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Abstract: The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is one of the most
important oxidative stress regulator in the human body. Once Nrf2 regulates the expression of a large
number of cytoprotective genes, it plays a crucial role in the prevention of several diseases, including
age-related disorders. However, the involvement of Nrf2 on these conditions is complex and needs
to be clarified. Here, a brief compilation of the Nrf2 enrollment in the pathophysiology of the most
common age-related diseases and bring insights for future research on the Nrf2 pathway is described.
This review shows a controversial response of this transcriptional factor on the presented diseases.
This reinforces the necessity of more studies to investigate modulation strategies for Nrf2, making it a
possible therapeutic target in the treatment of age-related disorders.
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1. Introduction

Aging is a highly complex process influenced by genetic and environmental factors, which can be
defined as the progressive loss of an organism’s optimal function until its eventual failure and death.
Many aging-associated disorders, as soon as the senescence process, are involved with perturbed energy
balance. For example, the peripheral signals (insulin, ghrelin, cholecystokinin, and adipokines (leptin,
adiponectin, resistin)) together with the central regulatory inputs (primarily via the hypothalamus) are
impaired in aging. Moreover, neurodegenerative disorders characterized by cognitive and/or motor
symptoms that progressively worsen over time, are also common in elderly people, leading to reduced
quality of life, increased medical costs and eventual death [1].

Among the several pathways associated with age-related disorder development, both
oxidative/electrophilic and inflammatory stresses play important roles [2,3]. Within this perspective,
studies aiming to mitigate or attenuate these processes have been exhaustively performed [4].
In the last years, novel strategies have been raised as promising, such as the regulation of gene
expression [5] and stimulation of key proteins related to oxidative and inflammatory responses
control [6]. One of these proteins is the nuclear factor erythroid-derived 2-like 2 (Nrf2) [7], a nuclear
factor constitutively expressed in the cytosol and inhibited by its negative regulator Kelch-like ECH
(Enoyl-CoA Hydratase)-associated protein 1 (Keap1) [8].

The most studied biological process under Nrf2 control is the redox homeostasis. During the redox
homeostasis, the persistence of the Keap1-Nrf2 association in the cytosol leads to the ubiquitination of
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this complex and consequent degradation by the proteasome. Conditions of redox imbalance induce
the dissociation of the Keap1-Nrf2 complex, releasing the nuclear factor that translocate to the nucleus,
while the inhibitory component Keap1 is degraded via ubiquitin-proteasome [7,9]. Inside the cell
nucleus, Nrf2 is coupled to the gene region associated with the antioxidant-response element (ARE)
expression. This mechanism is responsible by the expression of many antioxidant and detoxification
genes. It includes the production of enzymes such as hemeoxigenase 1 (HO-1), catalase (CAT),
superoxide dismutase (SOD), and glutathione peroxidase (GPx), the expression of phase II detoxifying
enzymes, such as glutathione S-transferase (GST), and enzymes responsible for the glutathione
tripeptide (GSH) synthesis, such as glutamine-cysteine ligase (GCL) and glutathione synthetase (GS) [9]
(Figure 1). The AREs were primarily described as xenobiotic-responsive elements [10], which present
an upper expression induced by planar aromatic compounds. At the same time, one more accurate
name was coined, electrophile-response element (EpRE) [11], and is actually an appropriate synonym
for AREs [12,13].

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  2 of 14 

 

The most studied biological process under Nrf2 control is the redox homeostasis. During the 
redox homeostasis, the persistence of the Keap1-Nrf2 association in the cytosol leads to the 
ubiquitination of this complex and consequent degradation by the proteasome. Conditions of redox 
imbalance induce the dissociation of the Keap1-Nrf2 complex, releasing the nuclear factor that 
translocate to the nucleus, while the inhibitory component Keap1 is degraded via 
ubiquitin-proteasome [7,9]. Inside the cell nucleus, Nrf2 is coupled to the gene region associated 
with the antioxidant-response element (ARE) expression. This mechanism is responsible by the 
expression of many antioxidant and detoxification genes. It includes the production of enzymes such 
as hemeoxigenase 1 (HO-1), catalase (CAT), superoxide dismutase (SOD), and glutathione 
peroxidase (GPx), the expression of phase II detoxifying enzymes, such as glutathione S-transferase 
(GST), and enzymes responsible for the glutathione tripeptide (GSH) synthesis, such as 
glutamine-cysteine ligase (GCL) and glutathione synthetase (GS) [9] (Figure 1). The AREs were 
primarily described as xenobiotic-responsive elements [10], which present an upper expression 
induced by planar aromatic compounds. At the same time, one more accurate name was coined, 
electrophile-response element (EpRE) [11], and is actually an appropriate synonym for AREs [12,13]. 

 

Figure 1. In cells under homeostatic conditions, cytosolic transcription factor Nrf2 is kept at low 
levels by proteasomal degradation trigged by the Keap1 protein complex. When cells are under 
oxidative stress, free radicals induce the Nrf2 to release from Keap1, escaping from proteasomal 
degradation, and it translocates to the nucleus. In the nucleus, Nfr2 binds to the ARE and starts the 
transcription of antioxidant enzymes as heme oxygenase-1 (HO-1), glutathione peroxidase (GPx), 
glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione reductase 
(GR), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamine-cysteine ligase (GCL), and 
glutathione synthetase (GS). These enzymes act by reducing the cell oxidative stress and free 
radicals. Black arrows indicate pathways activation; Red T-bars indicate blocking processes. 

However, in the last decade, several mechanisms related to the Nrf2 activation and controlled 
by this transcriptional factor have been described. At the same time, the literature is controversial 
regarding its participation on age-related disorders. Here we describe a brief compilation of the Nrf2 
contribution in the pathophysiology of the most common age-related diseases and bring insights for 
future research about the pathways which involve Nrf2. 

Figure 1. In cells under homeostatic conditions, cytosolic transcription factor Nrf2 is kept at low
levels by proteasomal degradation trigged by the Keap1 protein complex. When cells are under
oxidative stress, free radicals induce the Nrf2 to release from Keap1, escaping from proteasomal
degradation, and it translocates to the nucleus. In the nucleus, Nfr2 binds to the ARE and starts
the transcription of antioxidant enzymes as heme oxygenase-1 (HO-1), glutathione peroxidase (GPx),
glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione reductase
(GR), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamine-cysteine ligase (GCL), and glutathione
synthetase (GS). These enzymes act by reducing the cell oxidative stress and free radicals. Black arrows
indicate pathways activation; Red T-bars indicate blocking processes.

However, in the last decade, several mechanisms related to the Nrf2 activation and controlled
by this transcriptional factor have been described. At the same time, the literature is controversial
regarding its participation on age-related disorders. Here we describe a brief compilation of the Nrf2
contribution in the pathophysiology of the most common age-related diseases and bring insights for
future research about the pathways which involve Nrf2.
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2. Hypertension

Hypertension is characterized by increased systolic and/or diastolic blood pressure [14] and
considered one of the most common chronic non-transmissible diseases able to lead to vasculature and
central nervous system changes. This condition has a multifactorial etiology which includes smoking,
diet, genetics, family history, and preexisting pathologies [15]. However, oxidative and nitrosative
stress appear to be a common feature in hypertensive disorders responsible by an impairment of
physiological functions, as well as cell signaling, promoting vascular damage, a common condition in
the hypertensive state [16].

The main cause of hypertension is the inappropriate activation of the renin-angiotensin system
(RAS), once angiotensin II and associated RAS are involved in the regulation of blood pressure,
vasoconstriction, sodium intake, and potassium excretion [17]. At the same time, angiotensin II
increases the expression of NADPH oxidase and the generation of ROS, potential mediators of some
renin-angiotensin-induced hypertension effects [17]. Angiotensin II can activate the NADPH system,
which increases the generation of ROS, inactivating the NO and generating peroxynitrite. This condition
leads to an impairment of the NO-dependent endothelial vasodilatation and to an uncoupling of
endothelial nitric oxide synthase, which generates additional superoxide production and contribute to
the oxidative stress increase [18,19]. In this scenario, there is a large Nrf2 migration to the nucleus in
response to the pro-oxidant environment. However, the nuclear accumulation of Nrf2 hyper-regulates
the expression of angiotensin that potentiates the angiotensin II signaling, enhancing the oxidative
stress [20,21]. In this context, in a study involving a hypertensive rat model [22] has suggested that
hypertension could be one of the causes of Nrf2 misregulation and not the opposite. The findings
suggest that the Nrf2 antioxidant defense system would not be sufficient to attenuate the oxidative
stress effects, possibly due to the elevated levels of Nrf2 repressors in hypertensive animals.

Considering that the excessive production of reactive oxygen species (ROS) and deregulation of
the antioxidant defense system can lead to endothelium cellular damage and dysfunction, studies
are necessary to focus on alternative mechanisms intrinsic to upstream and downstream molecules
associated with a defective Nrf2 signaling system. Thus, enhancing Nrf2 activity may have a therapeutic
potential for ameliorating hypertension.

3. Type-2 Diabetes

Diabetes mellitus (DM) is a chronic metabolic disorder from genetic and/or environmental etiology
characterized by increased levels of blood glucose due the impairment in insulin production or its
secretion/action [23]. DM is a major health problem that comprises more than 400 million people
diagnosed worldwide and the projection of more than 500 million by 2035. This rise is mainly due aging,
unhealthy diets, physical inactivity, overweight and obesity [24]. During aging, there is an impairment
in the glucose tolerance which makes evident some diabetic characteristics, such as post-prandial
glycemia [25]. It is estimated that more than half of Americans over 65 years old have pre-diabetes
(impaired glucose tolerance) and one-third have type-2 diabetes (T2DM) [26]. Oxidative stress is an
important mediator in the pathogenesis, complications, and progression of DM.

In type-2 diabetes (T2DM), insulin resistance promotes β-cell failure through mitochondrial stress,
which increases the reactive species production, leading to cellular damage [27]. In addition, β-cells
are particularly susceptible to oxidative damage due to the presently low levels of expression and
antioxidant activity [28,29]. Although cytosolic superoxide dismutase is normally expressed in the
pancreatic islets, catalase and glutathione peroxidase levels are reduced compared to other tissues [30].
This scenario is the major trigger for the progressive loss of β-cell mass observed in T2DM.

The Nrf2/keap1/ARE pathway is the main redox homeostasis mediator [31]. This redox signaling
pathway regulates several genes associated with oxidative stress and studies have shown that
Nrf2/keap1/ARE is the main β-cell protective mechanism [32]. The Nrf2 depletion decreases the
expression of antioxidant genes, exacerbating the oxidative damage; in the opposite, the genetic or
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pharmacological activation of Nrf2 in db/db mice suppress T2DM development and reactive species
accumulation, DNA adducts formation and β-cell apoptosis [33,34].

In addition to the positive effect on β-cells, the Nrf2 pathway demonstrates the influence of insulin
resistance. Nrf2 activation improved the insulin resistance and decreased the blood glucose levels in
Keap1 knockout mice [33]. Other studies show that Nfr2 inducers improve systemic insulin resistance
in experimental diabetes and obesity models and increase glucose uptake [35,36]. A recent study also
suggests that the decreased oxidative stress in the hypothalamus due the increased Nrf2 signaling can
improve insulin resistance [37].

Moreover, in a condition of constant hyperglycemia advanced glycation end-product (AGE)
formation occurs, resulting from the non-enzymatic reaction between a sugar and an amino group of
proteins. AGEs are involved in many biological reactions, such as endocytic uptake and degradation,
oxidative stress, and cytokine induction due the interaction with cellular receptors, including the
receptor of advanced glycation end-products (RAGE) [38]. AGE/RAGE binding is one pathway
involved in the oxidative stress increase; the stimulation of pro-inflammatory and pro-coagulant
agents is also cited as a main pathogenic cause of vascular disorders in diabetic individuals [39]. The
enzyme glycoxalase I (Glo I) is a detoxifier of methylgyoxal (MGO), which consequently inhibits the
formation of AGE. The overexpression of this enzyme by Nfr2 reduces the hyperglycemia-induced
AGE as previously demonstrated [40,41]. Furthermore, hyperglycemia induces mitochondrial reactive
species overproduction and the antioxidant agents upregulated by the Nrf2/Keap1/ARE pathway was
demonstrated to be a more efficient detoxifier than the classic low molecular-weight antioxidants [42,43].

Since oxidative stress is a pivotal factor in the DM pathogenesis and complications, studies
have emerged aiming to increase the antioxidant response and reducing the oxidative impacts by the
investigation Nrf2 activators [34,44–46]. In vitro studies, animal models, and clinical trials suggest that
the up-regulation of the Nrf2 pathway can be protective against DM (T1 and T2) by suppressing the
disease progression and preventing complications [32,47–49]. This evidence encourages the activation
of Nrf2 as a target against diabetes; however, more studies are necessary to evaluate this effect.

4. Cataract

The eye is a prominent oxidative stress target organ since it is continually exposed to many
oxidative conditions, such as photo-oxidation, ionizing radiation, smoke, and several forms of
pollutants. The retina is one of the most vulnerable ocular regions due to high metabolic activity,
becoming a highly perfused and oxygenated tissue. The retina also contains higher concentrations
of polyunsaturated fatty acids than other tissues in the human body [50]. All these factors make it
vulnerable to oxidative actions, such as reactive oxygen species (ROS). Thus, oxidative stress has been
associated with many ocular disorders, among them, the cataract [51].

Cataract is a form of blurred vision that results from the cloudiness of the lens, being the most
common cause of vision loss in people over 40 years old around the world [52]. There are three main
types of cataracts: subcapsular, cortical, and nuclear cataracts, each one with different associated risk
factors [51]. Nonetheless, aging and oxidative stress, such as that which occurs due to ultraviolet
irradiation, are the common denominators [53].

The human lens consists of a, b, and c crystalline proteins, and oxidative stress may lead to the
protein aggregation, developing clumps, which results in loss of transparency and cataract. Together
with oxidation of crystalline proteins, the DNA damage, the membrane lipid peroxidation, and the
unbalance in calcium homeostasis are all contributors for cataract formation. This illness is also
prevalent in other diseases that have oxidative stress in the physiopathology, such as diabetes [53,54].

The imbalance between reactive species and antioxidant protection, defined as oxidative stress,
is an important condition associated with age-related cataract formation. Within this context, the
Keap1-Nrf2-ARE system is the center of the antioxidant response regulation, responsible for the control
of several cytoprotective proteins at the transcriptional level [55]. ROS overproduction leads to the
suppression of Nrf2-dependent antioxidant protection in lens epithelial cells [56]. A drastic decrease in
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the Nrf2 level (protein and gene) significantly increases the Keap1 level (protein and gene), and highly
elevated levels of DNA demethylation in the Keap1 promoter were found in human lens epithelial
cells culture, human aging lenses, and diabetic cataractous lenses [57].

In opposition, in clear human lenses and cultured lenses, DNA methylation was demonstrated as a
promoter of Keap1 gene demethylation, a crucial mechanism for cataract formation in an age-dependent
behavior [58]. This process of demethylation accelerates Nrf2 proteasomal degradation [57] and impairs
Nrf2 antioxidant activity, leading to cataract formation [58]. These findings show that Nrf2 inducers
may also act as anti-cataract formation compounds [59].

5. Bone Metabolism Disorders

Bone formation is a complex process that occurs throughout an individual’s life. Bones constantly
change due to two main processes: modeling and remodeling. The modeling process is responsible
by the formation of new bone in response to environmental forces, resulting in a new bone shape.
Bone remodeling consists in the old bone tissue removal to be replaced for a new one, an essential
process for bone homeostasis. Therefore, reduced bone remodeling or an imbalance between bone
resorption and formation is associated with some age-related bone disorders, such as osteoporosis [60].
Epidemiological reports from the World Health Organization shows that in 50 year-old women, the
fracture rate is about 40 and the risk increases with age [61].

Multiple pathogenetic mechanisms are responsible for bone mass loss and skeletal
microarchitectural deterioration, such as excessive bone resorption or inadequate bone formation in
response to the increased resorption during bone remodeling. Moreover, studies have demonstrated an
important contribution from the redox imbalance to bone, once the reduced antioxidant levels would
enhance bone resorption whereas the reduction in oxidative stress may provide protection against
osteoporosis in the aged [61].

The role of Nrf2 in osteoblast differentiation and activity is still controversial and dependent of
some factors, such as age, sex, genetic, and physiological or pathological conditions. Studies suggest
that Nrf2 is required not only for normal postnatal bone acquisition [62], but some data also show that
Nrf2-deficient osteoblasts lose their ability for differentiation and mineralization [63]. In osteoblast
progenitor cells, the role of Nrf2 may be associated with the intracellular level of ROS, which are
elevated in Nrf2-deficient stromal cells [63]. Increased ROS in oxidative stress condition inhibit the
osteoblast differentiation [64]. In opposition, osteogenesis depends of low physiological amounts of
reactive species. The bone morphogenetic protein 2 (BMP2) is responsible by promoting osteoblast
progenitor cells to mature osteoblasts in a mechanism NOX4 (NADPH oxidase 4) dependent via ROS
production [65]. Also, the osteoprogenitor cells differentiation produces hydrogen peroxide, which
is fundamental for the adequate mineralization and osteogenic marker genes expression [66]. These
data suggest that the relationship between osteoblastogenesis and Nrf2 or ROS is rather complex.
In MC3T3-E1 osteoblastic cells, the Nrf2 overexpression causes deleterious effects because it inhibits
Runx2 [67]. Runx2 is a master transcription factor that regulates both embryonic bone development
and postnatal osteoblastic function. Based on this evidence, some researchers believe that Nrf2 might
inhibit osteoblastogenesis [68].

However, the fundamental participation of Nrf2 in bone formation has been demonstrated in
situations of fracture repair in response to mechanical loading. Under the condition of fracture repair
Nrf2 activation occurs. On the other hand, in Nrf2 knockout mice, both bone healing and recovery of
mechanical strength are impaired, probably due the reduction in vascular endothelial growth factor
(VEGF) [69]. Thus, these data suggest an essential role of Nrf2 in bone regeneration.

Nrf2 signaling also influences the regulation of osteoclast formation and activity. The receptor
activator of nuclear factor kappa-B ligand (RANKL) is the main inducer of osteoclast differentiation.
In condition of overexpression of Nrf2 occurs an enhancement of RANK ligand which suppress
osteoclast differentiation; however, the deletion of Nrf2 reduces the antioxidant enzymes and elevates
the intracellular ROS, leading to an increase in osteoclast number and stimulation of osteoclast
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activity [70]. Together, these findings show an indirect effect of Nrf2 on osteoclasts formation and
activity. Moreover, Nrf2 is also able to interfere with the actin ring, affecting the osteoclast activity.
This actin ring is a sealing zone present in mature osteoclasts and crucial for bone resorption. Yet,
Nrf2 deficiency leads to the actin ring formation induced by the RANK ligand and bone resorption,
suggesting that the bone resorption normal range is dependent of Nrf2 [68].

Therefore, Nrf2 exerts a critical role in the regulation of bone homeostasis. However, it is important
to emphasize the participation of endocrine organs on bone tissues and cells health. However, Nrf2
may be a pharmacological target for bone integrity maintenance in pathological situations.

6. Alzheimer’s Disease

Alzheimer’s disease (AD) is a common age-related neurodegenerative disorder characterized by
the progressive learning and memory impairment. The main hallmarks of AD are: senile plaques,
which are extracellular accumulations of amyloid beta (Aβ) peptide; and neurofibrillary tangles, which
are composed of hyper phosphorylated tau protein [71]. According to the Aβ cascade hypothesis, this
substance is the main cause of neurotoxic injuries in AD, activating many biochemical pathogenic
mediators, among them oxidative stress and synaptic dysfunction, leading to AD [72,73]. However,
the exact mechanisms associated with dementia remain unclear.

Increased ROS in oxidative stress conditions are important mediators of AD. At the same time that
the brain consumes high amounts of oxygen, it has a limited antioxidant defense, becoming a sensitive
organ to oxidative stress [74]. The Nrf2 is a key redox-regulated gene with a critical role against oxidative
stress, and the level of Nrf2 in the nucleus is decreased in neurological disorders, such as AD [75].
Recently, the literature reports that Nrf2 is able to regulate different endogenous redox-regulated
enzymes, as the heme oxygenase-1 (HO-1) and glutathione cysteine ligase modulatory subunit (GCLM)
via phosphorylated phosphatidylinositol 3-kinase, phosphorylated Akt, and phosphorylated glycogen
synthase kinase 3 beta (p-PI3K/Akt/GSK3β) pathway. This mechanism has an important role in many
signaling functions, being investigated also in AD brain and AD mouse models [76–80].

Notably, HO-1 activation has some benefits, including learning and memory improvement [75,81]
and studies report that Nrf2 is able to increase the HO-1 expression [82]. In both in vitro and in vivo
studies, the high expression of Nrf2 was associated with decreased Aβ-induced neurodegeneration
and oxidative stress [83]. Corroborating this result, Kanninen et al. showed that the overexpression of
Nrf2 improves spatial learning and memory in a mice model of AD [80,84].

Although the results show a protective effect of Nrf2 against AD, Ramsey et al. reported that the
level of Nrf2 is different according to brain location: usually this transcription factor is found in both
nucleus and cytoplasm; however, in AD patients is primarily present in the cytoplasm [85]. Moreover,
both activation and gene expression are decreased in AD, consistent with Nrf2 level changes [83].
However, some researchers show an opposite result, with an up-regulation in AD brains compared to
control [86–89]. These controversial results are also affected by the disease stage and the studied brain
region [90]. Within this context, the Nrf2 activation seems to exert a protective role against AD-related
pathophysiology, being a possible target for drug development against AD.

7. Parkinson’s Disease

Parkinson’s disease (PD) is a progressive, incurable, and age-related disease affecting 1.8%
individuals by the age of 65 years [91] that presents, as major clinical hallmarks, resting tremor,
rigidity, postural instability, and akinesia, accompanied by cognitive impairment [92]. The PD etiology
comprises a complex interaction of environmental factors associated with genetic variation; however,
the involved pathways are unclear. The identification of mutations in some genes associated with
the PD has emerged as a possible cause for the disease pathogenesis. The hereditary mutation in six
different genes, such as the synaptic protein a-synuclein [93] and E3 ubiquitin ligase, parkin [94] is
associated with some PD forms.
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Currently, dopamine replacement is the standard clinical treatment for PD patients, in order to
ameliorate the motor symptoms. Therefore, the discovery of new therapies is crucial to improve both
motor and non-motor symptoms, as the cognitive impairment and the autonomic nervous system
dysfunction [91]. The transcription factor Nrf2 has emerged as a possible target to modulate the PD
molecular hallmarks since it is able to regulate the proteasome and autophagy processes. Thus, Nrf2
modulation could be an alternative for the PD treatment.

Studies show a correlative decline in Nrf2 activity with age (the predominant risk factor for
PD), suggesting an indirect link between Nrf2 and the disease [95,96]. Moreover, evidence has been
published demonstrating that a deficient Nrf2-mediated antioxidant response is associated with
oxidative stress, common in PD patients. In dopaminergic neurons from the substantia nigra pars
compacta (SNpc), Nrf2 is usually located in the cytosol, whereas in PD patients, it is found in the
nucleous [85]. Moreover, the up-regulated expression of NQO1 [97] and HO-1 [98–101] induced by
Nrf2 suggests a brain protection through this mechanism [102]. A study regarding the expression of
Nrf2, NQO1, and p62 in postmortem samples of PD patients showed an impaired neuroprotective
capacity of this pathway [103].

However, a strong evidence regarding the association between Nrf2 and PD was demonstrated in
a European case- control groups study. The results showed that a functional haplotype in the human
NFE2L2 (Nuclear Factor, Erythroid 2 Like 2) gene promoter was associated with both decreased risk
and delayed age at disease onset [104,105]. Several SNPs (single nucleotide polymorphism) have
been identified as able to reduce the PD susceptibility in some conditions, as the regular exposure to
pesticides [106].

The literature also reports some mutations in familiar condition of PD, such as leucine-rich
repeat kinase 2 (LRRK2) gene mutations, emphasizing that it could be also considered useful as
biomarkers. A strong positive correlation was found between Nrf2 and the Unified Parkinson’s Disease
Rating Scale (UPDRS) in LRRK2-PD patients [107]. An in vitro study with induced pluripotent stem
cells (iPSCs) from PARK2 (parkin gene) demonstrated increased oxidative stress and improved Nrf2
activity, which was correlated with changes in mitochondrial morphology and impaired mitochondrial
homeostasis [108].

Nrf2 is also connected to PD by the protein deglycase DJ-1. Evidence shows that a mutation in
DJ-1 induces an early familial form of PD [109]. Moreover, it has been demonstrated that DJ-1 has an
important role in the NRF2-dependent oxidative stress response, up-regulating 20S proteasome and
its regulator, NQO1 [110]. Moreover, DJ-1 is able to induce thioredoxin 1 expression through NRF2
pathway [111] and also stabilizes Nrf2 avoiding its ubiquitination and degradation [112]. Corroborating
this effect, an experimental PD model using DJ-1/-mice did not show neuronal loss [113,114]; however,
the neurons presented more susceptibility to toxic insults [113], demonstrating a similar pattern in DJ-1/-
and Nrf2/-mice [115], explained by the loss of the antioxidant gene transcription. Dopaminergic neuron
loss in Nrf2/-mice was associated with increased neuroinflammation, demonstrating an important role
of Nrf2 to regulate neurodegenerative and neuroinflammatory processes [98].

α-synuclein was demonstrated to induce antioxidant enzyme genes in microglial cells via Nrf2.
A study showing that misfolded α-synuclein directly activates microglia and increased antioxidant
enzyme expression corroborate this finding [116]. Mice that overexpress Nrf2 and human mutant
α-synuclein in neurons demonstrated an extended life span, increased motor neuron survival, and
reduced oxidative stress compared to mutant α-synuclein (A53T) mice [117]. In vitro study with
SK-N-SH cells showed α-synuclein aggregation and neurotoxicity by NRF2/HO-1 inhibition induced
by ferrous iron [118], suggesting an important role of NRF2 in PD.

In summary, Nrf2 has demonstrated interesting effects in age-related diseases (Figure 2) and a
promise pharmacological target for PD patients, since many studies show a consistent role of this
transcriptional factor to modulate for delaying the disease progression.
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HO-1—heme oxygenase-1; DJ-1—protein deglycase.

8. Conclusions

It is clear that Nrf2 exerts several functions in many conditions and diseases. Due the heterogeneity,
it is impossible to concept that Nrf2 is a target to counteract aging. However, for some aging-related
diseases it seems that the Nrf2 activation constitutes an interesting strategy. There is consistent evidence
showing the beneficial effects of Nrf2 activation on pathophysiological processes of type-2 diabetes,
and Alzheimer’s and Parkinson’s diseases. Together with positive evidence, strategies targeting Nrf2
are being investigated on these conditions and future effective therapies must be developed. Although
studies with other age-related diseases do not demonstrate solid evidence, more research is still needed
for better understanding Nrf2 activation and this pathway will still be an interesting focus in the
coming years.
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