
A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

Glassy dynamics of landscape evolution
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Soil creeps imperceptibly downhill, but also fails catastrophically
to create landslides. Despite the importance of these processes
as hazards and in sculpting landscapes, there is no agreed-upon
model that captures the full range of behavior. Here we examine
the granular origins of hillslope soil transport by discrete element
method simulations and reanalysis of measurements in natural
landscapes. We find creep for slopes below a critical gradient,
where average particle velocity (sediment flux) increases expo-
nentially with friction coefficient (gradient). At critical gradient
there is a continuous transition to a dense-granular flow rheol-
ogy. Slow earthflows and landslides thus exhibit glassy dynamics
characteristic of a wide range of disordered materials; they are
described by a two-phase flux equation that emerges from grain-
scale friction alone. This glassy model reproduces topographic
profiles of natural hillslopes, showing its promise for predicting
hillslope evolution over geologic timescales.
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Creep in soil-mantled hillslopes takes place due to slow rear-
rangements of grains that can be reasonably approximated

as a viscous flow (1). At critical slopes or under certain pertur-
bations like rain events, however, soil may fail catastrophically to
create landslides (2). These processes control the erosion and
form of hillslopes and the delivery of sediment to rivers (3).
Despite widely varying materials and environments, hillslope soil
motion falls into two distinct categories: slowly creeping “earth-
flows” associated with surface velocities that cover 10 orders
of magnitude up to ∼10−1 m/s and rapid landslides (includ-
ing debris flows, mudflows, etc.) that are faster than ∼100 m/s
(4–7) (Fig. 1C). Much progress has been made in mechanistic
models for the latter; in particular, continuum models based on
mass and momentum conservation for the granular and fluid
phases are able to reproduce important aspects of soil failure and
mass-movement runout (2, 8). Models for hillslope soil creep,
however, lack a mechanistic underpinning. For over 50 y, a
heuristic “diffusive-like law”—in which sediment flux qs [L2/T ]
is proportional to topographic gradient S = δz/δx—has been
used to model landscape erosion (9–11). For soil to creep at sub-
critical gradients, it is supposed that dilation occurs as a result of
(bio)physical perturbations such as freeze/thaw/swell, rainsplash,
tree throw, and burrowing animals (12–14).

Hillslope soil creep has not been connected to the creep phe-
nomenon observed in diverse amorphous and granular systems
with a wide range of materials and particle shapes, including
dry (15) and fluid-driven (16, 17) granular flows. These mate-
rials belong to a large class of systems—including glasses, pastes,
foams, gels, and suspensions—that are known to exhibit interest-
ing rheological properties termed “glassy dynamics” that include
slow dynamics such as compaction (18), hysteresis and history
dependence of the static configurations (19), and intermittency
and spatially heterogeneous dynamics (20). These behaviors are
thought to be a natural consequence of two properties shared
by all glassy materials: structural disorder and metastability
(21). In such materials, thermal motion alone is not enough to
achieve complete structural relaxation, and consequently relax-
ation times are extremely large compared with the timescale of a
typical experiment. As a result and for practical purposes, glassy
materials are nonequilibrium systems with long memory (22).
For the evolution of soil-mantled landscapes over geologic time,
such glassy dynamics should be relevant.

Dense granular flows on inclined planes are a reasonable ide-
alized model for hillslope soil transport, and the rheology of
such flows has been thoroughly examined in simulations and
experiments (23–31). Local (32, 33) and then nonlocal (34–36)
constitutive relations developed for dense, steady flows estab-
lish that the effective friction is a nonlinear function of the
(nondimensionalized) shear rate. We note, however, that most
of these studies assume that granular piles are jammed below
the angle of repose; i.e., they do not examine subcritical creep
dynamics (for an exception see ref. 37). Creep involves grain-
scale rearrangement—due to structural and mechanical disorder
in the pack (31, 38)—that induces exponentially small but finite
particle velocities below threshold (39). Although creep has been
recognized for some time (15), only recently have researchers
begun probing the nature of the creep to fluid transition in granu-
lar heap flows. Experiments performed with an inclined granular
layer show localized and isolated events—microfailures—in the
bulk at inclinations below the bulk angle of repose. As the incli-
nation increases, microfailures occur more frequently until they
coalesce to form an avalanche (40). It has been suggested that
this change from creeping to flowing states is a dynamical phase
transition (41) that is phenomenologically similar to a liquid–
glass transition (40, 42, 43). In the athermal granular system,
the transition occurs in the vicinity of a critical force (instead of
the critical temperature for thermal glasses). One way to probe
this transition is to define an order parameter that describes a
dynamical quantity that changes dramatically across the phase
transition. Recent simulations have considered the particular
case of the onset of erosion of a single layer of monodisperse
grains on a substrate; Yan et al. (44) and Aussillous et al. (45)
showed that this can be mapped to a plastic depinning transi-
tion, a generic phase transition associated with irreversible strain
and disorder (42). In their work, sediment flux (current) works as
an order parameter that goes sharply to zero at a critical driving
force below which flow does not occur (44, 45). In the presence of
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Fig. 1. Landslide and creep phenomenology. (A) Rapid landslide in San Sal-
vador, El Salvador. Image courtesy of Wikimedia Commons/USGS. (B) Slow
earthflow in Serranı́a del Interior, Venezuela. Image courtesy of Wikimedia
Commons/Fev. (C) Ranges of surface velocities observed for various types
of slow and rapid landslides. The datapoints in red, brown, magenta, and
green correspond to the observations reported or documented by Cruden
and Varnes (4), Hungr et al. (5), Hilley et al. (6), and Saunders and Young (7),
respectively. (D) Schematic cross-section of a soil-mantled hillslope.

additional noise, however—which may take the form of internal
disorder, sidewalls/boundary effects, or external perturbations—
localized flow may occur below the critical force in amorphous
systems (34, 46–48). Experiments have demonstrated that the
onset of erosion in 3D granular flows is indeed continuous,
accompanied by subcritical flow and creep (16), and exhibits
dynamics qualitatively consistent with a liquid–glass transition
(40); however, the dynamical nature of this transition has not
yet been examined in such systems. In this paper we conduct
3D numerical experiments of granular heap flows to first docu-
ment subthreshold creep and then demonstrate that the creep to
landslide transition is continuous and is quantitatively consistent
with a plastic depinning transition. We then present evidence of
such glassy dynamics in the soil transport rates and topographic
profiles of real hillslopes in nature.

Granular Hillslope Model
Building on the work described above, and recent success in link-
ing idealized granular-physics models to sediment transport (49),
we examine the granular origins of a creep transport equation
and the transition to landsliding by developing a granular hills-
lope model using the discrete element method (DEM) (Fig. 2).
Simulations are performed with LAMMPS (lammps.sandia.gov).
In typical soil-mantled hillslopes there is a meters-deep, mobile
surface layer composed of mostly unbonded particles that are
sand sized and smaller; it is underlain by weathered bedrock
(saprolite), composed of increasingly more bonded particles
and larger rock fragments, and eventually by unaltered bedrock
(50) (Fig. 1). The surface layer may flow as a sheet or as a
channel, depending on confinement and material factors. We
model an idealized representation of this mobile surface soil: a
layer of polydisperse spheres with diameter range d = [0.0026 :
0.0042]m, average diameter dmean =0.0033m, and depth h =
45dmean , overriding an immobile and frictional bottom boundary
(Fig. 2); more details of the model implementation are available
in SI Appendix, section 1. The system is inclined at various gradi-
ents θr =24◦–29◦ that are below, near, and above the bulk angle
of repose (θr =24.6◦; Materials and Methods). From instanta-
neous particle motions, we compute vertical profiles of time- and
horizontal (x )-averaged downslope grain velocity, ux (z ), over
the duration of each model run (see SI Appendix, section 2 for
averaging procedure).

To study the dynamical behavior of our model hillslope in the
phase transition framework described above, we calculate the
per-grain friction coefficient µ=σxz/σn , where σxz is the per-

grain stress tensor in the x−z plane and σn = 1
3
(σxx +σyy +σzz )

is the average confining/normal stress (SI Appendix, section 2).
Similar to velocity, we perform time and horizontal averaging
to produce vertical profiles of the local friction coefficient for
each run; since only the values averaged over time and the x
direction are reported, we retain the notation µ to emphasize
that measured friction is local in that it changes with depth.
Our simulations show two distinct phenomenological behaviors
for inclinations below and above θr =24.6◦. Below θr =24.6◦

we observe slow particle velocities, a slow decay rate of the
downslope particle velocity (ux (z )) with depth, and hot spots of
intermittent and localized motion (51). We interpret this regime
as creep (Fig. 2A), where similar dynamics have been reported in
experiments (15, 16, 40). As θ crosses θr we observe the abrupt
emergence of a fast and continuous surface layer flowing over
the creeping regime, whose velocity and thickness increase with
increasing θ above critical friction coefficient (Fig. 2). The rapid
decay of ux (z ) with depth and the continuous nature of the par-
ticle motions are consistent with the dense granular flow regime
(15, 16). We verified that the DEM simulations reproduce the
rheology observed in heap-flow experiments that are similar to
our model setup (SI Appendix, section 4, and Fig. S3). The tran-
sition from dense-granular flow to creep is associated with a kink
in the mean velocity profile, which is used to define a critical
depth (zc) and critical particle velocity (ux (zc)) for each inclina-
tion modeled (Fig. 2D). We also observe a kink in the profile of
friction coefficient µ with depth, which occurs at the same critical
depth; we infer the associated value as the critical friction asso-
ciated with the creep transition, µc (Fig. 2E), and compute this
also for each inclination. We emphasize here that creeping and
dense flow regimes can take place in the same column of soil,
with dense flow at the top and creep at the bottom. The variation
of downslope particle velocity (ux (z )) vs. friction coefficient µ
is qualitatively similar for four different inclinations, below and
above the bulk angle of repose (Fig. 3A). These observations,
and previous work (44), suggest the possibility of a generalized
relation between particle velocity and local friction. Comparison
of normalized average grain velocity, ux/ux (zc), vs. normalized

BA C
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Fig. 2. Hillslope DEM simulations. (A–C) Snapshots correspond to time
t = 140 (s) after inclining the granular hillslope; particle colors represent
their downslope (x-dir) instantaneous velocities, while black lines show
time-averaged downslope velocities. The bulk (macroscopic) angle of repose
for this set of simulations is θ≈ 24.6◦. (A) θ= 24.5◦ corresponds to a hills-
lope just below onset of dense flow at the surface, where the pack is almost
fully creeping. (B) θ= 24.6◦ is right at the transition point. (C) θ= 28◦ shows
a fully developed dense granular flow in more than half of the model depth.
D and E show time-averaged downslope (x-dir) velocity (ux(z)) and local
friction coefficient (µ= τxz/σn) profiles, respectively, for the granular hill-
slope at θ= 28◦. The critical depth zc and critical downslope velocity ux(zc)
at the transition to creep are indicated. The value zc is further used in E to
determine the critical friction coefficient µc.
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A B
Fig. 3. General flow behavior in simulations. (A)
DEM results showing local downslope velocity (ux(z))
as a function of local friction coefficient (µ) for four
different inclinations, below and above the bulk
angle of repose. (B) DEM results showing normal-
ized local downslope velocity ( ux (z)

ux (zc ) ) as a function of
normalized local friction coefficient ( µ

µc
) for the four

different inclinations shown in A. Dashed line illus-
trates an exponential scaling for creep regime with
critical gradient µc = 0.3 and a power-law scaling for
the range of large flux with a power-law exponent
β= 5/2. Relations are not fitted to the data; they
are shown only for illustrative purposes.

local friction coefficient, µ/µ(zc), for all inclinations confirms
this notion and reveals a striking pattern (Fig. 3B). For the
creep regime (µ/µ(zc)< 1) simulations show an exponential flow

relation, ux
ux (zc)

∝ e
µ−µc
µc , with a transition friction coefficient of

µc ≈ 0.33 that is similar for all model runs. For the dense granu-
lar flow regime (µ/µ(zc)> 1) the functional form is a power law,

ux
ux (zc)

∝ (µ−µc)
β , where β is the critical exponent, µ(zc) the

critical point, and ux is the order parameter. This is in agreement
with the suggestions by Fisher (52) and Chauve et al. (39) that the
pinned to sliding transition is a second-order phase transition in
which the order parameter obeys power-law scaling close to the
critical point. A similar depinning transition with an exponential-
law relation at a low driving force and a power-law relation above
a critical threshold has been also reported in failure of inhomo-
geneous brittle materials (53). For a plastic depinning transition
it is expected that the critical exponent β > 1 (42), consistent
with our simulation results. A precise value for the exponent
cannot be determined from numerical results alone. Moreover,
finite-size effects and dimensionality of our system may influence
the value of the critical exponent. Nevertheless, a representative
value β=5/2, shown for illustration purposes (Fig. 3B), is in the
general range reported for colloidal and granular systems near
the critical point (16, 54, 55).

Hillslope Evolution as a Depinning Transition: Field Evidence
We acknowledge that our highly idealized simulations may not
translate to downslope movement of heterogeneous soil in the
complex natural environment. The above findings indicate, how-
ever, that hillslope soil movement may be governed—at least
in part—by generic glassy dynamics associated with disordered
granular systems. To search for signatures of this behavior in the
field, we have collected observations of sediment flux (qs) as a
function of local hillslope gradient from four different published
sources with different climatic and uplift conditions, as well as
different soil types and material properties (SI Appendix, Table
S1). Unfortunately, data collection methods and their associated
timescales differ among these studies, potentially contributing to
noise and limiting our ability to directly compare among these
different field sites. The data presented by Yoo et al. (56) are
from Frog’s Hollow, a semiarid eucalyptus grassland savannah
hillslope located about 80 km south–southeast from Canberra,
NSW, Australia. They calculated sediment transport rates by tak-
ing soil samples along a hillslope transect, measuring the soil
mass production rate and the elemental chemistry of soils and
saprolite, and then using an iterative modeling process integrat-
ing over the timescales of chemical weathering. Data presented
by Gabet (57) are from the Santa Ynez Valley in the tectoni-
cally active transverse ranges near Santa Barbara, CA, with a
semiarid Mediterranean climate. The measurements were car-
ried out over annual timescales using sediment traps installed
on hillslopes. Data by Martin and Church (58) and Martin (59)
are from the Queen Charlotte Islands, off the coast of British
Columbia in Canada, with an oceanic climate and extremely fre-

quent precipitation. The original datasets in these studies are
from reports by Rood (60, 61), which are landslide inventories
completed by identifying landslides on aerial photographs in the
region. They cover approximately a 40-y period of activity.

In studies by Yoo et al. (56) and Gabet (57), the sediment flux
was originally measured in units of mass flux for each basin. The
averaged bulk density of soil in the study by Yoo et al. (56) is
reported as 1,800 kg/m3 and in the study area by Gabet (57)
is reported as 1,770 kg/m3. We used these densities to convert
mass sediment flux to volumetric sediment flux (Fig. 4 A and D).
The studies by Martin (59) and Martin and Church (58) origi-
nally reported measurements of volumetric sediment flux. They
presented measurements for 23 different basins: Thirteen sites
(group A) have the majority of their basins composed of soft vol-
canic and sedimentary rocks, while the 10 remaining sites (group
B) have a larger proportion of their basins composed of hard
volcanic rocks and granites. Here, we analyze the data from their
group A and group B hillslopes separately to calculate critical
slope and flux at that critical slope. We further calculated the
mean value of sediment flux measurements for each hillslope
gradient class in each group; these are presented in a single sedi-
ment flux vs. hillslope gradient relationship for the studied region
(Fig. 4 B and C). We assumed a constant error bar of 0.1 for all
gradient measurements (classes) in the studies by Martin (59)
and Martin and Church (58), even though such an error in mea-
surements is not explicitly stated in their studies. All data here
were extracted from figures in the cited papers and also reports
cited therein. For the case of studies by Martin (59) and Martin
and Church (58), the values of sediment flux and their error bars
at slopes smaller than 20° are calculated based on the estimates
presented in table 1 in Martin and Church (58).

For each study we observe a kink in the relation between flux
and slope, which allows us to determine critical values of qsc
and Sc for each field site by eye from inflection points in the
plots (SI Appendix, Table S1). These critical values are illustrated
with arrows in Fig. 4 A–D. The normalized sediment flux and
the normalized hillslope gradient are then calculated as qs/qsc
and S/Sc , respectively. Note that sediment flux qs = 〈ux (z )〉h ,
where the angle brackets indicate averaging over the depth of
the soil column (h). While studies report values for qs , most are
derived from surface measurements and therefore mostly reflect
surface velocities of the flows, while flow depths are generally
poorly constrained. Normalization removes this depth depen-
dence, however, since qs/qsc = ux (z )/ux (zc). Hillslope gradient
is also related to friction coefficient; assuming a naive hydro-
static and 1D behavior for a depth-averaged earth flow, σxz =
µsoilσn→ ρghS =µsoilρgh→S ∼µsoil , where g is acceleration
due to gravity. Thus, data plots of normalized flux and slope for
the field data are equivalent to normalized velocity and friction
presented from numerical simulations.

The critical values for slope and flux likely encode climatic,
tectonic, and soil properties unique to each site (62). Plotting
normalized values from all field sites as qs/qsc against S/Sc , how-
ever, collapses the data and results in a pattern that is similar to
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Fig. 4. Field data showing measured sediment flux qs vs. hillslope gradient S for natural hillslopes reported previously in the literature. (A) Gabet (57). (B)
Group A basins in Martin (59) and Martin and Church (58). (C) Group B basins in Martin (59). (D) Yoo et al. (56). (E) Rescaled data combined from A–D. Note
that normalized flux qs/qsc is equivalent to normalized velocity while normalized gradient (S/Sc) is equivalent to normalized friction, allowing comparison
with numerical results (Fig. 3B). The dashed line in E shows the same bipartite flux relation as in Fig. 3B for illustration purposes: i.e., an exponential flux
relation for gradients below critical gradient and a power-law relation for larger gradients.

our model results of ux/ux (zc) against µ/µ(zc) (Fig. 4E). We
take this similarity as strong evidence for a generic depinning
transition, where field data are consistent with an exponential
flux relation for gradients below critical gradient and a power-
law relation for larger gradients. Moreover, the values inferred
for critical slopes at each field site are physically meaningful; they
correspond to a reasonable range of reported values for the angle
of repose (or friction coefficient) of soils (SI Appendix, Table S1)
(63, 64). The scatter in the data, especially above the critical gra-
dient, can be due to several factors, including (i) limited sediment
availability on natural hillslopes, because high slopes transport
soil faster than it can be produced from weathered bedrock, and
(ii) different measurement methods used in different studies,
including variations in the detection limits for transport.

Some additional features of the data warrant mention, in terms
of their physical interpretation. Hillslope creep velocities (fluxes)
are measured over years to decades and thus average over event-
based and seasonal fluctuations in flow speed that often occur
due to precipitation and temperature effects (7, 58), biotur-
bation (14), and other disturbances. The timescales associated
with measured velocities (fluxes) for above-critical flows are also
longer than those of the individual landslides that (presumably)
occur. Thus, the reported velocities (fluxes) of soil motion should
be understood as the long-term average of episodic and relatively
fast events and intervening periods of relatively slow motion.
This is not unlike mountain uplift that results from repeated fault
slip; average uplift rates are not representative of slip events,
but are nonetheless meaningful for considering landscape ero-
sion that occurs over geologic timescales (65). Another notable
feature is that fluxes vary widely for slopes slightly to moderately
larger than critical gradient (1<S/Sc < 1.5). We speculate that
flows within this slope range may occur as either creep or land-
slides, depending on environmental forcing [e.g., pore pressure
(2)], supply (or availability) of material, and soil thickness. As a
result, the creep-to-landsliding transition in natural landscapes is
much more variable than in a constant forcing situation such as
our model. We suspect that averaging over suitably large (geo-
logic) timescales, if possible, would recover a flux–slope relation
that is similar to model expectations but with a more diffuse flow
transition. Such an idea may be tested by examining the topo-

graphic hillslope profile produced by erosion and rock uplift over
geologic timescales (10).

Modeling Landscape Evolution with a Glassy Flux Model
We propose a bipartite “glassy flux model” to represent hillslope
soil transport that joins the exponential and power-law relations
associated with creep and landsliding regimes, respectively, as

qs/qsc = e
S−Sc
Sc H(Sc −S)+ [A (S −Sc)

β +1]H(S −Sc), [1]

whereH is the Heaviside step function that acts to blend the two
transport regimes across the transition (39), and A is a constant
associated with a particular field site. Eq. 1 implicitly assumes
steady flow and therefore is applicable only for long timescales
that integrate over very many flow events (SI Appendix, sec-
tion 6). The flux Eq. 1 is related to hillslope erosion through
conservation of mass,

− ρs
∂z

∂t
= ρs∇· qs + ρrCo , [2]

where ρs and ρr are the bulk densities of sediment and rock,
respectively, ∂z/∂t is the rate of landscape elevation change,
and Co is the rock uplift rate. We use Eqs. 1 and 2 to model
the steady-state form of a hillslope, i.e., the topography associ-
ated with a balance between uplift and erosion (Materials and
Methods) that results from the new flux equation. The left bound-
ary condition of the model hillslope is no flux, representing a
drainage divide, and the right boundary condition is a fixed ele-
vation that represents base level. We calibrate and compare
model results to hillslope topography data in the Oregon Coast
Range (OCR). First, we assume a value for the critical exponent
β=5/2 for simplicity because it cannot be better constrained
from the data, and then we estimate the values for critical gra-
dient Sc ≈ 0.5 and A=222 from values of sediment flux vs.
gradient reported by Roering et al. (10) from a site near Coos
Bay (SI Appendix, section 8, and Fig. S5). Next, we model the
transient evolution of hillslope topography by iteratively solving
Eqs. 1 and 2 starting from a flat initial condition with constant
uplift rate Co =0.075mm/y and densities ρr/ρs =2 determined
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Fig. 5. Hillslope topography of the OCR derived from publicly available air-
borne LiDAR data (67). (A) Regional perspective view, showing locations of
two example hillslopes. (B and C) The elevation–distance (B) and gradient–
distance (C) relationships for representative profiles of hillslopes 1 (black
dots) and 2 (red dots) in A. Blue dashed line is the prediction of the “glassy”
flux model with Sc = 0.5 and β= 5/2. See SI Appendix, Figs. S6–S8 for more
examples.

from Roering et al. (10) for the OCR. The profile is evolved for
20 million y, roughly the time that the OCR has been uplift-
ing (66), and we verify that the hillslope reaches a steady-state
topography over this time.

We compare model results to hillslope topographic profiles
extracted from aerial light detection and ranging (LiDAR) data
at an OCR site 60 km west of Eugene, OR (SI Appendix, sec-
tion 7). The glassy flux model reasonably captures elevation
and gradient profiles for both short hillslopes (distance about
40 m) where gradients are mostly below critical gradient and
longer hillslopes which significantly exceed the critical slope
(Fig. 5). Hillslope gradient profiles show a clear kink at the
critical slope value Sc ≈ 0.5 derived from the glassy flux model
(Fig. 5C); the corresponding angle of 26° represents a reason-
able value for the transition from creep to landsliding. The
explicit incorporation of landslide (dense-granular flow) dynam-
ics allows the glassy flux model to reproduce the flattening out of
hillslope profiles as they lengthen; this flattening has been pre-
viously reported and cannot be reproduced with diffusion-like
flux equations (68) (SI Appendix, Fig. S8). We also verified that
the model reproduces observed hillslope topography in a dif-
ferent climatic and geologic setting in California (SI Appendix,
Fig. S7).

Discussion
We have developed a model for hillslope soil transport that
describes behaviors from creep and slow-earthflow to landslid-
ing and fast-flow regimes. Although the DEM simulations are
highly idealized, we suggest that the underlying dynamics are
general. While soil creep on hillsides has been viewed as the
result of external perturbations (1, 10, 14), model results show
that this is not necessary. We found that the addition of pertur-
bations, through random noise added to the locations of some
grains, increased the flux magnitude in the creeping regime but
did not change the functional form of the flux–slope relation (SI
Appendix, section 3, and Fig. S2). Noise had little influence on
the fast-flow regime (SI Appendix, section 3, and Fig. S2). We also
confirmed that changing grain shape does not change the qualita-

tive behavior in simulations, by replacing spheres with elongated
particles having a 3:1 aspect ratio (SI Appendix, section 5, and
Fig. S4). More broadly, observations provide strong evidence
that the creep–landslide transition exhibits glassy dynamics that
may be modeled as a plastic depinning transition at a critical
normalized force. The subcritical exponential relation and the
supercritical power-law scaling (Eq. 2) are expected behaviors
based on theoretical and experimental studies of amorphous
systems (42). In other words, such behavior is the generic con-
sequence of dynamical phase transitions in disordered materials.
A dimensionless number, local normalized friction coefficient in
the numerical model, µ/µc , is calculated in terms of the effective
tangential and normal stresses. Although the current model does
not account for changes in fluid pore pressure that are known
to influence downslope flow velocity (2), we suggest this effect
might be viewed as a perturbation to the effective pressure terms
that could be combined in the future with the framework we
propose. The effective critical friction coefficients determined
for the different field settings examined here fall in the range
expected for soil mixtures (63, 69).

These results show how recent advances in the physics of dis-
ordered materials can be used to explain the evolution of natural
landscapes over geologic timecales. The functional form of the
flux equation q = f (µ) used in this work is a specific case of a
more general form q = f (µ, η), where η represents mechanical
internal and external noise (48). We suggest that creep, and its
associated slow subcritical flow, takes place in our numerical sys-
tem and in natural hillslopes due to (i) internal disorder of the
particulate packing and (ii) bedrock and saprolite boundary lay-
ers that surround the mobile regolith, which continuously inject
disorder that may induce creep through nonlocal effects (34, 46,
47). It is an open question for soil-mantled hillslopes whether,
and under what conditions, the injection of porosity and noise
from external perturbations (plants/animals, freeze/thaw/swell,
etc.) produces distinctly different dynamics from the sources of
disorder considered here.

Finally, we note that one of the hallmarks of granular and
amorphous materials is the emergence of rate weakening in the
vicinity of their dynamical phase transition (31, 70). Although
the fundamental mechanisms of this phenomenon remain to be
explored, we believe the picture provided here can help to under-
stand the origins of rate- and state-dependent friction behavior
that has recently been proposed to characterize slow and fast
landslides (71, 72).

Materials and Methods
Details of the implementation of the DEM model are described in SI
Appendix, section 1, and Table S2, and the protocol for calculation of veloc-
ity and stress profiles from DEM simulations is provided in SI Appendix,
section 2. The influence of perturbation on the behavior of the DEM model
in presented in SI Appendix, section 3. We compare the observations from
our DEM simulations with a local granular rheology model applied to a
heap-flow granular experiment in SI Appendix, section 4. The influences of
grain shape on the slow creep regime in DEM simulation and experiments
are discussed in SI Appendix, section 5. Implementation of the landscape
evolution model is described in SI Appendix, section 6. Details for measure-
ments of hillslope profiles from LiDAR data are described in SI Appendix,
section 7. The collections of sediment flux and hillslope surface gradients in
the study by Roering et al. (10) are described in SI Appendix, section 8.
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