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Structure of the poly-C9 component of the
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The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9)

is the major component of the MAC, a multi-protein complex that forms pores in the

membrane of target pathogens. In contrast to homologous proteins such as perforin and the

cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomer-

isation, C9 assembles directly onto the nascent MAC from solution. However, the molecular

mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM

structure of a soluble form of the poly-C9 component of the MAC. These data reveal a

22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming

b-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive

part of the oligomerisation interface, thus likely facilitating solution-based assembly. These

TSP1 interactions may also explain how additional C9 subunits can be recruited to the

growing MAC subsequent to membrane insertion.

DOI: 10.1038/ncomms10588 OPEN

1 Department of Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK. 2 ARC Centre of Excellence in
Advanced Molecular Imaging, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia. 3 Department of Biochemistry and Molecular
Biology, Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, Victoria 3800, Australia. 4 Department of Microbiology,
Biomedicine Discovery Institute, Clayton Campus, Monash University, Melbourne, 3800 Victoria, Australia. * These authors contributed
equally to this work. ** These authors jointly supervised this work. Correspondence and requests for materials should be addressed to J.C.W.
(email: James.Whisstock@monash.edu) or to H.R.S. (email: h.saibil@mail.cryst.bbk.ac.uk) or to M.A.D. (email: Michelle.Dunstone@monash.edu).

NATURE COMMUNICATIONS | 7:10588 | DOI: 10.1038/ncomms10588 | www.nature.com/naturecommunications 1

mailto:James.Whisstock@monash.edu
mailto:h.saibil@mail.cryst.bbk.ac.uk
mailto:Michelle.Dunstone@monash.edu
http://www.nature.com/naturecommunications


P
aul Ehrlich originally characterized the haemolytic
properties of human blood over 100 years ago1.
Subsequent work revealed that the terminal ‘membrane

attack complex’ (MAC) portion of complement represents the
lytic, pore-forming part of the system2,3. This structure is
responsible for eliminating Gram-negative bacteria and other
pathogens.

The MAC comprises seven components: C5b, C6, C7, C8
(a heterotrimer composed of C8a, C8b and C8g) and multiple
copies of C9 (Supplementary Fig. 1). In vitro studies reveal that
multiple C9 subunits are recruited to the C5b678 complex,
whereupon it self-assembles to form large, ring-shaped pores with
a lumen over 100 Å in diameter embedded in the membrane of
target cells4. C9 can also be induced to form poly-C9, pore-like
structures in solution that closely resemble the MAC pore5. C6,
C7, C8a, C8b and C9 all belong to the MAC/perforin-like
(MACPF)/CDC superfamily6,7 and include a common set of four
core domains; a N-terminal thrombospondin-1 (TSP1) domain
followed by a low-density lipoprotein receptor-associated
(LDLRA) domain, a MACPF domain and an epidermal growth
factor (EGF) domain (Supplementary Fig. 1).

Much of our understanding of the MACPF/CDC superfamily
comes from studying CDCs8–10. Briefly, soluble CDC monomers
bind to and then oligomerise on the membrane surface to form a
prepore intermediate10,11. Next the assembly undergoes a
concerted conformational change that involves significant
opening and untwisting of a central, four-stranded b-sheet.
This event permits two helical regions (termed transmembrane
hairpins TMH1 and TMH2) to unravel and insert into the
membrane as amphipathic b-hairpins (Supplementary Fig. 2).

Studies on the MAC have revealed mechanistic distinctions
from other family members. For example, perforin, pleurotolysin
and CDCs bind to membrane lipids or membrane-associated
proteins via ancillary domains before oligomerisation9,12,13. In
contrast, C9 does not contain any obvious membrane-binding
domain. Thus even when the nascent MAC (C5b678) is
associated with the target cell, the assembly process must
include the recruitment of C9 from solution (that is, from
plasma, Supplementary Fig. 2b). Consistent with this, a soluble
form of the MAC can also assemble independently of the
membrane and be detected in blood plasma (Supplementary
Fig. 2b).

To understand the mechanism of MAC assembly, we
determined the sub-nanometer resolution single-particle EM
structure of C9 in a polymerized pore-like form. These data reveal
the unexpected finding that the TSP1 domain forms a significant
portion of the interface between interacting C9 monomers. This
finding may explain why the MAC, in contrast to related
molecules such as perforin and the CDCs, is able to assemble
from monomers directly recruited from the soluble phase. The
additional interactions mediated by the TSP1 domain may also
explain previous observations14, where C9 monomers are
recruited to a MAC that has already entered the target cell
membrane.

Results
The structure of poly-C9. To understand MAC assembly we
determined the 8 Å single-particle cryo-EM reconstruction of
soluble poly-C9 from 5,000 particles (Fig. 1a–d, Supplementary
Figs 3–6). These data revealed a symmetrical assembly of 22 C9
monomers (Fig. 1a–c) that closely resembles the MAC4. The
structure comprises a ring-shaped assembly of globular domains
atop a large b-barrel (Fig. 1a,b). The latter part of the structure is
flexible and is less well resolved than the top half of the structure.
However, the diameter of the b-barrel (120 Å) is consistent with

the predicted 88-stranded structure and is of sufficient size to
permit passage of proteins such as lysozyme15. We further
observed density, consistent with two N-glycosylation sites, one
on each TMH sequence (Supplementary Figs 1 and 7). We
observe a bulbous feature at the base of the b-barrel and suggest
that this may be a consequence of structural rearrangements to
protect the hydrophobic surface that ordinarily contacts the
membrane (Fig. 1b). Higher resolution data will be required to
validate this suggestion.

In the top, better-resolved portion of the map, the position of
each of the four domains in C9 can be unambiguously assigned.
Although no crystal structure of C9 is available, we were able to
interpret the poly-C9 structure using the core TSP1-LDLRA-
MACPF-EGF assembly from the crystal structure of C6
(refs 16,17) (Fig. 1e,f; Supplementary Fig. 1). Indeed, only minor
changes in domain orientation are required to dock the C6
structure into the bulk of the poly-C9 density (Fig. 1e,f).

The TSP1 domain forms part of the oligomer interface.
Structural studies on other MACPF/CDC proteins reveal that
most interactions within the prepore or pore assembly appear to
be formed between the relatively flat faces of the MACPF
domain8,11,13. In contrast the poly-C9 structure reveals that the
TSP1 domain packs against the C-terminal a-helix of the MACPF
domain of an adjacent monomer and forms an additional and
significant portion of the oligomer interface (Fig. 2). Thus in the
pore form, each TSP1 domain is wedged between two C-terminal
a-helices—one contributed in trans from an adjacent monomer
and one in cis. This interaction at the outer edge of the ring-like
assembly forms a quarter (B690 Å2 ) of the total (B3,000 Å2)
surface buried in the globular, non-barrel region (Fig. 2). The
remainder of the interacting surface is contributed by interactions
between MACPF domains.

In the MAC it is anticipated that the MACPF domain of the
related complement components C6, C7 and C8 form part of the
overall circular assembly3. Like C9, C6–C8 all contain an
analogous TSP1 domain that is functionally important
(Supplementary Fig. 1)14. It is therefore suggested that the
TSP1 domain of each protein in the complete MAC will be
positioned at the subunit interface. Indeed, we suggest that the
specialized TSP1/MACPF interactions likely explain the unusual
ability of the nascent MAC to recruit components directly from
solution. In contrast, proteins such as perforin, pleurotolysin and
CDCs lack a TSP1 equivalent and do not readily self-assemble
in solution. Instead, they require membrane anchoring via
ancillary domains in order to oligomerise. Indeed, it is known
from the study of receptors that restriction to the membrane
plane can favour oligomerisation through weak protein–protein
interactions18.

Conformational transitions during pore formation. We next
examined the conformational changes that take place in the
transition from the soluble monomer to the pore form.
Comparison with C6 suggests that the largest conformational
rearrangements during the transition from the monomer to the
pore form take place within the MACPF domain19,20. The bottom
half of the central b-sheet is rotated by B10 � relative to its
position in C6. This movement shifts the lower part of the b-sheet
laterally by B5.5 Å (Fig. 3a,b). Concomitantly with this change,
TMH1 and TMH2 unravel to form the b-barrel (Fig. 1b).

The lateral movement in the central sheet of the MACPF
domain repositions the conserved helix-turn-helix (HTH)
region that sits on top of TMH2 in the soluble monomeric
form. Consistent with this, the top of the poly-C9 pore lumen is
lined by pairs of a-helices (Fig. 3c). Previous mutagenesis and
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structural studies on the fungal MACPF protein pleurotolysin,
as well as the CDC suilysin, suggest a role of the HTH region in
pre-pore assembly and in controlling the transition to the
pore13,21.

Discussion
The structure of poly-C9 provides mechanistic insight into how
components of the MAC may assemble through additional
interactions mediated via the TSP1 domain. Furthermore, the
structure provides insights into self-association by MACPF
domain-containing proteins more generally. In particular, our
present poly-C9 structure may resolve the controversy regarding
the orientation of perforin in the pore assembly. Our previous

analysis of the low-resolution EM structure of the perforin pore
suggested that perforin monomers are orientated in the pore
assembly opposite to the CDCs and pleurotolysin8,11. The latter
two proteins, however, share very limited (o10%) sequence
identity in the MACPF domain with perforin, whereas C9 is more
closely related (B25% identity). Accordingly, we superposed the
perforin structure onto the poly-C9 model. This suggests that
perforin most likely oligomerises similarly to C9, following minor
rearrangements of the TMH2 and HTH domains (Supplementary
Fig. 8). We note that residues shown through mutagenesis studies
to interact at the pore interface are brought into close proximity
with one another22. Further, the absence of the TSP1 domain in
perforin at the outer edge of the pore assembly may explain the
heterogeneity in perforin pore size and shape. We thus conclude
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Figure 1 | The structure of poly-C9. (a) Top–down view of a C9 trimer in the poly-C9 map and (b) cut through of the poly-C9 map with cartoon (red) of

the poly-C9 model. Approximate dimensions and the predicted amphipathic region are indicated. (c) Cartoon of the full poly-C9 pore (alternating red and

yellow monomers). The barrel is best modelled with the architecture S¼ n/2 (ref. 42). (d) Cryo-EM end and side views of poly-C9 in individual images

(top) and class averages (bottom). (e,f) With the exception of the mobile region of the MACPF domain (which in poly-C9 has rearranged in order to form

the barrel), the crystal structure of C6 (PDB ID: 3T50) fits well into the map, with TMH1 and TMH2 omitted for clarity. In this figure the conserved b-sheet

of the MACPF domain is in red, the body of the MACPF domain is in blue, the EGF domain in green, the TSP1 domain in purple and the LDLRA domain in

pink (labelled).
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that the present 8-Å-resolution poly-C9 map thus provides a
better model for the perforin assembly.

Finally, the new structural insights may help explain how the
MAC assembles with respect to target cell membranes. In the
current view, C7 and C8 sequentially insert into the membrane,
anchoring it in place before the recruitment of multiple copies of
C9. However, this mechanism contrasts with the current view of
the MACPF/CDC pore formation, in which the amphipathic
hairpins are proposed to be inserted in a concerted fashion in the
context of a complete or incomplete ring11,23. The latter
mechanism seems more plausible because the conformational
change in the MACPF domain during membrane insertion is
extensive and would be predicted to disfavour the addition of new
subunits. The poly-C9 structure provides new insights into this
problem. The additional TSP1/MACPF interactions involve
regions of the molecule that do not undergo significant
conformational change. We therefore hypothesize that the
TSP1-mediated interactions may permit addition of C8 and C9
to a nascent MAC that has already entered the target membrane.

To conclude, we have determined the structure of poly-C9 at a
resolution sufficient to confidently position individual domains
and to resolve helical features in density. Our data further reveal
an unexpected contribution of domains ancillary to the MACPF

domain that likely function to stabilize the overall assembly and
the top half of the b-barrel pore.

Methods
Protein purification. Out-of-date apheresis human plasma was supplied by the
Australian Red Cross and stored at � 80 �C until required. This project was
deemed by the Monash University Human Research Ethics Committee
(project CF14/3761–2014001968) to be exempt from ethical review.

Plasma C9 was purified using protocols adapted from established protocols24,25.
Briefly, apheresis plasma treated with 0.1 mM PMSF, 0.1 mM benzamidine, 0.5 mM
EDTA and one protease inhibitor cocktail tablet per 100 ml plasma (Roche) was
diluted with 0.4 volumes of ultrapure water at 4 �C. Protein was precipitated with
20% (w/v) PEG 4000 and re-suspended in 10 mM sodium phosphate pH 7.4,
45 mM NaCl, 10 mM EDTA. The suspension was passed over ID 2.5 cm� 4 cm
loosely packed lysine resin (lysine sepharose 4b, GE Healthcare Life Sciences),
and the flow through was then passed over ID 5 cm� 4 cm of DEAE resin
(DEAE sepharose fast flow, GE Healthcare Life Sciences). The protein was eluted
with a gradient from 10 mM sodium phosphate pH 7.4, 45 mM NaCl, 10 mM
EDTA to 10 mM sodium phosphate pH 7.4, 350 mM NaCl, 10 mM EDTA.
C9-containing fractions from DEAE were pooled and loaded onto ID
2.5 cm� 4 cm ceramic hydroxyapatite resin (CHT type I, BioRAD) equilibrated in
10 mM sodium phosphate pH 7.0, 100 mM NaCl. Protein was eluted with a sodium
phosphate gradient from 45 to 350 mM, pH 8.1. The fractions containing C9 were
further purified by size exclusion chromatography (Superdex 200 resin, GE
Healthcare Life Sciences) in ID 2.6 cm� 60 cm column in 10 mM Hepes pH 7.2,
200 mM NaCl and 10 mM EDTA.
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Figure 2 | Interactions made by the TSP1 domain. (a) A view of the outside of the globular portion of the poly-C9 map showing the TSP1 domain (purple)

located at each subunit interface. The central C9 monomer is coloured as in Fig. 1, with the monomers each side in dark yellow and purple (TSP1 domain).

(b) A view from the top showing placement of the TSP1 domain between the C-terminal helix (marked with *) of each MACPF domain.

90°
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Figure 3 | Comparison between the structure of C6 (PDB ID 3T5O; yellow) and model of poly-C9 (red/blue). The shift of the central bent b-sheet (red)

shows (a) an B10� rotation of the bottom half of the sheet together with (b) an B5.5 Å lateral movement. (c) The HTH region (a pair of a-helices) lines

the pore lumen. A trimer is shown with the central monomer coloured red, blue and pink.
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The protein underwent an additional chromatography step using MonoQ
ion-exchange chromatography (GE Healthcare Life Sciences). Here, pooled
fractions from the size exclusion chromatography step were concentrated using a
30 kDa MWCO centricon concentrator and buffer exchanged 2–3 times into
10 mM Tris-HCl pH 7.2, 100 mM NaCl. Buffer-exchanged protein was loaded onto
a 1 ml MonoQ column and eluted over a linear gradient from: 10 mM Tris-HCl pH
7.2, 100 mM NaCl to 10 mM Tris-HCl pH 7.2, 350 mM NaCl. Purified protein that
was shown to be haemolytically active and able to assemble into a complete MAC
was used for EM experiments.

Haemolytic assays and MAC assembly on ghost cell membranes. Sheep red
blood cells (sRBC) were washed with DGHBþ þ pH 7.4 (Dextrose Gelatin HEPES
Buffer; with 2.5% (w/v) D-glucose, 0.1% (w/v) gelatin, 5 mM HEPES pH 7.4,
71 mM NaCl, 0.15 mM CaCl2, 0.5 mM MgCl2,). In all, 6.5� 108 sRBC were
sensitized with an equal volume of anti-sheep antibody to a concentration of
0.75 mg ml� 1 and incubated at 30 �C for 30 min to activate the classical pathway.
Excess antibody was washed off before reactions. The lysis reactions were set
up in triplicate with 0.2 ml sRBC (3.75� 106 cells), 1 ml of C9-depleted serum
(Complement Technology, USA) and 15 ml of C9 (initial concentration 8 mg ml� 1)
and twofold dilutions of purified C9 in thin-walled PCR tubes. Reaction tubes were
incubated at 37 �C on a PCR heat block for 30 min and immediately placed at 4 �C,
then centrifuged for 20 s. The supernatant (150 ml) of the lysis reactions was
transferred to a 96-well plate and absorbance at 405 nm was measured. The
reactions were normalized to 0% lysis with a buffer control or to a reaction
containing PlyA and PlyB13 for 100% lysis.

Ghost membranes were prepared with rabbit red blood cells (rRBC) washed
with DGHBþ þ . Packed red blood cells were pre-incubated with C9-depleted
serum for 15 min at 37 �C. The rRBCs were washed of excess sera and re-suspended
in DGHBþ þ . Purified C9 protein was added to rRBCs and incubated at 37 �C for
15 min. Reactions were immediately centrifuged for 30 s at 16,100 r.c.f. and the
supernatant transferred to new tubes. The supernatant was further centrifuged for
10 min at 16,100 r.c.f. and the pellet containing membranes was washed once with
DGHBþ þ and then resuspended in 10 mM phosphate buffer pH 8.0, 50 mM NaCl
to make ghosts. Carbon-coated copper grids containing formvar were glow
discharged, then floated over 8 ml of re-suspended ghosts followed by staining with
2% (w/v) uranyl acetate for 1 min. Pores were examined on a Hitachi H7500 TEM
at 80 kV.

Characterization of the glycosylation state. Purified C9 was reduced with 2 mM
DTT, alkylated with 5 mM iodoacetamide and digested with trypsin (Promega) in
1:40 ratio at 37 �C overnight. The digest was desalted with C18-packed tips (OMIX,
Agilent) before nanoLC-MS/MS (Dionex Ultimate 3000 LC coupled to QExactive
Plus, Thermo). Peptides (B1 mg) were loaded on a 2 cm trap column (100 mm ID,
Acclaim PepMap 100, Thermo Scientific) in 2% (v/v) acetonitrile, 0.1% (v/v)
trifluoroacetic acid and resolved on a 50 cm column (75 mm ID, Acclaim
PepMapRSLC, Thermo Scientific) with a non-linear 25 min gradient from 2% (v/v)
to 34% (v/v) acetonitrile in 0.1% (v/v) formic acid. Spectra were acquired in a
Top12 strategy with full scans (375–1,800 m z� 1) acquired at 70,000 resolution
and data-dependent HCD MS2 spectra acquired at 17,500 resolution. Peptide
assignment was performed with the Preview and Byonic software (Protein
Metrics26) utilizing Preview-determined modifications and mass tolerances, a
focused human database from an initial Byonic search and N- and O-glycosylation
databases for assignment of glycan compositions. All glycan composition
assignments were manually validated. Skyline software (University of Washington)
was used for semi-quantitative assessment of site-specific glycan compositions,
using parent scan extracted ion chromatograms27 (Supplementary Fig. 7).

Cryo-EM sample preparation and data acquisition. Monomeric C9 was
polymerized by overnight incubation at 1 mg ml� 1 and 37 �C. The resulting
poly-C9 was applied to lacey carbon-coated copper grids (Agar, UK) and frozen
with a FEI Vitrobot Mark III (FEI, Eindhoven) at 22 �C and 100% humidity.
Images were recorded manually on a Tecnai G2 Polara microscope (FEI) operating
at 300 kV with a Quantum energy filter and K2 Summit detector (Gatan, UK) in
counting mode, at a pixel size of 2.76 Å. Exposures were recorded at 1.2 electrons
(Å2)� 1 s� 1 for 25 s, with defocus values ranging from 1.2 to 4.9 mm
(Supplementary Fig. 3).

3D reconstruction of poly-C9. The detector movies were aligned using IMOD28.
CTF parameters were determined with CTFFIND4 (ref. 29). A total of 10,800
particles were extracted manually using Boxer (EMAN 1.9) (ref. 30). Classification
and refinement were performed using RELION31. 2D classification in IMAGIC29

revealed mainly end views with 22-fold symmetry, with a small fraction of particles
having 21- or 23-fold symmetry (Supplementary Fig. 3). The initial model with
22-fold symmetry was created by angular reconstitution from 2D class averages of
particles with all orientations in IMAGIC32 and refined by projection matching
using SPIDER33. A subset of B5,000 particles in side and tilted views
(homogeneous with respect to diameter of the wide part of the ring, corresponding
to the 22-mers) was refined with RELION using the initial model from SPIDER
filtered to 20 Å. Twenty-two-fold symmetry was applied during refinement. The

final map was corrected to the modulation transfer function of the detector and
sharpened by applying a B-factor34 determined by RELION. The final resolution
calculation based on gold-standard FSC was estimated at 0.5 and 0.143 FSC in
RELION. Local resolution was estimated using the ResMap program35

(Supplementary Fig. 4).

Determination of handedness. In order to determine the absolute hand of the 3D
reconstruction, the crystallographic structure of C6 was fitted into the map as well
as into the map with opposite handedness. Although the fit of the C6 conformation
was found to favour one hand over the other, the differences in cross-correlations
were too small to conclusively assign the hand of the map (C6: 0.63 versus 0.59;
calculated using the Chimera software36).

To resolve this issue, we examined the fit to both maps of the conserved
structural features of the MACPF domain. The C-terminal a-helical bundle of the
MACPF domain (Supplementary Fig. 5) is likely to be clearly discernable in an
8-Å-resolution cryo-EM density. Its characteristic arrangement of a-helices is
asymmetric and highly conserved in all the crystallographic structures of MAC
components17. We therefore expected that it should be possible to identify the
correct hand from analysis of the fit of this structural motif in the enantiomeric
maps (Supplementary Fig. 5b,c).

Accordingly, we found that the map in Supplementary Fig. 5b showed distinct
density corresponding to the C-terminal a-helical bundle. The region of the map
identified by rigid body fitting excellently reproduces the topology and length of the
a-helices. Conversely, the map in Supplementary Fig. 5c produces a comparatively
poor agreement with the fitted position of C6 (Supplementary Fig. 5c). We
concluded that the map in Supplementary Fig. 5b represents the correct hand.

Fitting of atomic models. A homology model of C9 was fitted into the EM map by
using a combination of manual, rigid body and flexible fitting. The C9 homology
model was generated using the crystallographic structures of C6 (PDB IDs: 3T5O,
4A5W) and C8 (2RD7, 3OJYA, 3OJYB) and Modeller 9.14 (ref. 37). The TMH1/2
regions were discarded because these regions form a b-barrel in poly-C9.

Five symmetry-related monomers were then subjected to flexible fitting
(MDFF methodology as implemented in NAMD 2.10 (ref. 38) using symmetry
restraints39. The protein secondary structure was restrained to avoid overfitting.
Oligomeric main chain hydrogen bonds between the b-sheets forming the top of
the b-barrel were also restrained to reproduce the pattern conserved in the
MACPF/CDC superfamily13,40. Two independent 5-ns simulations were performed
in vacuo at 310 K (g¼ 0.3; 1 fs time step; 12 Å cutoff for long-range interaction)
using the CHARMM36 force field41 and followed by 5,000 steps of energy
minimization (g¼ 0.5). The resulting model with the highest CC (0.93; Molprobity
score of 1.15) was replicated with C22 symmetry and combined with a structural
model of the 88-stranded b-barrel (architecture S¼ n/2 (ref. 42) using Modeller,
thus extending the b-strands of the central MACPF b-sheet as performed in
Leung et al.11 Lukoyanova et al.13 and Reboul et al.43 The final poly-C9 22-mer
model (CC of 0.94) is shown in Fig. 1.

In order to assess the reliability of the fitting procedure, the flexible fitting step
was repeated using cryo-EM maps calculated from randomly partitioned half-sets,
independently refined using RELION and used to determine the resolution of the
final cryo-EM map (see EM methods). Individual residue RMSDs of both fitted
models were calculated with respect to the structural model obtained from the
whole data set (Supplementary Fig. 6). Structural elements displaying an overall
high RMSD (for example, not fitted in a reproducible manner; 43.5 Å) were not
included in the final structural model.
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