions based on uncorrected P < 0.05 from multivariable logistic re-
gression analysis. Line widths are proportional to the absolute value of the
maximum log OR estimated per virus pair. Two interactions (RV/IAV and
AdV/PIVB) retained strong statistical support (P < 0.001) following Holm’s
correction to control the familywise error rate. (B) Test of the global null
hypothesis: QQ plot of the observed P value distribution from 20 pairwise
tests among the 5 remaining virus groups (IBV, CoV, MPV, RSV, and PIVA;
green line), compared to the P value distribution expected under the global
null hypothesis of no interactions (purple dashed line). The distribution of
QQ lines simulated from the global null hypothesis using 10,000 permuta-
tions is shown in gray. See Table 1 for a full description of the viruses. Due to
comparatively low infection frequencies, parainfluenza viruses were regrou-
ped into PIVA (PIV1 and PIV3; human respiroviruses) and PIVB (PIV2 and PIV4;
human rubulaviruses).
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rareness of interaction events might thus limit their de-
tectability and epidemiological impact.
It is important to consider that virus–virus interactions are likely

shaped by evolutionary processes and thus their existence, magni-
tude, and dominant form (whether competitive or facilitative) may
not be static in nature, and instead depend on particular virus
strains, as well as host and environmental factors (55). The virus–
virus interactions we detect may represent a “net effect” of the
evolutionary processes (55) driving the virus strains circulating in
the UK population over the 9-y timeframe of this study. It should
also be borne in mind that a large proportion of respiratory infec-
tions, including influenza, are expected to be asymptomatic (56),
and coinfections of some viruses may be associated with attenuated
disease (23, 57). It is therefore conceivable that the form of in-
teraction detected in a patient population, although of clinical im-
portance, may differ from that occurring in the community at large.
Our study provides strong statistical support for the existence

of interactions among genetically broad groups of respiratory
viruses at both population and individual host scales. Our find-
ings imply that the incidence of influenza infections is interlinked
with the incidence of noninfluenza viral infections with impli-

cations for the improved design of disease forecasting models
and the evaluation of disease control interventions. Future ex-
perimental studies are required to decipher the biological
mechanisms that underpin virus–virus interactions and their ef-
fects on the within-host dynamics of infection.

Methods
Study Population and Dataset. Our study was based on routine diagnostic test
data used to inform the laboratory-based surveillance of acute respiratory
infections in NHS Greater Glasgow and Clyde (the largest Health Board in
Scotland), spanning primary, secondary, and tertiary healthcare settings.
Clinical specimens were submitted to theWest of Scotland Specialist Virology
Centre for virological testing by multiplex real-time RT-PCR (58, 59). Patients
were tested for 11 groups of respiratory viruses summarized in Table 1.

Data were available to our study for the period January 2005 to December
2013 comprising 61,427 clinical samples, most of which were nasal and/or
throat swabs (98%). The test results of individual samples were aggregated to
the patient level using a window of 30 d to define a single episode of illness,
giving anoverall infection status per episodeof respiratory illness. This yielded a
total of 44,230 episodes of respiratory illness from 36,157 individual patients. In
this study population, 35% (15,302) of patient episodes were virus-positive, 8%
(1247) of which were coinfected with more than one virus group.

These data provide a coherent source of routine laboratory-based data for
inferring epidemiological patterns of respiratory illness, reflecting typical
community-acquired respiratory virus infections in a large urban population
(60). Of the total 44,230 episodes of illness, 62% (27,284) were tested for all
11 virus groups, increasing to 83% (22,420) among 26,974 episodes tested
out with the 3 major waves of A(H1N1)pdm09 virus circulation. More than
99% of patients were tested for all viruses in each calendar month (except
for AdV in 2005 to 2007, PIV4 in 2005, and during pandemic influenza).
Virological diagnostic assays remained consistent over the 9-y period, with
the exception of the RV assay, which was modified during 2009 to detect a
wider array of RV and enteroviruses (including D68), and 1 of 4 CoV assays
(CoV-HKU1) was discontinued in 2012.

These diagnostic data included test-negative results providing the nec-
essary denominator data to account for fluctuations in testing frequencies
across patient groups and over time. Such changes in testing patterns may be
expected to arise in healthcare data accrued over extended time frames, for
example because of changes in healthcare-seeking behavior and/or the
clinical management of patients. We refer readers to ref. 60 for further
details of the dataset and epidemiological patterns of virus detections.

Bivariate Cross-Correlation Analysis. Spearman’s rank correlation coefficients
were computed and tested between all pairs of virus infection prevalences
(the proportion positive among those tested) in each month using cor.test in
R (32) version 3.4.4 (61). These analyses were based on 26,974 patient epi-
sodes of respiratory illness excluding the period spanning the 3 major waves
of A(H1N1)pdm09 virus circulation. We additionally conducted an analysis of
the distribution of correlation coefficients generated under the null hy-
pothesis of no virus–virus interactions. To do so, we randomly permuted the
monthly prevalence time series of each virus pair 1,000 times and computed
the 2.5% and 97.5% quantiles of each distribution of correlation coeffi-
cients. See SI Appendix, Tables S1 and S2 for the estimated correlation co-
efficients, distributions under the null hypothesis, and P values.

Multivariate Bayesian Hierarchical Models. Although the simple bivariate
cross-correlation analysis revealed several significantly correlated virus pairs,
inferring genuine virus–virus interactions using diagnostic patient data re-
quires several features to be accounted for: Absolute infection counts must
be adjusted for fluctuations in testing frequency, temporal autocorrelation,
and alternative confounding explanations of temporal dependency be-
tween virus groups.

To address these methodological limitations, we developed and applied a
statistical approach that extends a multivariate Bayesian hierarchical mod-
eling method to times-series data (32). The method employs Poisson re-
gression to model observed monthly infection counts adjusting for
confounding covariates and underlying test frequencies. This framework
uses a multivariate normal distribution to model the random temporal
variation in the adjusted virus counts, naturally incorporating a between-
virus covariance matrix that enabled estimation of virus–virus correlations.
Through estimating, and scaling, the off-diagonal entries of this matrix, we
were able to estimate posterior interval estimates for correlations between
each virus pair. Under a Bayesian framework, posterior probabilities were
estimated to assess the probability of zero being included in each interval
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Fig. 5. Mathematical ODE models simulating the impact of viral in-
terference on the cocirculatory dynamics of a seasonal influenza-like virus
and a ubiquitous common cold-like virus. (A) Percentage decrease in the
minimum daily incidence of common cold-like virus infections during peak
influenza-like virus activity for varying interaction strengths and refractory
periods. (B) Asynchronous incidences of influenza-like virus (in red) and
common cold-like infections in the presence (blue) and absence (green) of
interference with the influenza like virus. This example assumes a strong
interaction (φ = 1) and 7-d refractory period shown over 10 simulated years.
The R0s of these viruses assuming a completely susceptible homogeneous
population are 1.6 (virus 1) and 2 (virus 2). The model supports the hy-
pothesis that temporary nonspecific protection elicited by influenza explains
the periodic decline in rhinovirus frequency during peak influenza activity
(Fig. 2A).

Nickbakhsh et al. PNAS | December 26, 2019 | vol. 116 | no. 52 | 27147

PO
PU

LA
TI
O
N

BI
O
LO

G
Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911083116/-/DCSupplemental


(one for each virus pair). Adjusting for multiple comparisons, correlations
corresponding to intervals with an adjusted probability less than 0.05 were
deemed significantly different from zero. Crucially, the method makes use of
multiple years of data, allowing expected annual patterns for any virus to be
estimated, thereby accounting for typical seasonal variability in infection risk
while also accounting for covariates such as patient age (as well as gender and
hospital vs. general practice [GP] patient origin). We identified significant in-
teractions between IAV/RV, IBV/AdV, RSV/MPV, and PIV1/PIV2. See SI Appen-
dix, Tables S3 and S4 for the pairwise correlation estimates summarized in Fig. 3
of the main text, and see ref. 32 for further details on the method itself.

Host-Scale Analyses: Binary Logistic Regression. We analyzed the patient-level
coinfection data with a series of binary logistic regression models and
evaluate whether virus–virus interactions may be explained by interactions
operating at the scale of individual hosts. Of the 44,230 total episodes of
respiratory illness, 73% represent patients experiencing a single episode dur-
ing the 9-y study period, while the remaining 27% represent patients expe-
riencing 2 or more episodes (range 2 to 26; mean = 3 episodes per patient).
Retaining the first observed episodes generated 36,157 patient records and
20,703 with complete testing across all virus groups [note that pressures on
laboratory resources led to high partial testing during the major waves of
A(H1N1)pdm09 virus circulation]. Of these 20,703 patients, 6,884 were virus-
positive, 11% of which were coinfected with 2 or more viruses. We note that
the coinfection prevalence and detected virus–virus interactions were robust
to the choice of window used to define an episode of illness when aggre-
gating individual samples (see SI Appendix, Table S19 for details).

We designed our analysis to minimize the potential influence of Berkson’s
bias—a form of selection bias arising in studies aiming to infer disease–disease
associations from hospital-based case-control data. This bias arises where there
is an underlying difference in the probabilities of study inclusion between case
and control groups (33). Our approach was, for each study virus (Y) in turn, to
restrict the analysis to patients positive for one of the other (explanatory)
viruses, thereby eliminating the influence of the underrepresentation of the
virus-negative “healthy” population, implicit in the patient-based study pop-
ulation. The study population comprised individuals infected with at least one
other (non-Y) virus. Within that group, exposed individuals were positive
to virus X, and unexposed individuals were negative to virus X. Cases were
coinfected with virus Y, while controls were negative to virus Y. In this
way, our analysis quantifies whether the propensity of virus X to coinfect
with virus Y was more, less, or equal to the overall propensity of any (remaining)
virus group to coinfect with Y. Our study therefore infers signatures of virus–
virus interactions from the nonrandom patterns of virus mixing among the virus-
positive population.

Our analyses adjusted for key predictors of respiratory virus infections:
patient age (AGE.CAT), patient sex (SEX), hospital vs. GP patient origin
(ORIGIN), and time period of sample collection with respect to the influenza
A(H1N1)pdm09 virus pandemic (PANDEMIC). In addition, we ensured that
virus–virus associations were not simply explained by independent monthly
fluctuations in the response virus infection risk. To do so, we adjusted the
total number of infections with the response virus (VCOUNT) and the total
number tested (TCOUNT) within a 15-d window either side of each (earliest)
sample collection date for each individual observation. Model variables were
either binary or categorized; see SI Appendix, Table S5 for details.

Specifically, the relative odds of coinfection with virus Y (versus any
other virus group) was estimated for each of the 8 explanatory viruses, for
each response virus Y. Thus, each virus model (IAV, IBV, RV, RSV, CoV, AdV,
MPV, PIVA, and PIVB) used a specific subset of the virus-positive population
(because each virus model excluded virus-negative patients and single
infections involving only the response virus Y) with each data subset
ranging from 4,629 to 6,743 (see SI Appendix, Tables S6–S14 for details).
Due to low infection frequencies, we regrouped PIVs into 2 groups: PIVA
(PIV1 and PIV3; human respiroviruses) and PIVB (PIV2 and PIV4; human
rubulaviruses).

Each of the 9 virus models followed the following form, where PY
i indicates

the probability that individual i is coinfected with virus Y, and X1. . .X8 in-
dicates the 8 explanatory viruses:

log

 
PY
i

1− PY
i

!
= β0 + β1AGE.CATi + β2SEXi + β3ORIGINi + β4PANDEMICi

+ β5 logðV .COUNTi + 1Þ+ β6 logðT .COUNTi + 1Þ+ β7X1i + β8X2i + β9X3i

+ β10X4i + β11X5i + β12X6i + β13X7i + β14X8i .

Analyses were conducted using the glm function in R version 3.4.4 (61). The
quality of each model was assessed by the predictive power given by the

area under the receiver operator characteristic curve. Because these data do
not allow for inferences of the directionality of the virus–virus interactions,
we conducted all possible 72 pairwise statistical tests in the first instance to
evaluate 36 virus-pair hypotheses and present results where ORs yield un-
adjusted P < 0.05. These analyses detected 17 significant virus–virus in-
teraction (4 negative and 13 positive) out of the 72 tests (SI Appendix, Tables
S15 and S16). Not all virus-pair interactions were bidirectional; however, we
note that these analyses do not allow the differentiation of cause
from effect.

Applying Holm’s method to control the probability of one or more false
discoveries arising among the family of 72 tests [using the p.adjust function
in R version 3.4.4 (61)] yielded strong evidence (P < 0.001 following correc-
tion) of the existence of both negative (IAV/RV) and positive (AdV/PIVB)
interactions (see SI Appendix, Table S17 for details). A permutation test of
the global null hypothesis was then applied to the 5 remaining virus groups
(IBV, CoV, MPV, RSV, and PIVA) to test the hypothesis that the 20 remaining
null hypotheses tested were true. Using Fisher’s method of combining P
values (62), we found strong evidence of association among these 5 virus
groups (P = 0.0021; SI Appendix, Fig. S2), although we expect nonindependence
between these tests. We therefore accounted for nonindependence
among the pairwise tests by using permutations to simulate the null dis-
tribution of combined P values. Each generalized linear model was fitted to
10,000 datasets where the null hypothesis was simulated by permuting the
response variable (virus Y). The significant tendency of the distribution of P
values toward zero (and away from the uniform distribution expected
under the null hypothesis) was illustrated using a quantile–quantile (QQ)
plot to compare the 20 observed P values with the 10,000 distributions
simulated under the global null hypothesis (Fig. 3C). The signal of addi-
tional interactions was further demonstrated when the permutation test
of the global null hypothesis was extended to all 72 tests (SI Appendix,
Fig. S3)—only 3 (95% CI: 0 to 9) interactions were expected by chance
assuming the null hypothesis of no interactions, in comparison to the
17 interactions we detected.

Mathematical Modeling of Influenza and RV Interactions and Population
Impact. We developed a 2-pathogen deterministic SIR-type mechanistic
model to study the population dynamics of a seasonal influenza-like virus
and a ubiquitous common cold-like virus cocirculation. We used this
framework to compare the frequency of common cold-like virus infections
with and without an interference with the influenza-like virus. A schematic
representation of the model is provided in SI Appendix, Fig. S4. The
temporal dynamics of the viruses were distinguished in 2 key ways. First,
seasonal forcing was applied to the influenza-like virus (virus 1) via a si-
nusoidally varying transmission rate. Second, the rate of waning immunity
of the common cold-like virus (virus 2) was assumed to be 10 times faster
than for the influenza-like virus. This more rapid replenishment of sus-
ceptible individuals was designed to reflect the high year-round preva-
lence and diversity of circulating subtypes that are characteristic of RV
infections (63).

Individuals were assumed to acquire primary infections at rate β (days−1),
assuming frequency-dependent transmission, and subsequently transition
from susceptible (S) to an infectious refractory phase (I). Infected individ-
uals were assumed not to be susceptible to further infections with the
primary infecting virus. Our assumption is that multiple exposures to
similar virus strains are unlikely to alter the within-host dynamics during
this short period. At the end of the infectious period, individuals entered a
noninfectious refractory phase (J) at rate 1/γ (days−1). This second re-
fractory phase was designed to reflect immune effects that may persist for
a period beyond viral clearance (64, 65). During both refractory phases,
viral interactions are captured via reduced susceptibility of influenza-like
virus infected individuals to either coinfection with the common cold-like
virus (during phase I) or, alternatively, a secondary infection with the
common cold-like virus (during phase J). The strength of the interaction
was determined by an interaction parameter φ applied to the transmission
rate, whereby φ = 0 induced complete susceptibility (equivalent to trans-
mission dynamics in the absence of an interaction), 0 < φ < 1 induced a
partial reduction in susceptibility, and φ = 1 induced a complete loss
of susceptibility.

At the end of the second refractory phase, infected individuals developed
long-lasting immunity to infection due to antibodies generated at rate φ
(days−1) (R). During this phase, individuals were not susceptible to the pri-
mary infection but could acquire secondary infections if previously un-
exposed. Following a period of long-term immunity individuals reverted to
susceptible (S) at a rate σ (days−1) representing the waning of antibodies
against the primary infection.
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The full model ODEs are given as follows:

dfSSg
dt

= μ+ σ1fRSg+ σ2fSRg− β1ðtÞfSSgI’1 − β2fSSgI’2 − μfSSg

dfISg
dt

= β1ðtÞfSSgI’1 + σ2fIRg− γ1fISg− β2ð1−φÞfISgI’2 − μfISg

dfJSg
dt

= γ1fISg+ σ2fJRg−ω1fJSg− β2ð1−φÞfJSgI’2 − μfJSg

dfRSg
dt

=ω1fJSg+σ2fRRg− σ1fRSg− β2fRSgI’2 − μfRSg

dfSIg
dt

= σ1fRIg+ β2fSSgI’2 − β1ðtÞfSIgI’1 − γ2fSIg− μfSIg

dfIIg
dt

= β1ðtÞfSIgI’1 + β2ð1−φÞfISgI’2 − γ1fIIg− γ2fIIg− μfIIg

dfJIg
dt

= γ1fIIg+ β2ð1−φÞfJSgI’2 −ω1fJIg− γ2fJIg− μfJIg

dfRIg
dt

=ω1fJIg+ β2fRSgI’2 − σ1fRIg− γ2fRIg− μfRIg

dfSRg
dt

= σ1fRRg+ γ2fSIg− β1ðtÞfSRgI’1 − σ2fSRg− μfSRg

dfIRg
dt

= β1ðtÞfSRgI’1 + γ2fIIg− γ1fIRg−σ2fIRg− μfIRg

dfJRg
dt

= γ1fIRg+ γ2fJIg−ω1fJRg− σ2fJRg− μfJRg

dfRRg
dt

=ω1fJRg+ γ2fRIg− σ1fRRg− σ2fRRg− μfRRg

β1ðtÞ=B*
�
1+b*sin

�
2*π*

t
365

��

I’1 = IS+ II+ IR

I’2 = SI+ II+ JI+RI,

where {1,2} denotes the infection status of individuals with respect to virus 1

(the seasonal influenza-like virus) and virus 2 (the nonseasonal common cold-
like virus) for each of 12 combinations of infection classes, whereby S =
susceptible, I = infectious refractory phase, J = noninfectious refractory
phase, R = immunity phase, and subscripts 1 and 2 denote the corresponding
virus-specific parameters. For example, {SI} indicates the state of being sus-

ceptible to virus 1 and infectious with virus 2. I’1 and I’2 represent the total
proportion of individuals infectious with virus 1 and virus 2 respectively; β1(t)
denotes the time-dependent rate at which new infections with virus 1 are
generated and comprises a fixed transmission parameter B together with a
seasonal amplitude parameter b; and φ represents a background, non-
acute-respiratory-infection–induced rate of mortality given by 1/the
average life expectancy (days−1). The peak proportion of individuals
coinfected with both viruses was 0.39% during each simulated season of
influenza-like virus circulation. The R0s of these 2 viruses assuming a
completely susceptible homogeneous population are 1.6 (virus 1) and 2
(virus 2). Full parameter values and ranges are provided in SI Appendix,
Table S18.

This framework was implemented in MATLAB software v.R2013b using
the ode45 differential equation solver. Each simulation was run for a period
of 20 y; a “burn-in” period of 10 y was excluded from the analyses.
Using this framework, we quantified the effect of transient immune-
mediated viral interactions on the percentage decrease in daily nonseasonal
common cold-like virus prevalence during peak seasonal influenza-like
virus activity.

Data Availability. The patient-level data used in this study are available upon
request to NHS Scotland (https://www.informationgovernance.scot.nhs.uk/
pbpphsc/home/for-applicants/). Aggregated forms of summary data and
computer code may be made available upon request to the corresponding
author.
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