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Abstract

During perceptual decisions, the activity of sensory neurons correlates with a subject’s percept, 

even when the physical stimulus is identical1–9. The origin of this correlation is unknown. Current 

theory proposes a causal effect of noise in sensory neurons on perceptual decisions10–12, but it 

could result from different brain-states associated with the perceptual choice13 (top-down). These 

two schemes have very different implications for the role played by sensory neurons in forming 

decisions14. Here, we used white-noise analysis15 to measure tuning-functions of V2 neurons 

associated with choice and simultaneously measure how the variation in the stimulus affects 

subjects’ (two macaques) perceptual decisions16–18. In causal models stronger effects of the 

stimulus upon decisions, mediated by sensory neurons, are associated with stronger choice-related 

activity. However, we find that over the timecourse of the trial, these measures change in different 

directions—at odds with causal models. An analysis of effect of reward size supports the same 

conclusion. Finally, choice was associated with changes in neuronal gain that are incompatible 

with causal models. All three results are readily explained if choice is associated with changes in 

neuronal gain caused by top-down phenomena that closely resemble attention19. We conclude that 

top-down processes contribute to choice-related activity. Thus even forming simple sensory 

decisions involves complex interactions between cognitive processes and sensory neurons.

Considerable progress has been made towards explaining the neuronal mechanisms 

underlying decision making12-a major goal in systems neuroscience. For simple perceptual 

decisions, recent theory proposes that sensorimotor areas accumulate sensory evidence about 

the physical world, delivered by sensory neurons10,11,20–22. Noise in the sensory neurons 

causes variability in the behavioral response10–12, resulting in a co-variation between the 

neuronal activity and behavior1–9. (Note that this causal effect of noise in the sensory 

representation has only been invoked for sensory areas, not for sensorimotor areas.) 

However, this co-variation could also arise from top-down effects13 in which brain states23 

that are associated with one behavioral response, also alter the response of the sensory 

neurons. A third (bottom-up) possibility is that sensory neurons that themselves have no 
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causal effect on the decision are correlated with sensory neurons that do have a causal effect. 

These schemes have markedly different implications for the role played by sensory neurons 

in forming decisions. Sensory neurons either only encode the physical stimulus, or they 

simultaneously form an integral part of the mechanism used by the brain to decode the 

sensory information. In order to distinguish these views, we combined the measurement of 

choice-related activity in disparity selective V2 neurons in a disparity discrimination task, 

with a stimulus that permitted the use of white-noise analysis. This allowed the simultaneous 

application of 1) “subspace mapping”15, to describe how disparity affects the neuronal 

response (“disparity subspace map”), and 2) “psychophysical reverse correlation”16–18 to 

extract a kernel describing how disparity affects the subjects’ (two macaques) perceptual 

choices. This comprehensive dataset enables us to differentiate these schemes.

Two macaque monkeys performed a coarse disparity discrimination task (Fig. 1a), while we 

recorded extracellularly from disparity selective neurons in their V2. The stimulus, a circular 

random dot stereogram, contained a spatially uniform binocular disparity which varied 

randomly on each video-frame. We exploited this random variation to perform 

psychophysical reverse correlation16–18, and to measure simultaneously neuronal subspace 

maps15 for disparity.

First, we examined how the monkeys weight the disparity signal in the stimulus to form 

their decision16. We calculated the difference between the average stimulus preceding the 

monkeys’ near choices and the average stimulus preceding the monkeys’ far choices. This 

“psychophysical kernel” measures the relative probability with which the disparity on any 

given frame occurred preceding the monkeys’ near choice. The amplitude of the kernel 

declines substantially over the course of the trial (Fig. 2b). (The supplementary material 

discusses the shape of the psychophysical kernel and shows that this linear analysis 

adequately captures the monkeys’ behavior.) This means that the monkeys rely 

predominantly on the stimulus disparities in the beginning and progressively less towards 

the end of the trial. Now consider neurons representing this sensory evidence. Their activity 

early in the trial should have a stronger effect on the decision than activity late in the trial. 

Thus, if the choice-related activity reflected only the causal effect of the neuronal firing on 

the choice, the size of the choice-related activity should also decrease over time. This 

prediction follows directly from the fact that, in the causal explanation, choice-related 

activity is the effect of noise in the sensory evidence that is used to make a decision.

To evaluate this prediction, we quantified the choice-related signal as ”choice-probability” 

(CP)3. (CPs were corrected for the stimulus-induced component; see supplementary 

Material.) The time course of the choice-related signal in our data (Fig. 2c) is quite different 

from that predicted from the time-course of the psychophysical data in the causal-only 

scheme. CPs were measured for 76 neurons which had simultaneously been recorded while 

the data for the psychophysical kernel were gathered. For 57/76 neurons, for which CP was 

>0.5, we examined the mean CP as a function of time (Fig. 2c). Consistent with previous 

findings4, CP plateaus after about 500ms -quite different from the statistically significant 

decrease in amplitude of the psychophysical kernel over time (r=−0.81, p<10−23 between 

amplitude and time, over the second half of the trials). Although CP timecourses for 

individual neurons are noisy, we addressed the possibility that some neurons behave as if 
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they play a causal role, by computing the correlation coefficient between the timecourse of 

CP for each individual neuron with the timecourse of the average psychophysical kernel 

amplitude (R, Fig. 2d). We find a significant negative correlation between these Rs and a 

neuron’s CP (r=−0.28, p<0.05) indicating that neurons with high CPs tended to show a 

negative correlation with the timecourse of the psychophysical kernel amplitude, as 

expected from the average data (Fig. 2b). This and other features of individual timecourses 

(see supplementatry discussion) are at odds with the causal model.

These results are incompatible with the causal-only account. It suggests that CPs are at least 

partially of non-causal, possibly top-down, origin. We therefore sought a signature of 

possible top-down mechanisms at the level of individual neurons. This could employ a 

mechanism similar to attention which characteristically alters the gain of sensory neurons19. 

We designed our disparity-varying stimulus such that it permitted the measurement of 

subspace maps for disparity (see Methods), in order to test this possibility explicitly.

These subspace maps quantify the effect of each disparity (in the stimulus with 0% added 

signal) on the neuron. Calculating subspace maps separately for stimuli associated with 

“near” and “far” choices quantifies any effects of choice upon the neuronal response. 

Choice-related activity itself implies some difference between these subspace maps. If the 

difference is caused by a change in neuronal gain, the two subspace maps should be scaled 

versions of each other. Example subspace maps for one neuron (Fig. 3a) show that the gain 

of this neuron increased by 84%, while the additive change was close to 0 (−0.032 spikes/

frame). A second example shows a more typical gain increase (18%, y-offset: 0.005 spikes/

frame).

The distribution of relative gain change as a function of CP demonstrates that CPs are 

associated with choice-related changes in neuronal gain (Fig. 3e, n=76, r=0.44, p<10−4; 

monkey 1 n=42, r=0.54, p<0.001; monkey 2 n=34, r=0.32, p<0.07). The geometric mean of 

the relative gains was 1.16 (1.17 and 1.15 for monkey 1 and 2, respectively), which is 

significantly different from 1 (p<0.001, by resampling). Conversely, there was no systematic 

relationship between the y-offset and CP (r=0.03, p=0.77; r=−0.18, p=0.25 and r=0.18, 

p=0.31 for monkey 1 and 2, respectively; mean offset: −0.03 spikes/frame). Thus, it is the 

choice-dependent change in response gain which explains the difference in mean response 

rate between preferred and null choices.

A modest gain change could arise, even in the causal account of CP, from the firing 

properties of cortical neurons (e.g. Poisson spiking24). A shuffling technique showed that 

this effect was too small to account for the observed gain changes (supplements).

The gain change suggests the operation of a mechanism similar to feature selective 

attention19, but which varies from trial-to-trial. This could arise in several ways. First, as the 

decision is formed, a signal altering the neuronal gain may be sent back to those neurons 

supporting this decision. Alternatively, this gain change may implement a perceptual 

working memory25, or a perceptual bias/expectation: attending “near” increases the response 

gain of “near” neurons and thus makes a “near” response more likely.
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An additional feature of our data provides evidence that at least the latter mechanism 

operates. The reward size depended systematically on the animals’ performance (see 

Methods). This performance was better on trials for which a large reward was available (Fig. 

4a and supplements), indicating that animals used more information about the stimulus when 

reward size was large. It allows us to further test causal explanations for CP: when the 

animal uses more stimulus-derived information CP should be larger. Contrary to this 

prediction, we find that CPs were significantly smaller for trials on which a large reward 

was available (p<0.006, paired t-test, Figure 4b). This result can be explained if one assumes 

that the animal has some bias (or expectation) at the start of each trial (regardless of reward 

size), and this bias engages our proposed top-down mechanism. When the available reward 

is small and the monkeys make less use of the sensory input (as demonstrated by the 

psychophysical kernel, Fig. 4a), the bias will have a stronger impact on the behavioral 

response. Conversely, when a large reward is available, the improved performance implies 

that any initial bias is more likely to be overridden by the evidence provided by the visual 

stimulus. Hence any component of CP reflecting a top-down effect of bias will be smaller on 

large-reward trials when the decision is more strongly driven by the actual stimulus and less 

by the monkey’s initial bias.

Our results provide three lines of evidence against the view that decision-related activity in 

sensory reflects only the causal effect of neuronal noise on sensory decisions. First, the time-

course of the decision-related signal was incompatible with that predicted from the 

behavioral data in the causal-only scheme. Second, larger rewards systematically improved 

the animals’ behavior, but reduced CP, the opposite of the expectation from causal 

explanations. Finally, CPs were associated with choice-dependent gain changes larger than 

could be explained in the causal scheme. All three phenomena follow naturally from a top-

down scheme in which the animals’ perceptual state alters the response of sensory neurons. 

An alternative explanation is that neurons which do not contribute to the decision show CP 

because they are correlated with neurons that do contribute. Such a scheme, if sufficiently 

rich, might explain the data without invoking a top-down mechanism (see supplementary 

Discussion), but nonetheless abandons the principle that CP reflect only the causal effect of 

sensory noise upon decisions. Given that the choice-dependent gain changes we observe are 

characteristic of top-down mechanisms such as attention, our top-down scheme is the most 

parsimonious.

Changes in neuronal gain may facilitate the decoding of neuronal populations by 

appropriately weighting relevant neurons26–28. Implementing such a decoding mechanism at 

the level of sensory neurons allows the brain extraordinary flexibility to perform sensory 

decisions in different circumstances. Here we show that these gains vary with a subject’s 

choice, within a fixed task. This gain change could implement a perceptual bias or 

expectation (attending to “near” or “far”), and could also follow the formation of a decision. 

It may serve to promote perceptual stability in the presence of ambiguous29 or noisy sensory 

signals. In either case, our data suggest that even simple sensory decisions involve top-down 

mechanisms that entwine cognitive processes and the sensory representation in previously 

unreported ways.
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Methods summary

All procedures were in agreement with the Public Health Service policy on the humane care 

and use of laboratory animals and all protocols were approved by the Institute Animal Care 

and Use Committee. We recorded extracellular activity from disparity selective single V2 

units while two monkeys (Macaca mulatta) performed disparity discrimination. Upon 

fixation, a stimulus was presented for 2sec, followed by two choice targets. After a saccade 

to the correct target, the monkeys received a liquid reward. Stimuli were dynamic random 

dot patterns: a disparity-varying center (disparity changed randomly on each frame, 96Hz 

framerate) and a surrounding annulus at 0°. The center disparity was chosen from a set of 

evenly spaced disparity values centered around 0° (encompassing the preferred and null 

disparity of each neuron). We introduced a detectable signal by increasing the probability of 

occurrence for one disparity within some trials. These signal disparities approximately 

matched each neuron’s preferred and null disparity. Signal trials served only to control 

behavior: all analyses were restricted to trials with 0% signal added. Psychophysical kernels 

were computed as the difference of the mean stimulus matrix preceding near- and far 

choices, respectively. The average kernel was a weighted average of the kernel for each 

experiment for which neuronal data were included. Choice-probabilities were obtained as 

described previously3,6, but corrected for the stimulus-induced component (Supplements). 

For the sub-space analysis, the average response of each neuron following one frame of a 

given disparity (di) was computed as a spike density function (Si(t)). We calculated the total 

number of spikes elicited by one frame of di as the sum of the overall mean number of 

spikes/frame and the integral of the deviation of Si(t) around this mean. Separate analyses 

for all trials preceding a near choice (far choice) yield the subspace maps separated by 

choice.

Methods

Task and reward-regimen

Two monkeys were trained in a binary forced choice disparity-discrimination task (Fig. 1a). 

They judged whether the central stimulus-region appeared in front or behind the surrounding 

annulus. Trials started upon fixation (within 0.5° of a fixation marker), initiating a 2sec 

stimulus presentation followed by the appearance of two choice targets (3° above and below 

the fixation marker). If the monkeys indicated their decision by a saccade to the correct 

choice target within 500ms of the stimulus disappearance, they received liquid rewards. If 

the monkeys made correct choices on three consecutive trials, the reward on the fourth and 

on all subsequent correct trials was approximately three times its normal size, until the 

monkey made an error. After an error, the reward size was set back to its normal size.

Recordings

We recorded extracellular activity from disparity selective single-units in these monkeys’ 

V2, as described previously6,30. Both animals were implanted with scleral search coils in 

both eyes31, head fixation posts and a recording chamber under general anesthesia. Positions 

of both eyes (for 17/58 neurons for monkey 2 signals were available only for one eye) were 

measured with a magnetic scleral search system (C-N-C Engineering) and digitized at 
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800Hz. The monkeys viewed the stimuli on EIZO Flexscan F980 monitors in a Wheatstone 

stereoscope configuration (89cm viewing distance). All procedures were in agreement with 

the Public Health Service policy on the humane care and use of laboratory animals and all 

protocols were approved by the Institute Animal Care and Use Committee.

Stimulus

All stimuli were circular dynamic random dot stereograms (RDS; 50% black and 50% white 

dots of 99% contrast, dot-density generally 40%, dot size 0.09×0.09°). Each RDS had a 

disparity-varying center (3–5° in diameter) and a 1–2° wide surrounding annulus at 0° 

disparity (Fig. 1b). On each frame, all center dots had the same disparity, but this disparity 

value changed randomly from frame to frame (96Hz frame-rate). For the condition with 0% 

added signal, the disparity on each frame was drawn at random from a uniform distribution 

of discrete, equally spaced disparities (symmetrical about 0° disparity, center Panel in Fig. 

1c; encompassing the preferred and the null disparity of each neuron). Signal disparities 

(always one near, one far disparity) approximately matched the preferred and null disparity 

of the neuron. Disparity signal was introduced by increasing the probability of the signal 

disparity on each frame (Fig. 1c).

Psychophysical reverse correlation

Only 0% added signal trials were included in the analysis. Each stimulus trial was 

summarized by a two-dimensional matrix in which each row corresponds to one disparity, 

and each column to one stimulus frame. For each column in this matrix, there is one entry 

with a 1, corresponding to the disparity at this frame, and all other entries are 0. We then 

computed the average matrix preceding the monkey’s near and far choice. For each of the 

200 stimulus frames, the resulting values correspond to the probability with which each 

disparity preceded a near choice or far choice, respectively. This yields a two-dimensional 

(time × disparity) probability-distribution. The difference between the probability 

distribution preceding near choices and far choices defined the psychophysical kernel for 

each experiment. (Negative disparities are defined as near.) The kernel-shapes change little 

between monkeys or as a function of the signal disparities (supplementary Fig. 2). We 

therefore collapsed all the data into a single psychophysical kernel to maximize the temporal 

resolution. The average psychophysical kernel (Fig. 2a) was obtained for all experiments for 

which the simultaneously recorded neurons passed the inclusion criteria. Since the disparity 

range was adjusted for each neuron, the psychophysical kernel for each experiment was 

weighted by the number of disparity values included in this experiment (this ranged between 

5–13 disparity values) and by the number of trials for this experiment. Only data for 

disparity values [−0.4°, −0.3°…, 0.4°] were included in this average. As an estimate of the 

amplitude of the psychophysical kernel we computed the inner product of the time-averaged 

psychophysical kernel with the psychophysical kernel (temporally smoothed, 10ms boxcar) 

at each 10ms bin, and normalized this inner product by its overall mean. Confidence 

intervals for all measures were derived by resampling. All analyses were based on the linear 

kernel of the psychophysical data. Consistency-analyses (see supplements) show that this 

linear kernel provides an excellent description of the monkeys’ behavior. Further analyses 

indicate that second-order interactions were negligible (see supplements).
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Sub-space analysis

The analysis is based on all 0% added signal trials. First, the average response of each 

neuron following one frame of a given disparity (di) was computed as a spike density 

function (Si(t)), smoothed by a 10ms-wide boxcar (colored solid lines in supplementary Fig. 

3a). As an estimate of the impact of one frame of this disparity (di) on the firing rate of the 

neuron, we calculated the total number of spikes (si) elicited by one frame of di. This metric 

corresponds to the sum of the mean number of spikes/frame (μ, black line in supplementary 

Fig. 3a) and the integral of the deviation of Si(t) around this mean.

The disparity sub-space map (si) is plotted as a function of di (supplementary Fig. 3b). 

Performing this analysis separately for all trials preceding a null choice (preferred choice) 

yields the subspace maps separated by choice (Fig. 3a,c). To quantify the choice-dependent 

modulation in tuning, we plotted the responses on the null choice trials against those on the 

preferred choice trials (Fig. 3b,d), and estimated (type II regression) the slope (gain-change) 

and the y-offset (additive change). Note that because the spike density function is a mean 

rate calculated separately for each choice, variations in the disparity content of the stimulus 

that are associated with choice will not produce differences in the subspace maps.

Analysis of choice-probabilities

Choice probabilities were obtained for all 0%-added signal trials as described previously 3,6. 

As the psychophysical kernel demonstrates, there are systematic differences in the stimuli 

preceding the monkeys’ choices. CPs were corrected for this stimulus-induced component 

(see supplementary methods).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Methods. a Schematic of the sequence of events during one trial. b Example time series of 

the stimulus. c Probability mass distributions of the stimuli for one experiment (probability 

as a function of disparity), with signal disparities: −0.3° and 0.15°. Each panel depicts one 

signal condition (negative percentages indicate near signal disparities). d The monkey’s 

performance for this experiment(in percent near choices as a function of % added signal).
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FIGURE 2. 
Psychophysical kernel and choice-related signal have different time-courses. a 
Psychophysical kernel (averaged over 76 experiments; n=17200 trials; two monkeys) as a 

function of disparity and time. Color represents amplitude (in occurrences/frame). b 
Normalized amplitude of the psychophysical kernels decreases over time. c Averaged 

choice-related signal over time. b,c Shaded gray areas: ± 1 standard error. d The correlation 

coefficient (R) over time between CP (for individual neurons) and the amplitude of the mean 

psychophysical kernel against a neuron’s mean CP. Color-code: temporal integration time 

(supplementary methods); bold edges: significant R (p<0.05, by resampling); circles, 

squares data from monkey 1 and 2, respectively.
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FIGURE 3. 
Choice-dependent gain change. a Sub-space maps for preferred (red), null (blue) choices 

superimposed (neuron d1456). Dashed lines: 0° disparity, 0 spikes/frame. b Null-choice 

responses plotted against preferred-choice responses, yielding relative gain (slope, 1.84), 

additive change (y-offset, −0.032 spikes/frame). Dashed lines: unity, 0 spikes/frame. c,d 
Same format as a,b for neuron d1394 whose slope (1.18), y-offset (0.005 spikes/frame) 

resemble the population-mean. e Slope and choice-probability are correlated. Filled, open 

symbols: cells with, without significant choice-probability. Circles, squares: data for 

monkey 1, 2. Dashed lines: 0.5 choice-probability, relative gain of 1. f No correlation 

between y-offset and choice-probability (symbols as e). Dashed lines: 0.5 choice-

probability, 0 spikes/frame. Solid lines in e,f: median standard error for slope, y-offset.
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FIGURE 4. 
Reward size affects behavior and choice-related signal. a Psychophysical kernel as a 

function of disparity and available reward (in occurrences/1000ms; n=6886 trials for large 

reward, red line; n=10314 trials for small reward, blue line; averaged over the first and 

second 1000ms of each trial in the left and right panel, respectively.). Improved performance 

is mainly caused by a larger psychophysical kernel in the first (kernel difference p<0.001, by 

resampling), not second half of the trials (difference n.s.) b Choice-probability computed for 

the first half of the trials was larger when a smaller reward was available (p<0.006, n=76). 

Dashed line: unity.
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