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Abstract

Target selective drugs, such as dopamine receptor (DR) subtype selective ligands, are developed for enhanced therapeutics
and reduced side effects. In silico methods have been explored for searching DR selective ligands, but encountered
difficulties associated with high subtype similarity and ligand structural diversity. Machine learning methods have shown
promising potential in searching target selective compounds. Their target selective capability can be further enhanced. In
this work, we introduced a new two-step support vector machines target-binding and selectivity screening method for
searching DR subtype-selective ligands, which was tested together with three previously-used machine learning methods
for searching D1, D2, D3 and D4 selective ligands. It correctly identified 50.6%–88.0% of the 21–408 subtype selective and
71.7%–81.0% of the 39–147 multi-subtype ligands. Its subtype selective ligand identification rates are significantly better
than, and its multi-subtype ligand identification rates are comparable to the best rates of the previously used methods. Our
method produced low false-hit rates in screening 13.56 M PubChem, 168,016 MDDR and 657,736 ChEMBLdb compounds.
Molecular features important for subtype selectivity were extracted by using the recursive feature elimination feature
selection method. These features are consistent with literature-reported features. Our method showed similar performance
in searching estrogen receptor subtype selective ligands. Our study demonstrated the usefulness of the two-step target
binding and selectivity screening method in searching subtype selective ligands from large compound libraries.

Citation: Zhang J, Han B, Wei X, Tan C, Chen Y, et al. (2012) A Two-Step Target Binding and Selectivity Support Vector Machines Approach for Virtual Screening of
Dopamine Receptor Subtype-Selective Ligands. PLoS ONE 7(6): e39076. doi:10.1371/journal.pone.0039076

Editor: Arto Urtti, University of Helsinki, Finland

Received October 25, 2011; Accepted May 15, 2012; Published June 15, 2012

Copyright: � 2012 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors acknowledge the support from Academic Research Funds Singapore (R-148-000-081–112), Ministry of Science and Technology, 863 Hi-
Tech Program China (2007AA02Z160), Key Special Project Grant 009ZX09501-004. Y.Z. Chen is supported by Academic Research Funds Singapore. Y.Y. Jiang is
supported by the Ministry of Science and Technology, China. The funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: phacyz@nus.edu.sg (YZC); jiangyy@sz.tsinghua.edu.cn (YYJ)

Introduction

Drugs that selectively modulate protein subtypes are highly

useful for achieving therapeutic efficacies at reduced side effects

[1,2,3,4]. For some targets such as dopamine receptors, all of the

approved drugs are subtype non-selective, and this non-selectivity

directly contributes to their observed side effects and adversely

affects their application potential [4]. There is a need for

developing subtype selective drugs against these targets [3,4,5,6,7].

The drug-binding domains of some protein subtypes are highly

similar to each other. For instance, the sequence similarities

among the transmembrane regions of dopamine receptor subtypes

are at high levels of 72%, 73% and 90% between D2-like

subfamily members D2 and D4, D3 and D4, and D2 and D3

respectively [8], and at the levels of 68%, 70% and 66% between

D1 and D2, D1 and D3 and D1 and D4 respectively. Ligand

binding selectivity to these subtypes is both determined by the

structural and physicochemical features of the conserved and non-

conserved residues [9]. For instance, while D2 receptor and D3

receptor share high sequence identity in the seven helices regions

that make up most of the binding sites, different compositions of

the loop regions affect the contour and topography of the binding

pockets and hydrogen bonding sites, which enables subtype

selective binding [10,11]. On the other hand, D2/D4 selectivity

has been suggested to be determined by mutated residues within

the second, third, and seventh membrane-spanning segments [9].

The high sequence similarity levels make it more difficult to

develop dopamine receptor subtype-selective drugs. Efforts have

been made in exploring in-silico methods for searching dopamine

receptor subtype-selective drug leads against highly similar

subtypes. For instance, 3D-QSAR models have been developed

for D2, D3 and D4 selective ligands respectively, achieving good

prediction performances with R2 and Q2 values in the ranges of

0.89–0.97 and 0.58–0.84 respectively [10,11,12,13]. A GALA-

HAD based selective pharmacophore model has been constructed

for D1/D2 selective agents [14]. CoMFA and CoMSIA models

have been developed for D2, D3 and D4 selective ligands [15].

These models have been developed by using 12–163 ligands.

Significantly higher numbers of dopamine receptor ligands

including subtype selective [2,4] and multi-subtype [16,17] ligands

have been reported. These ligands are of high structural diversity.

The published D1, D2, D3 and D4 ligands are distributed in 225,
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642, 463 and 433 compound families (Table 1) compared to the

90–388 families covered by the inhibitors of many kinases [18].

These structurally diverse ligands are not expected to be fully

presented by the existing models trained from limited numbers of

ligands. More extensive exploration of the available ligands is

needed for developing more effective in-silico tools for searching

subtype-selective dopamine receptor ligands.

Machine learning methods are particularly useful for developing

virtual screening (VS) models from structurally diverse compounds

and for searching large chemical libraries [19,20,21]. The

purchasable real chemical libraries have been expanded to

.1 million compounds [22] and the public chemical databases

have been expanded at faster paces with PubChem [23], ZINC

[24], and ChEMBL [25] databases accumulating .30 million

compounds, .13 million purchasable compounds, and .1 mil-

lion bioactive compounds respectively. The available chemical

space defined by these databases may be more extensively

explored by the use of machine learning methods [26,27].

Moreover, several multi-label machine learning methods have

been used for developing in-silico tools to predict protein selective

compounds within a protein family or subfamily. For instance,

multi-label support vector machines (ML-SVM), multi-label k-

nearest-neighbor (ML-kNN) and multi-label counter-propagation

neural network (ML-CPNN) methods have been used for

predicting isoform specificity of P450 substrates [28,29]. Combi-

natorial support vector machines (Combi-SVM) method has been

used for identifying dual kinase inhibitors selective against single

kinase inhibitors of the same kinase pair and inhibitors of other

kinases [18]. It is of interest to explore some of these methods and

to evaluate their capability in predicting subtype selective

dopamine receptor ligands.

These existing methods are based on statistical learning

algorithms trained by compounds active and inactive against a

specific protein or subtype [18,19,28,29]. In these algorithms, the

inactive chemical space can be represented by a large number of

inactive compounds in a training dataset that typically include

representative compounds of chemical families or biological

classes. In particular the inactive training dataset of a subtype is

typically too large to further add sufficient number of active

compounds of other subtypes [18,19,28,29]. Consequently,

although these methods have shown good performance in selecting

ligands of a subtype, they do not always distinguish subtype

selective and non-selective ligands at good accuracy levels. For

instance, the ML-SVM, ML-kNN and ML-CPNN methods

predict 34%–89% isoform selective substrates as selective and

82%–99% isoform non-selective substrates as non-selective [28].

Combi-SVM identifies 51.9%–96.3% single kinase inhibitors as

kinase selective with respect to a specific kinase pair and 12.2%–

57.3% dual kinase inhibitors as dual inhibitors [18]. Therefore,

new methods need to be explored for better distinguishing subtype

selective and non-selective ligands.

In this work, we introduced a new method, the two-step binary

relevance SVM (2SBR-SVM) method for improving the ability in

distinguishing subtype selective and non-selective ligands. Our

method adopts a two-step approach, with the first step focusing on

the identification of putative ligands of a receptor subtype

regardless of their possible binding to other subtypes, and the

second step focusing on the further separation of subtype selective

and multi-subtype ligands. In the first step, a SVM model was

developed for each receptor subtype to select putative ligands

regardless of their possible binding to other subtypes using the

same method as that described in our earlier studies [19]. In the

second step, the Binary relevance (BR) method [30] was used for

more refined separation of subtype selective and multi-subtype

ligands. Specifically, the training datasets of the multiple receptor

subtypes were re-arranged into multiple new training datasets, one

for each subtype. For a particular subtype, the ligands of that

subtype were used as positive samples and the ligands of the other

subtypes as the negative samples to train a SVM model for

maximally separating ligands of a subtype with those of other

subtypes.

Our new method 2SBR-SVM was tested together with three

previously-used methods Combi-SVM [18] and two methods in

the Mulan software package [30]: the ML-kNN [28,31] and

Random k-labelset Decision Tree (RAkEL-DT) [32,33] methods.

The purpose of these tests was to evaluate the performance of the

previously used methods, and to determine to what extent our new

method can improve the performance in selecting dopamine

subtype selective ligands.

A number of dopamine receptor subtype selective ligands have

been therapeutically explored. For instance, most currently used

dopamine agonists for the symptomatic treatment of Parkinson’s

disease are selective for D2-like receptors primarily because drugs

acting on both the D1 and D2 receptor families tend to additively

Table 1. Datasets of our collected dopamine receptor D1, D2, D3 and D4 ligands, non-ligands and putative non-ligands.

Training Dataset Independent Testing Dataset

Dopamine Receptor
Subtype

Positive
Samples

Negative
Samples

Positive
Samples

Negative
Samples

Ligands published
before 2010 (No of
chemical families
covered by
ligands)

Non-ligands
published before
2010

Putative
non-ligands

Ligands published since
2010
(percent of ligands
outside training
chemical families)

Non-ligands published since
2010

D1 491 (225) 264 65198 59 (25.42%) 25

D2 2202 (642) 1577 63687 135 (16.30%) 65

D3 1355 (463) 631 62927 76 (18.42%) 28

D4 1486 (433) 526 63272 29 (34.48%) 33

Dopamine receptor D1, D2, D3 and D4 ligands (Ki ,1 mM) and non-ligands (ki .10 mM) were collected as described in method section, and putative non-ligands were
generated from representative compounds of compound families with no known ligand. These datasets were used for training and testing the multi-label machine
learning models.
doi:10.1371/journal.pone.0039076.t001
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produce motor complications such as dyskinesia [34]. D2-selective

drugs have exhibited therapeutic efficacy in animal studies [35]

and clinical trials [36]. D3-selective drugs have been explored for

the treatment of schizophrenia and drug addiction [37,38]. D4-

selective ligands have shown therapeutic potential against erectile

dysfunction [39,40]. Efforts have also been directed to the

development of D1-selective [41,42] ligands against Parkinson’s

disease and other related CNS disorders. Therefore, our tests were

conducted on D1, D2, D3 and D4 selective and non-selective

ligands.

Our VS models were trained from 491–2202 dopamine

receptor D1, D2, D3, and D4 ligands published before 2010 with

all the known subtype selective ligands and some known multi-

subtype ligands excluded. The reason for the exclusion of these

subtype selective and multi-subtype ligands from the training

process is to test to what extent our VS models can identify

subtype selective ligands without explicit knowledge of the known

subtype selective and multi-subtype ligands. The prediction

performance of these models was evaluated by 29–135 known

D1, D2, D3 and D4 ligands and 25–65 known non-ligands

published since 2010 and not in the training datasets. The subtype

selectivity of these models was tested on the 21–408 known

subtype selective ligands and the 39–147 known multi-subtype

ligands not in the training datasets.

The performance of our new method, 2SBR-SVM, and the

method developed in our previous studies, Combi-SVM [18], in

screening large compound libraries was evaluated by 13.56 million

PubChem compounds [23], 168,016 MDL Drug Data Report

(MDDR) database compounds, and 657,736 ChEMBLdb com-

pounds [43] which represent general chemical libraries, patented

bioactive agents, and published bioactive compounds respectively.

The capability of 2SBR-SVM in identifying subtype selective

ligands of other receptors was further evaluated against estrogen

receptor (ER) ERa and ERb subtype ligands by using the same

training and testing procedures as those of the dopamine receptor

subtype ligands.

Methods

Datasets
D1, D2, D3 and D4 ligands and non-ligands were collected

from comprehensive search of literatures [38,41,44,45] and

ChEMBLdb database [43] by using combinations of keywords:

‘‘dopamine’’, ‘‘D1 receptor’’, ‘‘D2 receptor’’, ‘‘D3 receptor’’, ‘‘D4

receptor’’, ‘‘ligand’’, ‘‘binding’’, ‘‘binder’’, ‘‘subtype selective’’, and

‘‘selective ligand’’. As the ligands were collected from different

sources with their binding affinities measured under different

assays and conditions, some level of variations in binding affinities

is expected. Therefore, we tentatively selected compounds with

binding affinity Ki ,1 mM against a dopamine receptor as its

ligands, and those with binding affinity Ki .10 mM as non-

ligands. The 1 mM to 10 mM binding affinity gap between ligands

and non-ligands was used for reducing the possible influence of

experimental binding affinity variations on the robustness of

developed VS models. Some of the dopamine receptor ligands

have been explicitly reported to be subtype selective or multi-

subtype ligands, which can be used for testing the subtype selective

capability of our developed VS models. Thus for subtypes with

$20 subtype selective or $20 multi-subtype ligands, the

corresponding ligands were used as independent testing datasets

(a cut-off of 20 ligands was used to ensure the testing to be

statistically meaningful).

We assembled 491 D1, 2202 D2, 1355 D3 and 1486 D4 ligands

published before 2010 and 59 D1, 135 D2, 76 D3 and 29 D4

ligands published since 2010 with unspecified selectivity toward

other subtypes, and 264 D1, 1577 D2, 631 D3 and 526 D4 non-

ligands published before 2010 and 25 D1, 65 D2, 28 D3 and 33

D4 non-ligands published since 2010 with unspecified selectivity

toward other subtypes. The collected pre-2010 ligands and non-

ligands for each receptor subtype were used as positive and

negative samples of the training dataset for developing VS models

for that subtype. The collected non-ligands are insufficient to cover

the vast non-ligand chemical space. Therefore, putative ligands for

each receptor subtype were generated from the representative

compounds of the compound families that contain no known

ligand of that subtype by using the method described in our earlier

studies [19]. A total of 65198 D1, 63687 D2, 62927 D3 and 63272

D4 putative non-ligands were generated and used in combination

with known non-ligands as the negative samples of the training

datasets. The collected post-2010 ligands and non-ligands were

used as independent testing datasets for evaluating the perfor-

mance of the developed VS models. These datasets are

summarized in Table 1.

The use of pre-2010 and post-2010 compounds as training and

testing datasets was intended to mimic the case of VS models being

developed in 2010 and subsequently tested a few years later

against newly discovered compounds. In view that such training

and testing datasets and their developed models may not be easily

reproduced and comparatively evaluated, we designed alternative

training and testing datasets by randomly separating all ligands

and non-ligands of a receptor subtype into approximately 10

compound-sets, with 9 compound-sets as a training dataset and

the remaining 1 as a testing dataset (these training and testing

datasets contain similar number of compounds as the correspond-

ing ones developed from pre-2010 and post-2010 compounds).

There are 10 sets of training and testing datasets for each subtype

with each of the 10 compound-sets used as a testing dataset once,

all of which were tested in this work. These alternative datasets are

summarized in Table S1.

Dopamine receptor subtype selective ligands have been

discovered and evaluated based on the criterion that each ligand

binds to a specific subtype with at least ,10 fold higher binding

affinity (Ki value) than that to another subtype [46]. Based on this

criterion, we collected 97, 21, and 29 D1 selective ligands with

.10 fold higher binding affinity over D2, D3 and D4 respectively,

43, 37 and 63 D2 selective ligands over D1, D3 and D4

respectively, 48, 99 and 85 D3 selective ligands over D1, D2 and

D4 respectively, and 27, 408 and 207 D4 selective ligands over

D1, D2 and D3 respectively (Table 2). These subtype selective

ligands were used as the positive samples to test subtype selectivity

of our developed VS models.

The binding subtypes of a number of multi-subtype dopamine

ligands have been explicitly reported [16,17]. These ligands and

their binding subtypes were selected based on the criterion that

they bind to each subtype with binding affinity Ki ,1 mM. We

collected 4 groups of dual-subtype ligands (147 D1–D2, 4 D1–D3,

8 D1–D4, and 100 D3-D4 ligands), 2 groups of triple-subtype

ligands (39 D1–D2–D3 and 2 D1–D2–D3 ligands), and 1 group of

quadruple-subtype ligands (60 D1–D2–D3–D4 ligands). Four of

these groups with .10 ligands were selected as negative samples to

test the ability of our developed VS models in predicting multi-

subtype ligands (and thus the ability in separating subtype-selective

and multi-subtype ligands) (Table 3). There are three other

groups with high numbers of multi-subtype ligands (569 D2–D3,

276 D2–D4 and 402 D2-D3-D4 ligands). Separation of these

groups of multi-subtype ligands from the training datasets would

significantly compromise the structural diversity of the training

datasets. Therefore, these three groups were not removed from the

Virtual Screening of Dopamine Receptor Ligands

PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e39076



training datasets. Inclusion of these groups in the training datasets

does not enhance their subtype-selective signal. Instead they act as

noise that tends to reduce the capability of the developed VS

models in separating subtype-selective and multi-subtype ligands.

ERa and ERb ligands were collected in the same manner as

that of dopamine receptor ligands using keyword combinations of

‘‘estrogen’’, ‘‘estrogen receptor’’, ‘‘ER’’, ‘‘ER alpha’’, ‘‘ER beta’’,

‘‘ligand’’, ‘‘binding’’, ‘‘binder’’, ‘‘subtype selective’’, and ‘‘selective

ligand’’. We collected 1146 ERa and 1234 ERb ligands (with

unknown status about their subtype selectivity or multi-subtype

binding) and 761 and 786 ERa and ERb non-ligands, which

together with 64013 and 60603 putative ERa and ERb non-

ligands (generated by the same procedure as the putative

dopamine receptor subtype non-ligands) were used for training

2BR-SVM VS models using the same procedure as that of the

alternative dataset version of dopamine receptor subtype selective

VS models. There are 10 sets of randomly assembled training and

testing datasets for each estrogen receptor subtype with each of the

10 randomly generated compound-sets used as a testing dataset

once, all of which were tested in this work. We also collected 40

and 55 ERa and ERb selective ligands (with binding affinity ratios

in the range of 10–2055 and 10–1143) and 63 ERa and ERb

multi-target ligands, which were used as independent testing

datasets for testing the VS models. These datasets are summarized

in Table S2.

Molecular representations
The 2D structures of our collected compounds were drawn by

using Chemdraw or from the ChEMBLdb [43] and Pubchem [23]

databases. Each compound was represented by 98 molecular

descriptors (Table S3) computed by using own developed

MODEL program [47]. These 98 descriptors have been selected

in our previous studies for developing VS models of a variety of

target classes including GPCR ligands to screen large chemical

libraries such as Pubchem compounds [18,19,48]. Although the

structures of the binders of one target or subtype can be very

different from those of another target or subtype, each binders set

plus the representatives of the non-binders cover the same

chemical space defined by the 13.56 million Pubchem com-

pounds. Therefore, the same set of molecular descriptors was used

in this work as well as our previous works [18,48].

Table 2. Datasets of our collected dopamine receptor D1, D2, D3 and D4 selective ligands against another subtype.

Dopamine receptor
subtype

Selectivity against
the second subtype

Number of subtype selective
ligands against the second
subtype

Range of binding
affinity ratio

Mean of binding
affinity ratio

D1 D2 97 10–4533 359

D3 21 11–559 122

D4 29 11–4600 770

D2 D1 43 10–3707 337

D3 37 10–615 66

D4 63 10–1851 113

D3 D1 48 17–38461 3863

D2 99 10–6666 259

D4 85 10–9111 950

D4 D1 27 13–4761 1315

D2 408 10–10752 2962

D3 207 10–51162 1175

The binding affinity ratio is the experimentally measured binding affinity to the second subtype divided by that to the first subtype: (Ki of the second subtype / Ki of the
first subtype). This dataset was used as positive samples for testing subtype selectivity of our developed virtual screening models.
doi:10.1371/journal.pone.0039076.t002

Table 3. Datasets of our collected dopamine receptor multi-subtype ligands.

Ligand Group Binding Subtypes
Number of Ligands of
Subtypes Used as Testing Dataset

Dual Subtype Ligands D1 and D2 147 Yes

D1 and D3 4 No

D1 and D4 8 No

D3 and D4 100 Yes

Triple Subtype Ligands D1, D2 and D3 39 Yes

D1, D3 and D4 2 No

Quadruple Subtype Ligands D1, D2, D3 and D4 60 Yes

Four groups of this dataset were used as negative samples for testing subtype selectivity of our developed multi-label machine learning models.
doi:10.1371/journal.pone.0039076.t003
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Support vector machines
SVM is based on the structural risk minimization principle for

minimizing both training and generalization error [49]. In linearly

separable cases, SVM constructs a hyper-plane to separate active

and inactive classes of compounds with a maximum margin. In

nonlinearly separable cases, which frequently occur in classifying

compounds of diverse structures [18,19,48], SVM maps the input

vectors into a higher dimensional feature space by using the Radial

Basis Function (RBF) kernel function. This kernel function has

been extensively used and consistently shown better performance

than other kernel functions [50,51,52]. In the high dimensional

space, linear SVM can be applied for classifying the active and

inactive compounds. For the parameters, a hard margin

C = 100000 was used and s= 0.4–0.6 were determined from 5

fold cross validation studies.

Combinatorial SVM method
In combinatorial strategy, SVM models for each receptor

subtype are separately constructed, which are subsequently used

for parallel screening against each individual subtype to find

compounds that only bind to one of the subtypes (putative subtype

selective ligands) or simultaneously bind to multiple subtypes

(putative subtype non-selective ligands) [18,48].

Two-step Binary relevance SVM method
Subtype selective ligands were selected by two steps. In the first

step, a high performance SVM model was developed for each

receptor subtype to select ligands of that subtype regardless of their

selectivity towards other subtypes. The high performance in

selecting ligands of a subtype was achieved by using comprehen-

sive sets of known ligands and putative non-ligands of the

corresponding receptor to train the respective SVM model [19].

In the second step, the Binary relevance (BR) method [30] was

used for more refined selection of subtype selective ligands from

the putative ligands selected in the first step. BR is a popular

multiple binary classification method that transforms the original

N-label dataset into N pairs of datasets with samples of each label

as positive dataset and samples of the other N-1 labels as negative

dataset [30].

Multi-label K nearest neighbor method
ML-kNN implemented in the Mulan software package [30] was

used in this work. ML-kNN [31] extends traditional kNN method

to solve the multi-label problem. In the first step, ML-kNN

classifies a compound x by linking it to the known ligand or non-

ligand xi in the training dataset with closest Euclidean distance

[53]. In the second step, statistical information, i.e. prior and

posterior probabilities for the frequency of each label within the k

nearest neighbors, is gained from the label sets of these

neighboring ligands. In the third step, maximum a posteriori

(MAP) principle is used to determine the label set for the unknown

ligands. The default parameters in Mulan package were used in

this work.

The random k-labelsets decision tree method
RAkEL-DT implemented in the Mulan software package [30]

was used in this work. The random k-labelsets (RAkEL) method

[32] constructs an ensemble of label powerset (LP) classifiers. LP is

a transformation method which considers each unique set of labels

existed in multi-label training set as new single label. Since RAkEL

is a transformation-based algorithm and it accepts a single-label

classifier as a parameter, decision tree C4.5 algorithm was used for

this purpose. C4.5 decision tree is a branch-test-based classifier

[54]. A branch in a decision tree corresponds to a group of classes

and a leaf represents a specific class. A decision node specifies a

test to be conducted on a single attribute value, with one branch

and its subsequent classes as possible outcomes of the test. C4.5

decision tree uses recursive partitioning to examine every attribute

of the data and to subsequently rank them according to their

ability to partition the remaining data, thereby constructing a

decision tree. The default parameters in Mulan package were used

in this work.

Virtual screening model development, parameter
determination and performance evaluation

All VS models for each dopamine receptor subtype were trained

from the training datasets in Table 1. The parameters were

determined by 5-fold cross validation (CV) tests, and the

performance of these VS models was evaluated by using the

independent testing datasets in Table 1. In each 5-fold CV test,

the training dataset was divided into 5 groups of approximately

equal number of positive samples and equal number of negative

samples, with 4 groups used for training and 1 group used for

testing the model. There are five such sets each with one unique

group used as a testing set, from which five prediction models can

be constructed. VS models were developed at different parame-

ters. The parameters with the best overall 5-fold CV performance

were selected for developing the final VS models.

The performance indicators can be derived from the numbers

of true positives TP (true inhibitors), true negatives TN (true non-

inhibitors), false positives FP (false inhibitors), and false negatives

FN (false non-inhibitors). In 5-fold cross validation studies, the

inhibitor and non-inhibitor prediction accuracies are given by

sensitivity SE = TP/(TP+FN)*100 and specificity SP = TN/

(TN+FP)*100 respectively. Prediction accuracies have also been

frequently measured by overall prediction accuracy (Q) and

Matthews correlation coefficient (C) [55].

Q~
TPzTN

TPzTNzFPzFN
ð1Þ

C~
TP � TN{FN � FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)(TPzFP)(TNzFN)(TNzFP)

p ð2Þ

In the large database screening tests, the yield and false-hit rate

are given by TP/(TP+FN) and FP/(TP+FP) respectively.

Determination of similarity level of a compound against

dopamine receptor ligands in a dataset

The similarity level of a compound i with respect to the ligands

of a dataset can be determined by using the Tanimoto coefficient

sim(i,j): [56].

sim(i,j)~

Pl

d~1

xdi xdj

Pl

d~1

(xdi )2z
Pl

d~1

( xdj )2{
Pl

d~1

xdi xdj

ð3Þ

where xdi represents a molecular fingerprint of compound i

(there are 882 fingerprints calculated from the PaDEL-Descriptors

program [57], l is the number of molecular fingerprints, j is the

index of the ligand in the dataset most similar to compound i. The

compound i. is assigned into one of the ten similarity levels based

Virtual Screening of Dopamine Receptor Ligands
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on its computed sim(i,j) values: 0.9–1, 0.8–0.9, 0.7–0.8, 0.6–0.7,

0.5–0.6, 0.4–0.5, 0.3–0.4, 0.2–0.3, 0.1–0.2, and 0–0.1. Com-

pounds are typically considered to be highly similar if sim(i,j) is no

less than 0.8 or 0.9 [58,59].

Determination of dopamine receptor subtype selective
features by feature selection method

Molecular features important for dopamine receptor subtype

selective ligands were probed by using a feature selection method,

recursive feature elimination (RFE) method, extensively used in

selecting molecular features of compounds of specific pharmaco-

dynamic and pharmacokinetic properties 60]. In this approach,

the level of contribution of individual molecular descriptor to

SVM classification of ligands of a subtype against ligands of other

subtypes was ranked and the top-ranked ones were selected based

on the evaluation of the variation of the SVM objective function J

caused by the removal of an individual descriptor 61]. The

variation DJ(i) due to the removal of a descriptor i is computed by

DJ(i)~
1

2

L2J

Lw2
i

(Dwi)
2 with the weight variation determined by

Dwi = wi. In this work, Gaussian kernels were used for developing

SVM models. In this case, DJ(i)~(1=2)aTHa{(1=2)aTH({i)a,

where H is the matrix with elements y i y j exp(-||xi - xj|| 2/(2s2)),

H(-i) is the matrix computed by the same method as matrix H but

with its i-th component removed, y i is the vector composed of

molecular descriptors, 1 is an m dimensional identity vector (m is

the number of compounds in a training dataset), and the

component of vector a is kept in the range of 0 # a k # C.

The computational procedure for selecting subtype selective

features is as follows: For a specific subtype, the corresponding

SVM model developed in the second step of the 2SBR-SVM

method is processed by iteratively evaluating and eliminating

molecular descriptors at different parameter s values based on 5-

fold cross-validation. In the first step, for a fixed s, the SVM is

trained by using the complete set of descriptors (feature set). The

second step is to compute the ranking criterion score DJ(i) for

every existing descriptor. All the computed DJ(i) is then ranked in

descending order. The third step is to remove the m descriptors

with smallest criterion scores (m = 4 in this work). In the fourth

step, the SVM is retrained by using the remaining molecular

descriptors and a new prediction accuracy of 5-fold cross-

validation is computed. The second to fourth steps are repeated

for multiple-iterations until all descriptors are removed. For

another fixed s, the first to fourth steps are repeated.

Results and Discussion

5-fold cross-validation tests
The results of 5-fold CV tests of the SVM models of D1, D2, D3

and D4 ligands are shown in Table S4. Overall, the sensitivity,

specificity, overall accuracy and the Matthews correlation

coefficients of the best performing SVM models are in the range

of 87.8%–95.3%, 99.6%–99.9%, 99.3%–99.8%, and 0.74–0.90

respectively. These results are comparable to those of our earlier

studies [48], indicating that the SVM models for dopamine

receptor subtypes have similar prediction capability as those for

other target classes. The VS models with the best 5–fold CV

performance were further tested on independent sets of dopamine

receptor ligands and non-ligands published since 2010 and not in

the training datasets, which are also shown in Table S4. The

sensitivity, specificity and overall accuracy are in the range of

71.2%–89.7%, 61.5%–76.0% and 71.4%–82.7% respectively.

The sensitivity is substantially smaller than that of 5–fold CV

tests. This is because many of the post–2010 ligands in the

independent datasets are structurally different from those of the

pre-2010 ligands in the training datasets. As shown in Table 1,

16.3%–34.5% of the post–2010 ligands are outside the chemical

families of pre-2010 ligands in the training datasets. The specificity

is also significantly smaller than that of the 5-fold CV tests. This is

partly because many non-ligands have weak (Ki 10–50 mM)

binding activity and may thus be difficult to be separated from the

ligands.

The VS performance of the SVM VS models developed by the

10 sets of alternative training and testing datasets is provided in

Table S1. The sensitivity, specificity, overall accuracy and the

Matthews correlation coefficients of these SVM models in

classifying dopamine receptor subtype ligands and non-ligands

are in the range of 79.1%–94.8%, 99.6%–99.9%, 99.3%–99.9%,

and 0.73–0.90 respectively, which are very similar to those of the

SVM models developed by pre–2010 and tested by post-2010

compounds. A further analysis of structures of the randomly

assembled datasets and those of the chronologically assembled

datasets showed that most of the active and inactive scaffolds are

mutually represented on both sides because of the significant

structural diversity in these datasets. Therefore, the VS perfor-

mance of SVM models developed by chronologically assembled

datasets can be compared with those models developed by using

datasets assembled by conventional approach.

Applicability domains of the developed SVM VS models
Our SVM VS models for each dopamine receptor subtype were

developed by using known ligands and non-ligands of the subtype,

and the putative non-ligands composed of representative com-

pounds of all of the compound families in the Pubchem chemical

space that contain no known ligand of the subtype. Theoretically,

these VS models are expected to be applicable in the chemical

space defined by the known ligands, known non-ligands, and the

13.56 M Pubchem compounds. If this is true, in addition to good

predictive performance on the known ligands, these VS models are

expected to consistently identify very small percentages of

Pubchem compounds as subtype selective ligands regardless of

their similarity levels to the known ligands. Alternatively, if the

applicability domain of these models covers limited chemical space

around known ligands, then the number of identified Pubchem

compounds may increase substantially beyond the applicability

domain (i.e. at lower similarity levels). To determine the

applicability domain of each SVM VS model, we divided

13.56 M PubChem compounds into groups of 10 similarity levels

with respect the known ligands of each receptor subtype (defined

in the methods section), and then monitored if the number of the

SVM identified PubChem compounds significantly increases at

higher similarity levels. As shown in Table S5, the percentages of

identified Pubchem compounds for all four receptor subtypes

(0.0489%–0.0521% for D1, 0.131%–0.135% for D2, 0.143%–

0.147% for D3, and 0.157%–0.160% for D4 respectively) are

consistently small and show little variations at different similarity

levels. This suggests that the applicability domains of our SVM VS

models likely cover the chemical space defined by the known

ligands, known non-ligands and the PubChem compounds.

Prediction performance on dopamine receptor subtype
selective and multi-subtype ligands

The performance of our new method 2SBR-SVM and that of

the three previously used methods Combi-SVM, ML-kNN and

RAkEL-DT in predicting dopamine subtype selective ligands was

determined as follows: For each set of dopamine receptor subtype

selective ligands against another subtype, the developed VS model
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of the subtype and that of the second subtype were both used to

screen these ligands. The percentage of these ligands selected by

the first model but not by the second model was used to measure

the performance of the VS models in selecting subtype selective

ligands. The relevant results are shown in Table 4.

As shown in Table 4, the three previously used methods

showed mostly moderate and in minority cases good performance

in predicting dopamine receptor subtype selective ligands.

Specifically, 13.4%–23.8%, 14.3%–55.8%, 17.7%–77.9% and

26.8%–74.1% of the D1, D2, D3 and D4 selective ligands were

correctly predicted by Combi-SVM as subtype selective ones. ML-

kNN showed better performance, correctly predicting 23.8%–

58.6%, 21.6%–62.8%, 26.3%–87.5% and 24.4%–70.4% of the

D1, D2, D3 and D4 selective ligands as subtype selective ones. The

RAkEL–DT method achieved the best performance among the

three methods, correctly predicting 44.8%–75.3%, 30.2%–69.8%,

22.4%–85.4% and 45.5%–85.2% of the D1, D2, D3 and D4

selective ligands as subtype selective ones. On the other hand, our

new method 2BR–SVM produced significantly improved perfor-

mance, correctly predicting 66.5%–86.6%, 81.1%–93.0%,

50.6%–56.3% and 82.5%–88.0% of the D1, D2, D3 and D4

selective ligands as subtype selective ones. This suggests that our

two–step strategy with one step focusing on subtype binding and

another on selectivity works more effectively than the three

previously used methods in predicting dopamine receptor subtype

selective ligands.

The improved subtype selective performance of the 2BR-SVM

method arises from its more rigorous evaluation of minor

structural and physicochemical differences of subtype selective

ligands. Comparative structural analysis has shown that some D2

selective and D3 selective ligands are highly similar in structure

and interact with their respective subtypes in a very similar binding

mode with some functional group adopting different orientation at

sites of non-conserved residues [46]. Such minor differences may

not be adequately distinguished by conventional VS models

developed by training datasets with inadequate representation of

ligands of other subtypes, but may be distinguished by 2BR-SVM

method with additional models developed by training datasets

with sufficient representation of other subtypes.

The performance in predicting dopamine subtype selective

ligands is measured not only by the capability in selecting subtype

selective ligands, but also on the ability in differentiating them

from multi-subtype ligands. Good prediction on subtype selective

ligands needs to be complemented by equally good performance in

predicting multi-subtype ligands as subtype non-selective ones.

This performance was determined as follows: For each set of

multi-subtype ligands (e.g. triple-subtype D1, D2 and D3 ligands),

the VS models of all of the corresponding subtypes (e.g. D1, D2

and D3) were used to screen the multi-subtype ligands in the set.

The percentage of these ligands selected by the model of more

than one subtype was used to measure the performance of the VS

models in predicting multi-subtype ligands as subtype non-

selective ligands. The results are shown in Table 5.

Of the three previously used methods, Combi-SVM showed the

best performance in predicting dopamine receptor multi-subtype

ligands as subtype non-selective ones, correctly predicting 68.0%,

83.0%, 76.9% and 75.4% of the D1-D2, D3-D4, D1-D2-D3 and

D1-D2-D3-D4 multi-subtype ligands as subtype non-selective

ones. On the other hand, only 32.0%, 37.0%, 28.2% and 36.7%

of the D1-D2, D3-D4, D1-D2-D3 and D1-D2-D3-D4 multi-

subtype ligands were predicted by ML-kNN as subtype non-

selective ones, and only 35.4%, 39.0%, 33.3% and 38.8% of the

D1-D2, D3-D4, D1-D2-D3 and D1-D2-D3-D4 multi-subtype

ligands were predicted by RAkEL-DT as subtype non-selective

ones. Hence, the better performance of ML-kNN and RAkEL-DT

over Combi-SVM in predicting subtype selective ligands is off-set

Table 4. The performance of our new method 2SBR-SVM and that of previously used methods Combi-SVM, ML-kNN and RAkEL-DT
in predicting dopamine receptor subtype selective ligands.

Percent of subtype selective ligands predicted as subtype
selective with respect to the second subtype

Dopamine receptor
subtype

Selectivity against the
second
subtype

Number of
subtype
selective ligands Combi-SVM ML-kNN RAkEL-DT 2SBR-SVM

D1 D2 97 13.40% 30.93% 75.26% 86.60%

D3 21 23.81% 23.81% 47.62% 66.67%

D4 29 17.24% 58.62% 44.83% 65.52%

average 18.15% 37.79% 55.90% 72.93%

D2 D1 43 55.81% 62.79% 69.77% 93.02%

D3 37 16.22% 21.62% 62.16% 81.08%

D4 63 14.29% 39.68% 30.16% 82.54%

average 28.77% 41.36% 54.03% 85.55%

D3 D1 48 72.92% 87.50% 85.42% 56.25%

D2 99 22.22% 26.26% 50.51% 51.52%

D4 85 17.65% 31.76% 22.35% 50.59%

average 37.60% 48.51% 52.76% 52.79%

D4 D1 27 74.07% 70.37% 85.19% 82.50%

D2 408 33.33% 28.43% 57.60% 88.00%

D3 209 26.79% 24.40% 45.46% 83.73%

average 44.73% 41.07% 62.75% 84.74%

doi:10.1371/journal.pone.0039076.t004
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by the poorer performance in predicting multi-subtype ligands as

subtype non-selective. Taken these two indicators together,

Combi-SVM appears to show better overall performance in

predicting subtype selective and subtype non-selective ligands than

the ML-kNN and RakEL-DT methods.

The performance of our new method 2SBR-SVM in predicting

dopamine receptor subtype non-selective ligands is similar to that

of Combi-SVM, correctly predicting 76.2%, 81.0%, 71.8% and

71.7% of the D1-D2, D3-D4, D1-D2-D3 and D1-D2-D3-D4

multi-subtype ligands as subtype non-selective ones. Thus, our new

method maintains the same performance level as that of the best

performing method of the previously used methods in predicting

dopamine receptor subtype non-selective ligands. The lack of

improvement by our new method in predicting dopamine receptor

subtype non-selective ligands may be partly due to the quality of

training datasets. It is noted that three groups of multi-subtype

ligands were included as positive samples in the training datasets,

which likely affect the ability of the SVM models in predicting

multi-subtype ligands as subtype non-selective ones.

Virtual screening performance in searching large
chemical libraries

The virtual screening performance of our new method 2SBR-

SVM and our previously developed method Combi-SVM was

evaluated by using them to screen 13.56 M Pubchem compounds,

168,016 MDDR compounds and 657,736 ChEMBLdb com-

pounds to determine the numbers of Pubchem, MDDR, and

ChEMBLdb compounds predicted as D1, D2, D3 and D4

selective ligands, which are shown in Table 6. For comparison,

Table 6 also includes the results of SVM (single label) in

identifying Pubchem compounds as putative D1, D2, D3 and D4

ligands regardless of their possible binding with another subtype.

In screening Pubchem compounds, the number of D1, D2, D3

and D4 selective virtual hits identified by 2SBR-SVM and the

corresponding virtual hit rate is 650 and 0.0048%, 1132 and

0.0083%, 1498 and 0.011%, and 1961 and 0.015% respectively,

which is significantly smaller than those identified by Combi-

SVM. The number of D1, D2, D3 and D4 selective virtual hits

identified by Combi-SVM and the corresponding virtual hit rate is

4948 and 0.037%, 10080 and 0.074%, 6055 and 0.045%, and

9180 and 0.068% respectively. The number of virtual hits

identified by Combi-SVM is nonetheless substantially smaller

than that of single label SVM. The number of D1, D2, D3 and D4

selective virtual hits identified by single label SVM and the

corresponding virtual hit rate is 6798 and 0.05%, 17786 and

0.13%, 19813 and 0.15%, and 21444 and 0.16% respectively.

Some of the identified virtual hits are possible subtype selective

ligands. Therefore the true false hit rates of the tested VS models

are likely smaller than the computed virtual hit rates. The false hit

rates of 2SBR-SVM in screening 13.56 million Pubchem com-

pounds can then be estimated as #0.0048%, #0.0083%,

#0.011% and #0.015% for D1, D2, D3 and D4 selective ligands

respectively. Therefore, 2SBR-SVM produced very low false hit

rates in screening large chemical libraries as well as good

performance in selecting subtype selective ligands.

As shown in Table 6, in screening MDDR and ChEMBLdb

compounds, 2SBR-SVM as well as Combi-SVM and single label

SVM produced reasonably low virtual hit rates that are in the

range of 0.06%–0.09% and 0.05%–0.14% respectively, which are

10 fold higher than those in screening Pubchem compounds.

MDDR and ChEMBLdb compounds as a collection of bioactive

agents tend to be structurally closer to the dopamine receptor

ligands than many Pubchem compounds that consist of high

percentage of inactive compounds. Therefore, it tends to be more

difficult for 2SBR-SVM to distinguish dopamine receptor ligands

from some of the non-ligands in MDDR and ChEMBLdb

databases, leading to higher virtual-hit rates. The virtual hit rates

of 2SBR-SVM in screening MDDR and ChEMBLdb compounds

are substantially (2–10 fold) smaller than those of Combi-SVM

and single label SVM, which suggests that 2SBR-SVM is capable

of achieving lower false-hit rate in screening bioactive compounds

than more conventional SVM methods.

Although it is unclear how many true D1, D2, D3 and D4

selective ligands are contained in Pubchem database. Some crude

estimates can be made. As shown in Table 1 and Table 2, the

number of known ligands of a dopamine receptor subtype is in the

range of 550–2337, and the number of known dopamine receptor

subtype selective ligands is in the range of 21–408. The known

subtype selective ligands are approximately 10 fold less in numbers

than the known ligands of a subtype. While the numbers of the

published D1, D2, D3, and D4 ligands continuously increase

through the years (Figure S1, S2, S3 and S4), there are signs of

significant reduction of the growth rates at the level of 2000–3000

ligands. These trends tend to project the existence of no more than

several thousand undiscovered ligands for each dopamine receptor

subtype in the chemical space defined by the Pubchem, MDDR

and ChEMBLdb compounds. Hence, the number of subtype

selective virtual hits identified by 2SRB-SVM is closer to the

estimated upper limit of undiscovered dopamine receptor subtype

ligands than those of Combi-SVM and single label SVM.

Table 5. The performance of our new method 2SBR-SVM and that of previously used methods Combi-SVM, ML-kNN and RAkEL-DT
in predicting dopamine receptor multi-subtype ligands as non-selective ligands.

Percent of multi-subtype ligands predicted as non-selective
ligands

Ligand
Group

Binding
subtypes

Number of Multi-
Subtype
Ligands Combi-SVM ML-kNN RAkEL-DT 2SBR-SVM

Dual Subtype Ligands D1 and D2 147 68.02% 31.97% 35.37% 76.19%

D3 and D4 100 83.0% 37.0% 39.0% 81.0%

Triple Subtype Ligands D1, D2 and D3 39 76.92% 28.2% 33.33% 71.79%

Quadruple Subtype
Ligands

D1, D2, D3 and D4 60 75.42% 36.67% 38.75% 71.67%

doi:10.1371/journal.pone.0039076.t005
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Dopamine receptor subtype selective features
The molecular descriptors important for distinguishing the

ligands of every dopamine receptor subtype and the ligands of

other subtypes were determined by using the feature selection

method [60] outlined in the method section, which are provided in

Table 7. The top-ranked D1 selective descriptors are number of

O atoms, sum of Estate of atom type dssC, ssO and ssNH, graph-

theoretical shape coefficient, and sum of H Estate of atom type

HsNH2. These descriptors are consistent with the D1 selective

features derived from a pharmacophoric model that includes

positive nitrogens (linked to ssNH, HsNH2), hydrogen bond

acceptor (linked to O, ssO) and donor (linked to ssNH, HsNH2)

[14]. The top-ranked D2 selective descriptors are number of H-

bond acceptor, sum of H Estate of atom types HaaNH and

HCsats, and sum of Estate of atom type dssC, aasC and aaNH.

These are consistent with a CoMSIA based analysis that suggests

that D2 selectivity is determined by hydrogen bond acceptor

(linked to H-bond acceptor) and donor (linked to HaaNH),

hydrophobic (linked to HCsats, dssC, aasC), and electrostatic

(linked to HaaNH, aaNH) factors [10]. These are also consistent

with the conclusion from a pharmacophoric model that two

hydrogen acceptors or one hydrogen acceptor plus one donor are

critically important for D2 selectivity of some ligands [14].

The top-ranked D3 selective descriptors are sum of Estate of

atom type dsCH, aaaC and sOH, sum of H Estate of atom type

HsOH and HCsats, and number of H-bond donor. These are

consistent with the conclusions from several CoMSIA models that

correlate D3 selectivity with specific hydrogen bond donor (linked

to H-bond donor, sOH, HsOH), hydrophobic (linked to dsCH,

aaaC), and electrostatic (linked to sOH, HsOH) factors [10,15].

Moreover, a study of a D3 selective ligand further shows that

hydrogen bonding from a hydroxyl group is important for

conferring D3 selectivity [10]. The top-ranked D4 selective

descriptors are molecular path count of length 2, sum of Estate

of atom type ssCH2 and aasC, 3th order Kier shape index,

topological radius, and Kier molecular flexibility index. These are

consistent with a report that D4 selectivity is strongly influenced by

the geometry and orientation of specific chemical groups (linked to

molecular path count of length 2, 3th order Kier shape index,

topological radius, and Kier molecular flexibility index) [9]. The

consistency of our selected molecular descriptors and the

literature-reported features for D1, D2, D3, and D4 selectivity

suggests that the subtype selective molecular descriptors selected

by our feature selection method may be potentially useful for

facilitating the design or search of dopamine subtype selective

ligands.

Virtual screening performance of the two-step binary
relevance SVM method in searching estrogen receptor
subtype selective ligands

The VS performance of the SVM models for each ER subtype

developed by the 10 sets of randomly assembled training and

testing datasets is provided in Table S2. The sensitivity,

specificity, overall accuracy and the Matthews correlation

coefficients of these SVM models in classifying ER subtype ligands

and non-ligands are in the range of 92.9%–97.6%, 99.7%–99.9%,

99.7%–99.9%, and 0.84–0.92 respectively, which are very similar

to those of the dopamine receptor subtype. Moreover, as shown in

Table S6 and S7, the performance of 2SBR-SVM in identifying

ERa selective ligands (85.0%), ERb selective ligands (80.0%), ERa
and ERb multi-subtype ligands (69.8%), and in screening

Pubchem, MDDR and ChEMBLdb compounds (virtual hit rates

0.0094%–0.0104%, 0.056%–0.064%, and 0.033%–0.034%) is at

very similar levels as those of the dopamine receptor subtype.

Therefore, our 2BR-SVM method is likely applicable to different

receptor-ligand systems.

Table 6. Virtual screening performance of our new method 2SBR-SVM and that of our previously used method Combi-SVM in
scanning 168,016 MDDR compounds and 657,736 ChEMBLdb compounds, and 13.56 million Pubchem compounds.

Dopamine

receptor
subtype Method

Number and Percent of the
13.56M
PubChem Compounds
Identified as subtype
selective ligands

Number and Percent of the
168,016 MDDR
Compounds Identified as
subtype selective ligands

Number and Percent of the
657,736
ChemBLdb Compounds
Identified as subtype selective
ligands

D1 SVM
(Single Label)

6798(0.0501%) 463(0.28%) 1034(0.16%)

Combi-SVM 4948(0.0365%) 383(0.23%) 755(0.11%)

2SBR-SVM 650(0.0048%) 140(0.08%) 355(0.05%)

D2 SVM
(Single Label)

17786(0.1312%) 1105(0.66%) 3208(0.49%)

Combi-SVM 10080(0.0743%) 712(0.42%) 2023(0.31%)

2SBR-SVM 1132(0.0083%) 108(0.06%) 686(0.10%)

D3 SVM
(Single Label)

19813(0.1461%) 1149(0.68%) 3057(0.46%)

Combi-SVM 6055(0.0447%) 679(0.40%) 1894(0.29%)

2SBR-SVM 1498(0.0110%) 156(0.09%) 687(0.10%)

D4 SVM
(Single Label)

21444(0.1581%) 1160(0.69%) 3489(0.53%)

Combi-SVM 9186(0.0677%) 790(0.47%) 2579(0.39%)

2SBR-SVM 1961(0.0145%) 134(0.08%) 907(0.14%)

For comparison, the results of single label SVM, which identify putative subtype binding ligands regardless of their possible binding to another subtype, are also
included.
doi:10.1371/journal.pone.0039076.t006
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Conclusion
Virtual screening methods have been increasingly explored for

facilitating the discovery of target selective drugs for enhanced

therapeutics and reduced side effects. Our study further suggested

that the two-step target binding and selectivity support vector

machines virtual screening tools developed from protein subtype

ligands with unspecified subtype selectivity are capable of

identifying protein subtype selective ligands at good yields, subtype

selectivity and low false-hit rates in screening large chemical

libraries. Our method may be combined with other virtual

screening methods [62,63,64,65,66,67,68] to facilitate more

effective and efficient search of novel subtype selective drug leads

from larger chemical libraries. The capability of virtual screening

tools can be further enhanced by the incorporation of the

knowledge of existing and newly discovered subtype selective [2,4]

and multi-subtype [16,17] ligands, and by the further improve-

ment of virtual screening algorithms and parameters

[19,69,70,71,72,73,74].
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Table 7. Top-ranked molecular descriptors for distinguishing dopamine receptor subtype D1, D2, D3 or D4 selective ligands
selected by RFE feature selection method.

Dopamine
receptor
subtype

Top-ranked molecular descriptors for distinguishing subtype selective ligands and ligands of
other subtypes

D1 Number of O atoms, Sum of Estate of atom type dssC, Sum of Estate of atom type ssO, Sum of Estate of atom
type ssNH, Graph-theoretical shape coefficient, Sum of H Estate of atom type HsNH2

D2 Number of H-bond acceptor, Sum of H Estate of atom type HaaNH, Sum of H Estate of atom type HCsats, Sum of
Estate of atom type dssC, Sum of Estate of atom type aasC, Sum of Estate of atom type aaNH

D3 Sum of Estate of atom type dsCH, Sum of H Estate of atom type HsOH, Sum of H Estate of atom type HCsats,
Sum of Estate of atom type aaaC, Sum of Estate of atom type sOH, Number of H-bond donnor

D4 Molecular path count of length 2, Sum of Estate of atom type ssCH2, 3th order Kier shape index, Topological
radius, Sum of Estate of atom type aasC, Kier Molecular Flexibility Index

doi:10.1371/journal.pone.0039076.t007
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