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Abstract: Sickle cell disease (SCD) is a widely spread inherited hemoglobinopathy that 
includes a group of congenital hemolytic anemias, all characterized by the predominance of 
sickle hemoglobin (HbS). Its features are anemia, predisposal to bacterial infections and 
complications such as vaso-occlusive crisis (VOC) or delayed hemolytic transfusion reaction 
(DHTR), which lead to increased rate of morbidity and mortality even in the era of 
hydroxyurea. The interaction between sickle cells, neutrophils, platelets or endothelial cells 
in small vessels results in hemolysis and has been considered the disease’s main pathophy-
siological mechanism. Complement activation has been reported in small cohorts of SCD 
patients, but the governing mechanism has not been fully elucidated. This will be important 
to predict the patient group that would benefit from complement inhibition. Until now, 
eculizumab-mediated complement inhibition has shown beneficial effects in DHTR, with 
limited reports in patients with VOC. In the meantime, several innovative agents are under 
clinical development Our state-of-the-art review summarizes current data on 1) complement 
activation in SCD both in steady state and crisis, 2) underlying mechanisms of complement 
over-activation for the clinician in the context of SCD, 3) actions of hydroxyurea and new 
therapeutic approaches including indirect involvement in complement activation, and 4) 
novel paradigms in complement inhibition. 
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Introduction
Sickle cell disease (SCD) still remains a devastating and dire condition with 
subsequent increased rates of morbidity and mortality in the era of hydroxyurea.1 

It is a genetic, autosomal recessive condition caused by a single β-globin gene 
mutation on chromosome 11, leading to an amino-acid substitution (Glutamine -> 
Valine, βΑ -> βs), thus resulting in the formation of the abnormal hemoglobin 
S (HbS) tetramer.2 HbS is a tetramer with abnormal physicochemical properties 
that will polymerize under hypoxic stress, leading into the sickling of circulating 
red blood cells (RBCs).3

Our current understanding of the disease’s pathophysiology has mostly focused 
on the interaction between red blood cells and neutrophils, platelets or endothelial 
cells in small blood vessels.4 More recently, the effects of red blood cell adhesion 
and hemolysis that result in vaso-occlusive crisis (VOC) have also been 
investigated.5 A rather neglected entity in SCD that seems to be a key component 
of this pathophysiological mechanism may be complement activation. In this 
context, increased interest has been shown in the identification of the innate 
immune system’s pivotal role in the promotion of inflammation in SCD.6 The 
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activation of the complement cascade is one of the hall-
marks in this inflammatory process.7 In general, systemic 
complement dysregulation induces host tissue damage.8 

Biomarkers of complement activation in the serum of 
SCD patients were revealed in various clinical studies, 
along with increased levels of C5b-9 – which is the defi-
nitive marker of complement activation - and other sur-
face-bound C3 fragments not only on patients’ 
erythrocytes, but also in skin and kidney biopsies.10–14 

Additionally, further experience about the role of comple-
ment activation and inhibition has been gained in the 
context of other disorders. Findings of complement activa-
tion in β-thalassemia major, thrombotic microangiopathies 
(TMAs), antiphospholipid antibody syndrome, HELLP 
syndrome and malaria enhance our efforts in understand-
ing complement activation and its role in the pathophysiol-
ogy of SCD.15–21

Our review originated from the aspiration to provide 
further evidence in the investigation of complement acti-
vation in SCD. This regards a summary of current data on 
complement activation both in steady state and crisis, 
probable elemental mechanisms of complement activation 
in the frame of SCD, actions of hydroxyurea, novel ther-
apeutic approaches including indirect involvement in com-
plement activation and novel endeavours of complement 
inhibition; all under the prism of a clinician’s point of 
view.

Complement Activation in SCD
Scientific effort to explain increased rates of bacterial 
infections and mortality in SCD patients1,22,23 led to the 
investigation of a possible involvement of the complement 
system in the disease’s pathophysiology, with the hypoth-
esis that this excessive sensitivity to infections was a result 
of defective opsonization.9,24,25 Complement components, 
such as C3b and iC3b, are key ingredients of innate 
immune system and not only opsonize pathogens but 
also generate sequential adaptive immune responses. As 
a result, the complement system was placed at the center 
of scientific community’s research.

Francis and Womack were the first investigators who 
reported remarkable complement activity in the serum of 
SCD patients in 1967.26 Six years later, Johnston et al 
followed the same hypothesis and confirmed complement 
over-activation through the AP pathway in SCD.27 In 
1976, Wilson et al revealed total AP function (AP50) in 
abnormally low levels, along with significantly depressed 
levels of factor B in serum of SCD patients compared to 

normal controls.28 Generally, initial surveys’ results with 
the depiction of depressed levels of Factor B, functional 
deficiency, and C3 inferred to the assumption that defec-
tive AP activation was responsible for defective opsoniza-
tion. However, the possible underlying mechanisms were 
not further investigated.27–31

Later studies managed to measure Bb fragments and 
C3, P (properdin) complexes in serum from SCD patients 
in crisis.9 This study revealed elevated concentrations of 
both factors and was consistent with the hypothesis that 
irreversibly sickled red cells, or membrane spicules and 
vesicles are the site of increased AP activation. 
Furthermore, complement over-activation markers such 
as Bb, C5a, soluble sC5b9 were measured in patients’ 
serum or plasma and associated with SCD in steady state 
or in crisis.10,12–14,32 Additional results reported over- 
activation of the AP pathway in painful crisis periods, in 
contrast with asymptomatic circumstances.

On the other hand, more measurable molecules of the 
complement system such as factors D, I and H were found 
to be within normal range or even reduced but not statis-
tically significantly in SCD patients who exhibit comple-
ment activation.28,32,33 Moreover, a defective regulation 
mechanism of soluble C5b-9 has been correlated to 
a major increase in lysis of sickled cells.34 In addition, 
elevated soluble c5b-9 and sC5b-9 vascular deposition 
were revealed.11,12,14

Other studies showed that regulation of C5b-9 (mem-
brane attack complex/MAC) formation in sickle erythro-
cytes was defective, especially in the densest cells. The 
defect is characterized by increased binding of C5b-7 and 
of C9 to more dense sickle cells, and as a result, sickle 
cells are more susceptible to C5b-9-mediated (reactive) 
lysis. Among the dense sickle cells, irreversibly sickled 
cells (ISC) are those that are more sensitive to lysis.34 

Interestingly, dense ISC have the ability to directly acti-
vate the AP.9 Their density propagates an increased AP 
activation when compared to sickled RBCs or control 
RBCs. Defective modulation from surface-anchored com-
plement regulators on dense sickled RBCs, along with an 
increased amount of C3 are potent complement 
activators.10,12

Since C3a and C3b fragments can be produced by 
either pathway, whereas Bb is specific to the AP and 
C4b both to the classical pathway (CP) and the lectin 
pathway (LP), several surveys used additional methods to 
block CP activation, in order to achieve only AP to be 
activated.9,27,32 Collectively, these data are conclusive in 
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that complement activation is a major characteristic of 
SCD and sickled RBC’s death in vivo or in vitro is AP 
mediated. This mechanism of complement over-activation 
needs further exploration. However, numerous observa-
tional studies, mouse model data and experiments have 
attempted to shed a light in this obscure area of SCD 
pathophysiology.

Underlying Mechanisms of 
Complement Activation in SCD for 
the Clinician
Complement system and its role in the pathophysiology of 
SCD is considered a complex and vast entity. The key 
aspects that bind complement and SCD are cell-free 
heme and hemolysis-derived molecules, C5a together 
with P-selectin, the surface complement regulatory pro-
tein, the hypercoagulant state in SCD, the amendment of 
the bilayer membrane structure in sickle RBCs and the 
very essence of SCD pathobiology: the vicious cycle of 
ischemia/reperfusion (I/R). These mechanisms can for-
ward complement activation through different, distinct 
pathways.32,35,36 Circulating microvesicles (MVs) of 
damaged SCD erythrocytes during oxygenation–deoxy-
genation sickling cycles have been identified with the 
ability to activate the complement system, and as 
a result, they can be used as biomarkers.35,37,38

AP activation due to alterations in the organization of 
membrane phospholipids of sickled RBCs is a speculated 
adjunctive mechanism. Early studies made reports of 
in vivo AP activation in the circulations of SCD patients 
during painful crisis32 and subsequent studies further evi-
denced an abnormal translocation of the sickled RBC 
membrane phospholipids, which transpires as a potential 
locale of AP activation in SCD.14,39

Chronic intravascular hemolysis is identified as an 
essential characteristic of SCD.40 Free extracellular 
heme interacts with toll-like receptor 4 (TLR-4) leading 
to the production of cytokines and adhesion molecules 
that promote inflammatory response and ultimately 
VOC. Endothelial TLR-4 signaling is rather critical for 
SCD VOC and recent data suggest that targeted inhibi-
tion of heme-induced TLR-4 signaling can actually 
reduce VOC.41 Moreover, free heme is released in cir-
culation due to hemoglobin degradation during hemoly-
sis. Counter protective mechanisms are not sufficient to 
prevent hemolysis from accumulating free heme in 
plasma.42 Recent studies exhibit increased plasma free 

heme (PFH), along with MVs, in many SCD patients and 
recognized their devastating effects – most notably 
intense kidney VOC, acute chest syndrome (ACS) not 
only in mouse models but also pediatric population.43–45 

However, a recent single-cell RNA study reported that 
liver macrophages, are turned into “erythrophagocytes” 
that dominate the macrophage population and provide an 
on-demand adaptation to hemolytic driven oxidative 
stress.46 Recent studies report that loss.

C5a anaphylatoxin, an inflammatory molecule, has the 
ability to propagate P-selectin-mediated vaso-occlusion. 
A recent study by Vercelloti et al demonstrated that C5a 
alone when given to SS mice promotes VOC. Another 
finding was that C5a up-regulates P-selectin and vWF 
in vitro and in vivo in the same population, inducing 
P-selectin mediated VOC.36 In line with these findings, 
another study established that AP opsonins, anchored on 
sickled RBCs, serve actually as adhesion sites on vascular 
endothelium, resulting in the irregular trajectory of these 
cells by involvement of P-selectin/Mac-1.14 Other studies 
revealed the capacity of P-selectin to bind C3b and C3 
(H2O)-like, promoting complement activation.47,48

Early evidence suggests that abnormal expression of sur-
face complement regulatory proteins is not just a key ele-
ment of paroxysmal nocturnal hemoglobinuria (PNH). These 
proteins propagate complement-mediated cell lysis and their 
deficiency or dysfunction has been associated with the 
pathophysiology of other diseases as well.49–53 Most studies 
have focused on surface-bound complement regulators – 
CD55, CD59, CD46 and CR1 -. In the frame of SCD, 
some studies revealed decreased CD55 and CD59 on sickled 
erythrocytes, in comparison with control subjects.34,54 Other 
surveys showed difference in the expression of these regu-
lators on dense vs non-dense RBC but not in the total 
population of RBC between controls and SCD patients.12

A growing consensus has been achieved between the 
complement and coagulation/fibrinolysis pathways in the 
context of clinically significant tissue damage and activa-
tion of inflammatory process. Thrombin effectively cata-
lyzes the cleavage of both C3 and C5 acting as convertase, 
producing active anaphylatoxins and other complement 
sub-products.55 Interestingly, MVs propagate complement 
activation through a thrombin-mediated signal route both 
in vitro and in vivo, independently of CP or AP 
activation.56 Another noteworthy finding was that throm-
bin acts as an alternative molecule for C5-convertase in 
the absence of C3.57
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Last but not least, I/R underlies the pathophysiology of 
SCD. The paradox of this cycle is that tissue damage is 
caused not only by ischemia but also by the following 
reperfusion-mediated reentry of oxygen58 I/R results in 
complement activation and neutrophilic stimulation, 
along with rapid oxygen production and ultimately con-
tributes to tissue damage in various organs.59 Significant 
interest has been risen for the role of the LP and its role in 
inflammatory responses during I/R injury. There have been 
reports of “bypass” activation events that lead to lectin- 
mediated cleavage of C3, and as a result, I/R tissue 
damage is caused. Moreover, certain deficiencies of man-
nose-binding lectin (MBL) have been positively associated 
with better outcomes in experimental models of renal 
reperfusion injury after transplantation.60 More recent 
observations report that inhibition of mannose-binding 
lectin-associated serine protease (MASP2), the effector 
enzyme of LP, may be beneficial in conditions such as 
thrombotic microangiopathy (TMA) post allogeneic hema-
topoietic stem cell transplantation (alloHSCT).61

In general, all these proposed mechanisms share in 
common the dominant role of complement activation – 
especially through the AP pathway – in the pathophysiol-
ogy of SCD. Some studies revealed elevated biomarkers of 
complement activation in both steady state and crisis of 
SCD patients or mouse models. In other cases, despite 
preliminary data, no complement activation was reported 
in association with the factors studied. Nevertheless, there 
are still many elements of complement deregulation that 
have yet to be explored. Importantly, new therapeutic 
perspective is needed, since despite the fact that SCD is 
the first genetic disease described, treatment evolution 
seems to be stuck in the era of hydroxyurea.

Hydroxyurea and New Therapeutic 
Approaches
Hydroxyurea was the first drug approved by the Food and 
Drug Administration (FDA) to be administered in adult 
SCD patients and it remains the main therapeutic choice 
for more than 30 years.62 It has many features that make it 
an ideal drug for SCD and can provide multiple benefits 
through several mechanisms of action. Over the past 30 
years, substantial experience has been earned in matters of 
safety and efficacy for SCD patients.

Its main effect – through a mechanism still not fully 
understood – is the induction of fetal hemoglobin (HbF), 
high levels of which reduce significantly SCD severity. 

Hydroxyurea improves erythrocyte deformation, decreases 
the population of circulating neutrophils and reticulocytes 
and reduces the expression of adhesion receptors.63 Early 
findings of principle studies were followed by prospective 
Phase 1/2 trials that demonstrated efficacy first in affected 
adults, adolescents and children, and more recently even in 
infants and toddlers.64

In a double-blind, randomized clinical trial, hydro-
xyurea was proved to be effective and efficient in reducing 
the frequency of painful crises in adults who had a history 
of three or more such crises per year. A mean follow-up of 
21 months was reported at the end of the trial.65 This study 
reported that patients assigned to hydroxyurea had lower 
annual rates of crises, and fewer of them suffered from 
acute chest syndrome or underwent transfusion in compar-
ison with patients that received the placebo.65 

Hydroxyurea treatment did not cause any severe adverse 
effects.

Hydroxyurea has proven its clinical efficacy and 
become acknowledged as the main therapeutic option for 
many SCD patients. It reduces number of painful crises 
and hospitalizations66 and is useful to treat acute VOCs 
both in adults and children. Infants receiving hydroxyurea 
preserve their splenic function.67 Furthermore, hydro-
xyurea has been correlated to fine growth and 
development,68 along with no delays on sexual maturation, 
including menarche.69

Interestingly, a recent study by Roumenina et al 
revealed novel evidence of an indirect effect of hydro-
xyurea in complement activation. This study revealed 
that although complement activation is a rather common 
event in the pathophysiology of SCD that is associated 
with the development of dense RBCs and hemolysis, treat-
ment with hydroxyurea may partly alleviate this effect.12 

More specifically, complement activation was shown by 
sC5b-9 concentration and upregulation of CD46 and it was 
reported substantially reduced in SCD patients treated with 
hydroxyurea.

However, hydroxyurea has many contraindications as 
well. Pregnancy or unwillingness to use contraception, 
history of severe hydroxyurea toxicity or hypersensitivity 
and history of significant non-compliance with recom-
mended medical care, deprive patients of the benefits of 
this myelosuppressive agent.70 All in all, despite its multi-
ple benefits, an important number of patients do not 
achieve satisfactory clinical response.

Due to the fact that hydroxyurea along with anticoagu-
lants remain the sole treatment for SCD for over 30 years, 
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several novel treatments are currently under advanced 
clinical development in SCD. L-Glutamine is 
a fundamental amino acid in the process of pyridine synth-
esis of nucleotides, including nicotinamide adenine dinu-
cleotide (NAD) and glutathione, as well as glutamate, 
which becomes essential during exposure to oxidative 
stress. Thus, glutamine availability is important in 
SCD.71 Phase II and III randomized, double-blind, con-
trolled trials of L-glutamine 0.6 g/kg/day compared with 
placebo in children and adults with SCD and at least 2 
episodes of crisis during the last year provided evidence 
that L-glutamine is safe and associated with a reduction in 
painful episodes and in hospitalizations.72

Another novel agent is voxelotor. It is an orally admi-
nistered drug that increases Hb’s affinity to oxygen and 
inhibits the sickling of RBCs. Several clinical trials have 
reported its benefits.73 Crizanlizumab is a new, FDA- 
approved drug for the prevention of VOC. It is 
a humanized IgG2 kappa monoclonal antibody that binds 
to P-selectin and blocks interactions with its ligands 
including P-selectin glycoprotein ligand 1. Binding 
P-selectin on the surface of the activated endothelium 
and platelets blocks interactions between endothelial 
cells, platelets, RBCs, and leukocytes.74 Baseline analysis 
from systematic literature review and network meta- 
analysis proved that this monoclonal antibody can reduce 
crises and hospitalization days in comparison with placebo 
or other therapeutic agents with an acceptable adverse 
event profile in adult and adolescent SCD patients.75 

Furthermore, binding of P-selectin by crizanlizumab also 
inhibits C5-a, which may be beneficial for SCD patients.36

Hematopoietic cell transplantation (HCT) is a potential 
definitive cure for SCD. The goal is to eliminate the sickle 
erythrocyte and its cellular progenitors and replace them 
with donor hematopoietic pluripotent stem cells that will 
produce mature erythrocytes which will not express sickle 
hemoglobin (Hb S), thereby reducing Hb S levels to those 
associated with the trait condition.76 However, the risk of 
post-transplantation severe adverse events must be 
balanced against SCD’s own serious complications which 
are known for causing morbidity and even death.77

Genetic modulation of phenotype may also have cura-
tive potential for SCD patients. SCD has different pheno-
types due to differences in the genetic makeup of the 
affected patient. Although the exact genes are still under 
extensive study, further advances in our understanding of 
the pathophysiology imply that genes involved in numer-
ous mechanisms might have epistatic potential in SCD.78 

This may actually lead to gene therapy with the aim to 
replace the defective gene with a normal one.

Additional novel agents are being tested that target 
abnormal interactions between RBCs and their surround-
ing micro-environment (specifically the endothelium, neu-
trophils and platelets), as well as the inflammatory and 
prothrombotic setting. Some of these drugs may indirectly 
interact with the complement system. A recent review 
reported 20 Phase 1 studies, 10 Phase 2 and 3 Phase 3.79 

Of all these studies, eight investigate drugs which are 
applied during an acute VOC, while the others are aimed 
at the reduction of VOC or adjustment of biomarkers. 
Table 1 summarizes novel approved and under develop-
ment therapies in SCD.

As our understanding in the pathophysiology of sick-
ling is constantly improving, many potential novel thera-
peutic agents are being in development. This is indeed an 
exciting and optimistic time in SCD research. 
Nevertheless, the multifactorial and vast nature of the 
disease is more likely to require combination therapies, 
and some single agents are doomed to be unsuccessful. 
More studies are needed in this effort to unravel the 
mystery of SCD and its pathophysiology.

Novel Paradigms in Complement 
Inhibition
Complement inhibition has already been tested in 
Paroxysmal Nocturnal Hemoglobinuria (PNH) with two 
FDA-approved drugs: eculizumab since 2007 and ravuli-
zumab since 2019. They are both monoclonal antibodies 
that block terminal complement activation.80,81 

Ravulizumab has a longer half-life, thus providing sus-
tained C5 inhibition,82,83 while eculizumab has already 
been used in other diseases and was found to be safe and 
have long-term efficacy.84 In order to overcome eculizu-
mab’s own limitations, several other novel inhibitors are 
currently in advanced clinical development.49 Novel prox-
imal inhibitors are being tested aiming at proteins within 
the early stages of the complement cascade, such as C3, 
factor B and factor D.85,86 Figure 1 summarizes the com-
plement cascade, and inhibitors’ target points which could 
provide potential benefits in SCD.

Despite our better knowledge about complement’s role 
in SCD, advanced options for new treatment plans are not 
extensively explored. Eculizumab has been used with suc-
cess as a salvage therapy in SCD patients presenting with 
delayed hemolytic transfusion reaction (DHTR), as it has 
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been documented in some case reports.87–91 Patients 
received the monoclonal antibody after multiple lines of 
treatments and after confirmation of complement 

activation by analyses. It managed to overcome and 
reverse complement-mediated hemolysis and its devastat-
ing effects.87,89 It has also been found safe to be used 
during pregnancy as revealed in at least one case 
report.92 More recently, a study summarized the results 
of 18 SCD patients with DHTR receiving eculizumab.93 

Most recent guidelines by the American Society of 
Hematology (ASH) recommend complement inhibition in 
patients with DHTR and ongoing hyperhemolysis.94

In addition, eculizumab has also been used in patients 
suffering with SCD crisis. These patients were considerably 
benefited by the reduction of heme-induced thrombo- 
inflammation through C5 inhibition.95 Importantly, eculizu-
mab was found to be effective even in one case of bone marrow 
necrosis of a young adult SCD patient, where other lines of 
treatment failed.96 It has also found further use in patients with 
hemoglobinopathies who develop TMA after alloHSCT.97 

Stress factors during transplantation process along with their 
constant underlying hemolytic condition puts these patients at 
high risk for complement-mediated hemolysis. These patients 
seem to benefit from inhibition of complement activation, thus 
keeping TMA activity biomarkers under careful monitoring 
can help establish the right moment for applying treatment 
with eculizumab.98 Moreover, inhibition of proximal comple-
ment activators, such as C3 inhibition with Compstatin or its 
analog AMY-101, is currently under investigation. Compstatin 
analogs have been used in preclinical and clinical studies for 
a plethora of disease models, such as age-related macular 
degeneration, sepsis, PNH, hemodialysis-induced inflamma-
tion and transplantation.99

Microvascular thrombosis and endothelial dysfunction are 
major characteristics of SCD and its complications. Our 
experience from severe coronavirus/COVID-19 infection 
may prove to be useful in SCD management.100 Undeniably, 
early reports indicate that severe COVID-19 infection bears 
many similarities to complement-mediated TMA.101 We have 
the knowledge from previous studies of other coronaviruses 
that inhibition of C3 activation results in weakening the lung- 
directed proinflammatory conditions. The genetic absence of 
C3 and the blockade of downstream complement effectors as 
well, have given rise to significant optimism.102,103 In line with 
these findings, AMY-101 – a C3 inhibitor – has been success-
fully administrated in a patient suffering from severe COVID- 
19 infection.100 Eculizumab was proven to be successful in 
such cases.104 As a matter of fact, such encouraging results led 
to ongoing clinical trials aiming at results that could not only 
shape future COVID-19 management but also affect the rest of 
complement-mediated diseases.

Table 1 Summary of Novel Approved and Under Development 
Therapies in SCD

Mechanism Clinical Trials’ 
Results

Status

1) Selectin inhibitors

Crizalinzumab 

(humanized anti-P 

selectin mAB)

Reduction in number of 

pain crisis

FDA approved

Rivapansel (pan- 
selectin inhibitor)

Reduction in opioid use 
during VOC

Pending

Sevuparin (anti 
P-selectin heparin 

derivative)

Possible preventive use Pending

2) Adenosine and invariant NK T cells

Regadenoson (A2A 
receptor agonist)

Decreased activation of 
invariant NK T Cells

Pending

3) Leukotrienes

Zileuton (5 lipo- 

oxygenase inhibitor)

Well tolerated both in 

children and adults

Pending

Mometasone (ínhaled 

corticosteroid)

Reduction in pain 

scores

Pending

3) Antioxidants

L-Glutamine (NADH 

production)

Reduction in VOC 

events

FDA approved

N-acetylcysteine 

(enhances glutathione, 

weakens oxidative 
stress)

Diary data suggest no 

impact on pain scores - 

lab measures of VWF 
activity under 

evaluation

Pending

4) Enhanced nitric oxide bioavailability

L-Arginine (NO 
substrate)

Reduction in opioid use 
and pain scores

Pending

IMR-687 (PDE9 
inhibitor)

Reduction in VOC and 
opioid use

FDA has granted 
rare pediatric 

disease 

designation

5) Other agents

Voxelotor Inhibition of red cell 

sickling – reduction in 

hemolysis

FDA Approved
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However, special attention should be paid in comple-
ment inhibition in the context of SCD. The biggest barrier 
in complement inhibition seems to be the increased risk of 
infections. These patients are prone to infection for 
a number of reasons including splenic dysfunction, defec-
tive opsonization and impaired adaptive immunity.105 

Atypical viruses and encapsulated bacteria are at the 
front line. Use of eculizumab is associated with a 1000- 
fold to 2000-fold increased incidence of meningococcal 
disease despite preventive vaccination.106 Therefore, SCD 
patients are even at a higher risk for invasive infections 
because of probable complement inhibition.

Conclusions and Future 
Considerations
Our comprehension of complement activation and its role 
in the pathophysiology of SCD has expanded over the 
course of the past few decades. Of note, complement 

regulation and its mechanisms require further interpreta-
tion in the context of the disease. Current results are more 
than encouraging. However, improvements need to be 
made in complement biomarkers monitoring, in order to 
achieve a sufficient, modern approach to SCD 
management.

This review presents data that underline the expanding 
need for supplementary prospective studies – with more 
sensitive biomarkers and clinical assays included – so as to 
evaluate complement activation in SCD and determine 
selection of patients with clinical characteristics that are 
potentially predisposed to complement activation. Strong 
criteria are needed for early recognition of patients that 
may be benefited by complement inhibition. Additionally, 
should complement inhibition utilize in SCD other ques-
tions arise about the way they would be administered. 
These inhibitors will probably be able to stop a crisis or 
pain even in VOC; however, more clinical studies are 
needed to determine their place in treatment plans. It 

Figure 1 Complement activation and inhibition. The complement cascade has been traditionally considered to be activated by the classical, alternative and lectin pathway. 
The alternative pathway serves as an amplification loop for the lectin and classical pathway accounting for almost 80% of complement activation products. Spontaneous 
hydrolysis of C3 resulting from different triggers allows propagation of C3 convertase (C3bBb) and as a result the alternative pathway is constantly “on”. C3 convertase 
sustains the amplification loop together with factors B and D. Terminal complement pathway begins with propagation of C5 convertase which in turn cleaves C5 into C5a, 
a potent inflammatory mediator, and C5b; C5b together with C6-9 form C5b-9 (membrane attack complex/MAC), a cytolytic complex. Eculizumab, ravulizumab, ABP959, 
SKY59/RO7112650, tesidolumab, REGN3918, mubodina, coversin, RA101495, cemdisiran and zimura inhibit C5; AMY-101 and APL-2 inhibit C3 and C3 convertase activity; 
mini-FH/AMY-201 inhibits alternative pathway C3 convertase; LPN023 and IONIS-FB-LRx inhibit factor B; danicopan and lampalizumab inhibit factor D; mirococept inhibits 
C3 and C5 convertases; avacopan inhibits C5a receptor and IFX-1 C5a.
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should also not be forgotten that hydroxyurea and other 
novel treatment options may also have beneficial effects 
on the vicious cycle that attenuates complement activation.
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