

Reduced-dose radiation in human papillomavirus-associated oropharyngeal carcinoma can improve outcome: a systematic review and meta-analysis

Meng-Qi Yang^{1#}, Yun-Chang Liu^{2#}, Jiang-Dong Sui^{1,3#}, Fu Jin^{1,3}, Dan Li³, Lu Zhang³, Nuo-Han Wang³, Yue Xie¹, Ying Wang^{1,2,3}, Yong-Zhong Wu^{1,2,3}

¹Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China; ²College of Bioengineering, Chongqing University, Chongqing, China; ³College of Medicine, Chongqing University, Chongqing, China

Contributions: (I) Conception and design: MQ Yang, YC Liu, JD Sui; (II) Administrative support: Y Wang, YZ Wu, Y Xie; (III) Provision of study materials or patients: F Jin, D Li, L Zhang, NH Wang; (IV) Collection and assembly of data: MQ Yang, YC Liu; (V) Data analysis and interpretation: MQ Yang, YC Liu, JD Sui; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

"These authors contributed equally to this work.

Correspondence to: Yue Xie, MD; Ying Wang, PhD; Yong-Zhong Wu, PhD. Chongqing University Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing 400030, China. Email: 344899525@qq.com; yingwang197011@163.com; yongzhongwu123@163.com.

Background: Despite its effectiveness, the standard course of chemoradiation for the treatment of human papillomavirus (HPV)-related oropharyngeal carcinoma (OPC) results in considerable treatment-related adverse effects. Studies proved that HPV-positive OPC is very sensitive to radiotherapy. Using deescalation therapy as a new strategy is critical to maintaining positive outcomes while alleviating side effects. However, some studies hold that reduced dose causes insufficient effect on tumor killing. We conducted this systematic review and meta-analysis of survival and adverse reactions in patients with HPV-related OPC by retrospective analysis and evaluated the therapeutic effect of reducing the radiation dose.

Methods: Data were double-selected and extracted by searching seven electronic databases, Original studies in all language treated HPV-associated OPC with reduced-dose and standard-dose therapies were included. Overall survival (OS), progression-free survival (PFS), and incidence rates of adverse events were obtained by pooling analyses. Statistical analyses were performed using RStudio Version 1.1.383 (RStudio, Boston, MA, USA) via the Meta-Analysis R Package (metafor). Heterogeneity was evaluated using the I² statistic and the Cochran Q test. We used Stata (version 15.0) for forest graph.

Results: Thirteen studies were included in this meta-analysis, involving a dose range of 66-70 Gy for the standard treatment regimen and <66 Gy for the reduced-dose group. There was no significant difference in the age of the patients in the standard and the reduced treatment groups (60.9 ± 5.9 vs. 58.6 ± 2.4 years). Nine studies were included as standard cohort and thirteen studies were enrolled as reduced-dose cohort. The 2- and 3-year overall survival rates in the reduced-dose group (95.66% and 91.51%, respectively) were superior to those in the standard-dose group (88.36% and 87.46%, respectively). There was no significant difference in PFS between the two groups. A systematic review of articles on dose reduction and the standard dose was also conducted. The most common complication in reduced-dose radiation was oral mucositis (36.4%), followed by decreased white blood cell (WBC) count (30.5%) and dry mouth (29.1%).

Conclusions: Reducing the radiation dose in patients with HPV-related OPC substantially alleviates the treatment toxicities and optimizes the quality of life of patients while at the same time maintaining favorable oncologic outcomes.

Keywords: Human papillomavirus (HPV)-related; reduced dose; oropharyngeal cancer; radiotherapy

Submitted Nov 17, 2022. Accepted for publication Dec 19, 2022. doi: 10.21037/atm-22-5935 **View this article at:** https://dx.doi.org/10.21037/atm-22-5935

1 Introduction

2 Head and neck squamous cell carcinoma (HNSCC) is 3 4 one of the most common malignant tumors worldwide, with about 750,000 new cases and 360,000 cancer-related 5 6 deaths in 2020 (1). About 60% of HNSCC cases are 7 locally advanced at the time of diagnosis, and the current standard of treatment is radical concurrent chemoradiation 8 9 or surgery followed by radiation therapy (2). HNSCC includes cancers of the oral cavity, larynx, hypopharynx, 10 11 and oropharynx (3), while oropharyngeal carcinoma (OPC) involves carcinomas of the tonsils, base of the tongue, soft 12 palate, and uvula. Although the incidence of head and neck 13 cancer has steadily declined over the past few decades as 14 15 smoking rates have decreased, the incidence of OPC is 16 generally ascending, mainly due to the increase in human papillomavirus (HPV) infection (4). According to previous 17 studies, HPV-related OPC reached 71% and 51.8% in the 18 United States and the United Kingdom, respectively (5-8). 19 20 Of these, 85–96% of cases are caused by HPV-16 infection. The latest version of the American Joint Committee on 21 Cancer (AJCC) staging system classifies OPC into HPV-22 positive (HPV+) and HPV-negative (HPV-) based on their 23

Highlight box

Key findings

• Reducing the radiation dose in patients with HPV-related OPC substantially mitigates treatment toxicities and optimizes the quality of life of patients while at the same time maintaining favorable oncologic outcomes.

What is known and what is new?

- It is known that patients with HPV-related OPC have significantly longer survival periods than those without.
- This analysis revealed that de-escalation treatment for HPVrelated OPC minimizes the post-treatment side effects while simultaneously prolonging survival.

What are the implications, and what should change now?

- Our findings imply that lower doses of radiotherapy can achieve similar therapeutic effects and involve fewer adverse reactions.
- Numerous clinical studies are still underway, so we hope that there
 will be more data to support this discovery and guide future clinical
 treatment.

different molecular profiles, tumor characteristics, and 24 outcomes (9). A series of preclinical and clinical studies 25 (10,11) have shown that HPV-associated OPC has increased 26 sensitivity to chemoradiotherapy and is associated with a 27 more favorable prognosis (12). 28

Despite its effectiveness, the standard 7-week course 29 of chemoradiotherapy for HPV-related OPC results 30 in considerable treatment-related adverse effects (13), 31 Radiotherapy can cause acute and late complications. Acute 32 complications consist of dermatitis, mucositis, dysphagia, 33 odynophagia, alopecia and so on. Besides, skin changes, 34 xerostomia, dental caries, trismus, lymphedema, and 35 swallowing dysfunction are common in late complications. 36 Reports showed the interaction between the dose of 37 radiotherapy and adverse reactions. Such as, the dose of 38 middle and superior constrictors exceeded 55 Gy lead 39 to long-term swallowing dysfunction, and radiotherapy 40 combined with high-dose cisplatin can cause severe late 41 toxicity (14). Acute and late complications give rise to 42 discontinuation of treatment and decreased the quality of 43 life. After radiation and high-dose cisplatin, patients with 44 HPV-related OPC have significantly longer survival periods 45 than those without (10), but the quality of life of these 46 patients is significantly impaired for decades. De-escalation 47 treatment for HPV-related OPC aims to minimize the 48 post-treatment side effects while simultaneously prolonging 49 survival. Research on de-escalation strategies involves 50 the following: (I) reducing the radiotherapy dose while 51 increasing induction chemotherapy; (II) reducing the 52 radiotherapy dose by increasing transoral robotic surgery; 53 (III) reducing radiotherapy dose and cisplatin; and (IV) 54 replacing cisplatin with cetuximab (15-19). 55

Several clinical trials (16,18,19) have shown that the 56 radiation dose to gross disease can be safely reduced 57 in HPV-positive OPC patients, typically by 10-16 Gy. 58 However, some scholars hold that reduced-dose in HPV-59 positive patients would only quickly reduce the tumor 60 volume in a short period of time, but it may cause risks 61 to patients in the long term (20). Few studies conducted 62 systematic reviews and meta-analyses to determine whether 63 lowering the radiation dose affects survival and adverse 64 effects in HPV-related OPC patients. Therefore, in our 65 study, we compared the radiation effect of reduced-dose 66

and standard-dose treatments on prognosis in HPV-67 related OPC and conducted a systematic review of the 68 adverse effects following dose reduction. We present the 69 following article in accordance with the MOOSE reporting 70 checklist (available at https://atm.amegroups.com/article/ 71 view/10.21037/atm-22-5935/rc). 72

73 74

Methods

75

Search strategy 76 77

A systematic search was conducted for relevant studies 78 79 published before September 15, 2021, in the PubMed, 80 Embase, Cochrane, ProQuest, Scopus, ScienceDirect, and 81 the Web of Science electronic databases. The subject terms "oropharynx cancer/ carcinoma" or "OPC" were combined 82 83 with the following specific terms: "human papillomavirus viruses", "human papillomavirus", "HPV", "P16", and 84 "radiotherapy". 85

86 87

Selection criteria

88 89 The inclusion criteria were as follows: (I) Articles involving patients diagnosed with oral cancer; (II) studies with more 90 than 20 patients; (III) research involving patients confirmed 91 92 as HPV+ or P16+ by immunohistochemistry or other evidence; and (IV) studies involving a therapeutic plan 93 that applies dose reduction; (V) Studies of all language. 94 (The enrolled articles were all in English after screening.); 95 (VI) case reports, comments, editorials, and reviews were 96 excluded. 97

98 Articles were independently screened and then selected by two reviewers. In cases of studies overlapping, only the 99 study with the most comprehensive data was selected when 100 the patient populations were from the same institution, 101 based on the consensus between the two reviewers. If 102 differences in opinion between the two reviewers needed to 103 be resolved, a third reviewer was consulted. 104

105

106 Data extraction

107 Relevant characteristics were extracted from each study, 109 including the first author's name, publication year, country, study design, sample size, study participant age, study 110 participant sex (the percentage of males), stage, smoking 111 status (the percentage of fewer than 20 packs per year), and 112 113 follow-up period (Table 1). Two reviewers independently extracted the information from the included studies. We 114

Page 3 of 16

127

128

146

147

148

then extracted the radiation and chemotherapy schemes for 115 reduced dose (RD) and standard dose (SD), respectively 116 (Tables 2,3). According to the clinical outcomes, the 2- and 117 3-year overall survival (OS) and progression-free survival 118 (PFS) rates were also obtained. Several studies reported 119 Kaplan-Meier survival curves rather than survival outcomes 120 directly, but the survival outcomes could also be extracted 121 from these survival curves. During this analysis, we did not 122 attempt to obtain missing data by contacting the studies' 123 authors. Also, given the lack of reports on adverse reactions 124 (AEs) in the standard dose group, only the AEs of the 125 reduced-dose group were counted, as shown in Table 4. 126

Statistical analysis

129 Both random and fixed effects models were used to pool 130 analysis of the OS and PFS for SD and RD. Given that 131 few articles contained both the standard and reduced-dose 132 treatments, a meta-analysis of the standard and reduced-133 dose treatment subsets was conducted separately. The I² 134 statistic was used to measure the degree of heterogeneity 135 caused by variability in the true effect size. Statistical 136 analysis was performed using the SPSS (version 15.0) and 137 R language (version 1.6.3, http://www.Rproject.org). Meta-138 analysis was conducted by using the R package meta (34). 139 Forest plots were created by the metaprop function of meta 140 package, and funnel plots were constructed by the funnel 141 function to estimate the publication bias. Egger's test was 142 performed to estimate the indexes of funnel asymmetry. If 143 the funnel plot was not significantly asymmetrical, trim-144 and fill- analyses were performed. 145

Results

Literature search and study characteristics

149 150 The search process is displayed in Figure 1. A total of 151 152 4,634 articles published before September 15th, 2021 were identified through the initial database search. We 153 then excluded 869 overlapping studies, and a further 3,720 154 articles were excluded based on their improper titles and 155 abstracts. The full texts of the remaining 45 studies were 156 assessed, and studies with insufficient data or inappropriate 157 populations, treatments, and sizes were excluded. Finally, 158 13 studies were included in the meta-analysis, among which 159 nine were SD studies and 13 were RD studies (Table 1). 160 The selected articles were single-arm observational articles, 161 controlled trials, or randomized studies. 162

Yang et al. Reduced-dose radiation improves therapeutic outcomes

Table I Characteristics of the included stud
--

Author	Year	Country	Sample size	Median/mean age of included patients (years)	Male (%)	AJCC stage	Smoking status	Follow-up period (months)
Chen (21)	2017	USA	44	60	NA	III–IV	30 (68.0%) never smoked, and 14 (32.0%) had ≤20 pack year	30
Marur (22)	2017	USA	51	58	96.0	III–IV	23 (45.0%) never smoked, and 14 (28.0%) had ≤20 pack year	35.4
Yom (23)	2021	USA	157	NA	84.7	NA	112 (71.3%) never smoked, and 45 (38.7%) had ≤20 pack year	30
Misiukiewicz (24)	2019	USA	20	56.5	95.0	NA	12 (60%) never smoked, and eight (40%) had \leq 20 pack year	56
Fietkau (25)	2020	Germany	32	NA	NA	III–IVB	NA	44
Moore (26)	2021	USA	194	58	90.2	II–IV	148 (76.3%) never smoked, and 46 (23.7%) had ≤20 pack year	49
Chera (27)	2018	USA	44	61	88.6	NA	36 (81.8%) never smoked, and eight (18.2%) had \leq 20 pack year	r 36
Echevarria (28)	2019	USA	484	NA	NA	NA	NA	36
Huang (29)	2020	Canada	315	NA	77.8	NA	101 (32.1%) never smoked, and 214 (67.9%) had ≤20 pack year	57.6
Gabani (30)	2019	USA	759	58.5	86.0	NA	NA	30.5
Tam (31)	2020	USA	2173	57	85.5	III–IV	NA	33.8
Chin (32)	2016	USA	175	56.2	92.0	III–IV	59 (33.7%) never smoked, and 116 (66.3%) had ≤20 pack year	70.8
White (33)	2020	USA	192	NA	NA	NA	NA	60

NA, not available; AJCC, American Joint Committee on Cancer.

The sample sizes of the SD studies ranged from eight to 163 2,049 (Table 2) and those of the RD studies ranged from 12 164 to 157 (Table 3). The ages of patients treated with SD were 165 similar to those who received RD (60.9±5.9 vs. 58.6±2.4 years). 166 There were no significant gender differences observed 167 between the SD and RD groups (percentage of males, 168 85.8% vs. 84.8%). Also, the mean follow-up times of the 169 RD and SD studies were compared. Regarding the SD 170 treatment regimen, the total dose ranged from 66 to 70 Gy, 171 while that of the RD regimen was <66 Gy. 172

173

OS comparison between SD and RD in HPV-related OPC patients

We conducted a meta-analysis of the SD and RD treatment groups. The results showed that the 2-year overall survival (2y-OS) and 3-year overall survival (3y-OS) were better in the RD group compared to the SD group (P<0.05, *Figure 2*). Four SD trials showed that the 2y-OS was 88.36% (86.23-181 90.49%), and eight SD trials indicated that the 3y-OS 182 was 87.46% (86.91-88.01%). Meanwhile, seven RD trials 183 showed that the 2-year OS was 95.66% (94.74-96.59%), 184 and 11 RD trials showed that the 3-year OS was 91.51% 185 (90.61-92.41%). There was no significant difference in PFS 186 between RD and SD; the 2y-PFS and 3y-PFS rates were 187 89.29% vs. 90.7% and 87.07% vs. 89.71%, respectively 188 (P≥0.05, *Figure 3*). 189

> 190 191

Analysis of the adverse reactions in RD patients

We performed a systematic review and analysis of the articles on RD treatment (*Table 4*). Among the four studies analyzed, Misiukiewicz *et al.* showed that the incidence rates of oral mucositis, neutropenia, and urinary retention were all 8.3%. According to Marur *et al.*, rash was the most common adverse reaction (54.9%) followed by neutrophil

Table 2 Characteri	stics of the	e included standar	rd dose	studies				
Author	Sample size	Median/mean age (years)	Male (%)	T stage	N stage	RT dose	Concurrent therapy	Clinical outcomes
Misiukiewicz (24)	ω	S	AN	T1-T2-4; T3-2; T4-2	N0-1; N1-N2-3; N2c-N3-4	70 Gy/35 fx to involved areas and 56 Gy/35 fx to elective neck; cSD and cPD received the latter regimen	2 of 8 patients received concurrent carboplatin	2-y OS: 83.3%; 3-y OS: 83.3%
Fietkau (25)	NA	Ч И	AN	АЛ	NA	The prescribed radiation doses included 70.6 Gy to the gross primary tumor volume, 58 Gy to involved nodal levels, and 49.6 Gy to neck regions at low-risk	Fluorouracil 600 mg/m²; cisplatin 20 mg/m², days 1–5 and 29–33	2-y OS: 89.2%; 3-y OS: 83.5%
Moore (26)	115	55	06	T1-42; T2-58; T3-11; T4-4	N0-6; N1-91; N2-18	RT (60 Gy IMRT) or chemoradiotherapy (cisplatin with 60 Gy IMRT)	RT (60 Gy IMRT) or chemoradiotherapy (cisplatin with 60 Gy IMRT)	3-y OS: 93.0%
Echevarria (28)	338	ΥN	NA	NA	NA	≥69.3 Gy given over a median of 35 fractions in a median of 200 cGy per fraction	ИА	3-y OS: 91.1%
Huang (29)	254	66.8	82	Т1-Т2-162; Т3-Т4-92	N0-N2a-93; N2b-104; N2c-47; N3-10	Moderately accelerated radiotherapy alone, 70 Gy in 35 fractions over 6 weeks	ИА	3-y OS: 82.0%
Gabani (30)	655	0	86.3	Т1-129; Т2-199; Т3-129; Т4-139	N0-79; N1-90; N2a-59; N2b-216; N2c-125; N3-39; NA-47	66 Gy in 25 fractions over 5 weeks	АА	3-y OS: 79.3%
Tam (31)	2049	Ϋ́Ν	85.5	T1-418; T2-1033; T3-549; NA-49	N0-187; N1-314; N2-139; N2a-204; N2b-911; N2c-285; NA-9	≥66 Gy in 25 fractions over 5 weeks	AN	3-y OS: 88.5%
Chin (32)	109	56.2	93.6	T1-34; T2-41; T3-15; T4a-18; T4b-0	N0-3; N1-15; N2a-17; N2b-52; N2c-22; N3-0	66 Gy to the tumor bed was 66 or 60 Gy in 33 or 30 fractions of 2 Gy each over 7 or 6 weeks	Concurrent chemotherapy comprised cisplatin (100 mg/m ² on days 1, 22, and 43 of RT) or rarely paclitaxel (60 mg/m ² weekly with RT) or carboplatin	2-y OS: 90.6%
White (33)	89	NA	AN	NA	NA	≥66 Gy in 25 fractions over 5 weeks	NA	2-y OS: 84.3%; 3-y OS: 82.9%
NA, not available;	RT, radioti	herapy; cSD, clin	nical st	able disease; cPD,	, clinical progressive	disease; IMRT, intensity modulated	radiotherapy; OS, overall sur	vival.

Table 3 Character	istics of	the included reduced	dose stut	dies				
Author	Sampl size	le Median/mean age of the included patients (years)	Male (%)	T stage	N stage	RT dose	Concurrent therapy	Clinical outcomes
Chen (21)	4	₆₀	NA NA	T1-16; T2-18; T3-3; T4-7	N0-2; N1-3; N2a-9; N2b-19; N2c-10; N3-1	Definitive radiation given concurrently for 5–6 weeks, chemoradiotherapy was initiated at least 2 weeks following completion of induction chemotherapy	Two cycles of induction chemotherapy with 175 mg/m ² paclitaxel infused over 3 h plus carboplatin as a 30 min infusion, given 21 days apart. This induction regimen was followed by chemoradiotherapy comprising 30 mg/m ² paclitaxel infused over 1 h per week with definitive radiation given concurrently for 5–6 weeks	2-y OS: 98.0%
Marur (22)	51	23	96	T1-11; T2-26; T3-8; T4-6	N0-N1-7; N2a- N2b-29; N2c-15	Cases with cCR on exam/ imaging received 54 Gy/27 fx to areas of initial involvement, and the uninvolved cervical nodes (caudal to bilateral clavicles) received 51.3 Gy/27 fx	Patients received IC with cisplatin 75 mg/m² on day 1; paclitaxel 90 mg/m² on days 1, 8, and 15; and cetuximab 400 mg/m² on day 1 of cycle 1, followed by cetuximab 250 mg/m² weekly; patients continued weekly cetuximab until completion of radiotherapy	2-y OS: 94.0%; 3-y OS: 94.0%
Yom (23)	157	AN	84.7	T1-115; T2-147; T3-44; N0-13; N1-62; N2a-43; N2b-188	N0-6; N1-28; N2a-24; N2b-99	60 Gy of intensity-modulated radiation therapy in 30 fractions, at five fractions per week	Concurrent with cisplatin at 40 mg/m² weekly	2-y OS: 96.7%; 3-y OS: 95.0%
Misiukiewicz (24)	12	57	AN	T1-T2-7; T3-5; T4-0	N0-0; N1-N2-3: N2c-N3-9	Cases with cPR/cCR on exam/imaging were randomized to 56 Gy/28 fx to involved areas & 50.4 Gy/28 fx to the elective neck	8 of 12 patients received carboplatin only as a radiosensitizer	2-y OS: 87.5%; 3-y OS: 87.5%
Fietkau (25)	Ϋ́Ν	AN	AA	Ч	М	The prescribed radiation doses included 63.6 Gy to the gross primary tumor volume (PTV 1 = boost), 58 Gy to involved nodal levels (PTV 2), and 49.6 Gy (PTV 3) to low- risk neck regions	Paclitaxel 20 mg/m² on days 2, 5, 8, 11, 25, 30, 33, and 36; cisplatin 20 mg/m², days 1–4 and 29–32 ,	2-y OS: 92.3%; 3-y OS: 92.3%
Table 3 (continued)								

© Annals of Translational Medicine. All rights reserved.

Table 3 (continuea	(
Author	Samplı size	e Median/mean age of the included patients (years)	Male (%)	T stage N s	itage	RT dose	Concurrent therapy	Clinical outcomes
Moore (26)	62	61	9	T1-36; T2-27; T3- N0 7; T4-9 N2-	-1; N1-66; -12	Received 30 Gy in 1.5-Gy fractions twice daily (separated by at least 6 hours) over 2 weeks to the primary site and dissected and elective nodal volumes	IV weekly docetaxel (15 mg/m ²) was administered on days 1 and 8 of treatment as a radiosensitizer	3-y OS: 86.3%
Chera (27)	44	61	9. 88	T0-2; T1-13; T2- N0 22; T3-7 N2: N2:	-4; N1-10; a-2; N2b-21; c-7	The total delivered dose was 60 Gy at 2 Gy per fraction for 30 fractions, 5 days a week for 6 weeks to the high-risk regions. A dose of 54 Gy was delivered to anatomic regions at risk of subclinical disease (as indicated)	Cisplatin at a dose of 30 mg/m² was given intravenously weekly	3-y OS: 95.0%
Echevarria (28)	146	AN	AN	NA		Doses of <69.3 Gy given over a median 33 fractions in a median of 200 cGy per fraction	AA	3-y OS: 86.3%
Huang (29)	61	61	59	T1-T2-47; T3-T4- N0 14 N2! N3-	-N2a-40; b-16; N2c-5; -0	60 Gy in 25 fractions over 5 weeks	NA	3-y OS: 73.0%
Gabani (30)	104	58	84.6	T1-30; T2-15; T3- N0 [.] 12; T4-14 N2 [.] N2 [.]	-6; N1-22; a-23; N2b-32; -10; N3-4; -7	<66 Gy in 25 fractions over 5 weeks	АА	3-y OS: 82.2%
Tam (31)	124	ΨZ	85.5	T1-29; T2-59; T3- N0 [.] 25; NA-11 N2 [.] N2!	-8; N1-26; -9; N2a-11; b-56; N2c-13; -1	50 to <66 Gy in 25 fractions over 5 weeks	АА	3-y OS: 89.9%
Chin (32)	00	56.2	89.4	T1-23; T2-29; T3- N0 8; T4a-5; T4b-1 N2i N2i	-2; N1-6; a-11; N2b-32; c-12; N3-3	The total dose to the tumor bed was 66 or 60 Gy in 33 or 30 fractions of 2 Gy each over 7 or 6 weeks	Concurrent chemotherapy comprised scheduled cisplatin (100 mg/m ² on days 1, 22, and 43 of RT) or rarely paclitaxel (60 mg/m ² weekly with RT) or carboplatin	2-y OS: 96.8%
White (33)	103	AN	AN	NA		<66 Gy in 25 fractions over 5 weeks; sdCRT: ≥66 Gy in 25 fractions over 5 weeks	AA	2-y OS: 84.3%; 3-y OS: 82.9%
NA, not available chemoradiation.	; cPR, cl	inical partial respons	ie; cCR,	clinical complete respc	onse; IC, inducti	on chemotherapy; RT, radiother	rapy; OS, overall survival; sdCRT, s	standard dose

Page 7 of 16

Page 8 of 16

Yang et al. Reduced-dose radiation improves therapeutic outcomes

Table 4 Adverse events occurred in the reduced dose group

Toxicities	Chen (21) (n=44)	Marur (22) (n=51)	Misiukiewicz (24) (n=12)	Chera (27) (n=44)
Increased ALT level		1		
Anaphylaxis		1		
Anemia	28	1		
Anorexia	11	4		
Anxiety	5			
Arthralgia	4	1		
Aspiration		1		
Increased AST level		0		
Bone pain	2			
Increased cardiac troponin I level		1		
Catheter-related infection		1		
Decreased CD4 lymphocyte count		1		
Chest pain, cardiac		1		
Constipation	17	0		
Cough	16			
Dehydration	10	6		
Dermatitis radiation	36	0		
Device-related infection		1		
Diarrhea	3	5		
Dry mouth	43	0		1
Dysphagia	23	1		17
Dyspnea		2		
Erythema multiforme		0		
Fatigue		4		
Febrile neutropenia		1	1	
Fever	3			
Gastrointestinal disorders		0		
Generalized muscle weakness		1		
Headache	4	1		
Hematologic				5
Hyperkalemia		1		
Hypokalemia	4	4		
Hypomagnesemia	5	2		
Hyponatremia	8	2		
Hypophosphatemia		1		

Table 4 (continued)

Page 9 of 16

Table 4 (continued)

Toxicities	Chen (21) (n=44)	Marur (22) (n=51)	Misiukiewicz (24) (n=12)	Chera (27) (n=44)
Hypotension		2		
Нурохіа		1		
Increased creatinine	4			
Decreased lymphocyte count		6		
Oral mucositis	38	1	1	15
Myalgia		1		
Myocardial infarction		1		
Nausea	19	4		8
Neuralgia		0		
Neutropenia	9			
Decreased neutrophil count		12		
Oral pain		0		
Pain		0		
Pain in extremities		0		
Palmar-plantar erythrodysesthesia		0		
Peripheral motor neuropathy		0		
Peripheral sensory neuropathy	3	0		
Pharyngitis		0		
Pneumonia	2			
Rash, acneiform		28		
Rash, maculopapular		2		
Renal and urinary disorders, other		0		
Sepsis		1		
Skin ulceration		0		
Sore throat		0		
Thromboembolic event		4		
Tinnitus		1		
Tumor pain		0		
Urinary retention			1	
Voice alteration	6			
Vomiting		0		2
Decreased WBC count	40	6		
Wound complications		1		

ALT, alanine transaminase; AST, aspartate transaminase; CD4, cluster of differentiation 4; WBC, white blood cell.

Figure 1 Flowchart of study selection. Of the 13 studies included in this meta-analysis, 9 studies included both RD and SD, and 4 studies just included in RD. SD, standard dose; RD, reduced dose.

count reduction (23.5%), dehydration, lymphocyte count 199 reduction, and leukocyte count reduction (all 11.8%). The 200 top three adverse reactions reported by Chera et al. were 201 dry mouth (38.6%), oral mucositis (34.1%), and nausea 2.02 203 (18.2%). Compared with the other three studies, Chen et al. reported the most AEs, with 43 people suffering from dry 204 mouth, 40 people suffering from decreased white blood cell 205 (WBC) count, and 38 people suffering from oral mucositis. 206 In summary, the most common complication of RD was 207 mucositis oral, affecting 36.4% of patients, followed by 208 decreased WBC count (30.5%) and dry mouth (29.1%). 209

210 211

Sensitivity analysis and evaluation of publication bias

Following sensitivity analysis using the elimination method,
no significant change was observed in the results, which
indicated their robustness. Egger's test was performed on
the indexes with more than three included studies, and the
results showed no obvious publication bias.

218

²¹⁹ **Discussion**

It is known that patients with HPV-associated OPC havean excellent prognosis. Studies have shown that these

patients are more sensitive to radiation therapy (35), and 223 can achieve the same therapeutic effect by reducing the 224 radiation dose. Although this topic is at the forefront of 225 oncologic research, there is currently a lack of summative 226 assessment. Therefore, we compared the effects of reduced 227 and standard doses in HPV-related OPC on survival and 228 the incidence of AEs. Our results suggested that patients 229 with HPV-related OPC could be treated with a lower dose 230 compared to standard treatment, and there are fewer AEs 231 after radiotherapy. This study may lead to a change in the 232 treatment options for patients with oropharyngeal cancer. 233

In this study, we selected patients who were HPV-234 related and divided them into two groups: SD and RD 235 treatment groups, and observed their survival conditions. As 236 mentioned above, we observed that patients who received 237 a RD had superior 2y-OS and 3y-OS rates than those who 238 received SD treatment (95.66 vs. 91.51; 88.36 vs. 87.46, 239 respectively). Moreover, the 2- and 3-year PFS rates 240 were not significantly different between the two groups. 241 Numerous factors influence the prognosis of OPC, such 242 as disease stage, gender, smoking state, HPV subtype, etc. 243 (10,23,24,36). In our research, the disease stage, gender, and 244 smoking state were not disparate between the two groups, 245 so we excluded their influence. HPV infection can be 246

2v-OS-reduced dose Effect (95% CI) Weight ♦ 98.00 (95.89, 100.11) Chen(21) 19.12 94.00 (91.34, 96.66) Marur (22) 12.03 Yom (23) 96.70 (95.27, 98.13) 41.63 87.50 (77.95, 97.05) 0.93 Misiukiewicz (24) Fietkau (25) 92.30 (84.91, 99.69) 1.56 Chin(32) 96.80 (94.63, 98.97) 18.08 84.30 (80.72, 87.88) White (33) 6.64 Overall, IV (I² = 88.4%, p = 0.000) 95.66 (94.74, 96.59) 100.00 70 80 90100 2y-OS-standard dose Effect (95% CI) Weight Misiukiewicz (24) 83.30 (70.11, 96.49) 2.61 Fietkau (25) 89.20 (82.08, 96.32) 8.96 Chin(32) 90.60 (87.80, 93.40) 57.94 84.30 (80.44, 88.16) White (33) 30.49 Overall, IV (I² = 59.1%, p = 0.062) 0 88.36 (86.23, 90.49) 100.00 70 80 90100 Effect (95% CI) 3y-OS-reduced dose Weight Marur (22) 94.00 (91.34, 96.66) 11.45 Yom (23) ÷. 95.00 (93.26, 96.74) 26.77 87.50 (77.95, 97.05) Misiukiewicz (24) 0.89 92.30 (84.91, 99.69) Fietkau (25) 1.48 Moore (26) 96.00 (93.80, 98.20) + 16.74 Chera (27) + 95.00 (91.71, 98.29) 7.49 86.30 (83.45, 89.15) Echevarria (28) + 9.98 Huang (29) 73.00 (67.32, 78.68) 2.51 Gabani (30) + 82.20 (78.45, 85.95) 5.76 Tam (31) 89.90 (87.19, 92.61) 11.03 + 82.90 (79.19, 86.61) White (33) 5.89 Overall, IV (I² = 92.8%, p = 0.000) 91.51 (90.61, 92.41) 100.00 70 80 90100 Effect (95% CI) 3y-OS-standard dose Weight Misiukiewicz (24) 83.30 (70.11, 96.49) 0.17 83.50 (74.98, 92.02) Fietkau (25) 0.42 Moore (26) 93.00 (90.62, 95.38) 5.35 + Echevarria (28) 91.10 (89.55, 92.65) 12.62 82.00 (79.59, 84.41) Huang (29) 5.22 Gabani (30) 79.30 (77.72, 80.88) 12.14 Tam (31) 88.50 (87.80, 89.20) 61.87

70 80 90100

82.90 (79.19, 86.61)

87.46 (86.91, 88.01)

Figure 2 Meta-analysis (forest plot) of the OS reported in RD and SD studies. OS, overall survival; RD, reduced dose; SD, standard dose.

White (33)

Overall, IV (I² = 96.1%, p = 0.000)

2.20

100.00

Figure 3 Meta-analysis (forest plot) of the PFS reported in RD and SD studies. PFS, progression-free survival; RD, reduced dose; SD, standard dose.

classified into P16+/HPV+, p16+/HPV-, or p16-/HPV+.
Some studies have reported that the OS of p16+/HPV- and
p16-/HPV+ are poor (37). However, the included studies in
this meta-analysis failed to distinguish between these three
specific categories, and thus, we could determine whether
our results were affected by HPV status in the two groups.
It is hoped that the currently ongoing clinical trials (38)

consider the subtype of HPV states to ascertain whether254different HPV states affect the prognosis of treatment255to varying degrees and clarify which HPV has a superior256effect.257

In our retrospective analysis, the main AE of RD 258 treatment was oral mucositis, occurring in 36.4% of 259 patients. Comparing the four studies that mentioned 260

AEs, Fietkau et al. (25), Yom et al. (23), and Echevarria 261 et al. (28) reported fewer AEs, which may be related to 262 the use of the chemotherapy drug, carboplatin. A trial 263 comparing cetuximab and cisplatin chemoradiotherapy 264 (CRT) as presented by a European group at European 265 Society for Medical Oncology (ESMO) 2018 (30), which 266 confirmed that platinum can enhance radiosensitivity and 267 reduce AEs. Although the reported incidence of adverse 268 reactions seemed high in Chen et al. (21), they were mainly 269 concentrated in Grades 1-2, which are relatively mild and 270 do not significantly impact the quality of life of patients. 271 Compared with the other three studies, Chen et al. employed 272 combination treatment using paclitaxel and carboplatin 273 instead of platinum monotherapy; thus, we speculate 274 that the higher rates of adverse reactions in their study 275 may be related to the multiple chemotherapy regimen 276 combinations. 277

Unfortunately, detailed adverse events in the SD group 278 were not collected in our study, so it was impossible to 279 compare the two groups. Nevertheless, further analysis 280 revealed that all of the relevant research results concerning 281 radiotherapy dose reduction indicated fewer adverse 2.82 reactions. Standard chemoradiotherapy regimens are 283 associated with substantial toxic effects, including in organs 284 involved in salivation, swallowing, and mucosal integrity, 285 with dose-related side effects. Probability models utilized 286 for complications in normal tissue show that with each 287 1 Gy increase in the mean dose to the parotid gland, 288 the likelihood of xerostomia increases by about 5% at 289 1-year post-treatment (39). Likewise, the incidence of 290 late dysphagia and gastrostomy tube dependence rises 291 with increasing pharyngeal constrictor, larvnges, and 292 cricopharyngeal inlet doses. Thus, reducing the radiation 293 dose in selected patients with favorable biology (HPV-294 related) has the potential to improve treatment tolerability 295 while at the same time preserving long-term function. 296

The systematic review conducted in this study showed 297 that lower doses could reduce post-treatment AEs, either 298 the incidence of decreased quality of life (40) or late 299 adverse reactions (25). Some studies (28,41-43) have shown 300 that, after dose reduction, the symptoms of dry mouth, 301 hypogeusia, and dysphagia continue to improve, and 302 gastrostomy tube (PEG) placement rates and late toxicity 303 were also lower (43-45). It has also been reported (46) that 304 the target volume of OPC could combine dose reduction 305 with unilateral irradiation for improving mild to moderate 306 acute swallowing dysfunction. Taken together, these results 307

327

328

337

338

350

351

indicate that reducing the radiation dose is conducive to 308 improving the quality of life of patients and enhancing the 309 functioning of affected organs. 310

This article had several limitations that should be noted. 311 Firstly, the sample size of the included trials is small, and 312 there is a lack of randomized phase III clinical trial results. 313 Furthermore, due to the inclusion of clinical trials with 314 potential selection bias, the compared treatment strategies and 315 follow-up periods are largely different among various studies, 316 which may have impacted the results. Lastly, the vast majority 317 of included studies failed to provide long-term follow-318 up. HPV-related tumor recurrences continue after 3 years 319 of therapy (10) and the cumulative incidence of late AEs 320 consistently increases over a longer period (14), implying that 321 toxicity reporting is likely understated, and the outcomes 322 are likely overestimated to some extent. Nevertheless, these 323 shortcomings do not detract from the promising short-term 324 results of treatment de-escalation a concept that seeks to 325 improve the therapeutic ratio for this expanding population. 326

Conclusions

This systematic review and pooled analysis revealed that compared to standard radiation doses, radiation dose reduction in patients with HPV-related OPC provided superior therapeutic outcomes and optimized quality of life, but had similar PFS rates. Prospective randomized trials or studies with large sample sizes are needed to validate these findings. 336

Acknowledgments

We thank all the members of the Radiation Oncology 340 Translational Research Group (ROTRG) who participated 341 in this study. 342

Funding: The current study was supported by grants from343the National Natural Science Foundation of China (No.34481802740 to JD Sui; No. 81972857 to Y Wang), the345Chongqing Science and Health Joint Medical Research346Project (No. 2022ZDXM028 to JD Sui), and the Natural347Science Foundation of Chongqing City (No. cstc2021jscx-348msxm0029 to Y Wang).349

Footnote

Reporting Checklist: The authors have completed the 352 MOOSE reporting checklist. Available at https://atm. 354

Page 14 of 16

Yang et al. Reduced-dose radiation improves therapeutic outcomes

amegroups.com/article/view/10.21037/atm-22-5935/rc

356

Conflicts of Interest: All authors have completed the 357 ICMJE uniform disclosure form (available at https://atm. 358 amegroups.com/article/view/10.21037/atm-22-5935/coif). 359 JDS reports that the current study was supported by grants 360 from the National Natural Science Foundation of China 361 (No. 81802740), and the Chongqing Science and Health 362 Joint Medical Research Project (No. 2022ZDXM028). 363 YW reports that the current study was supported by grants 364 from the National Natural Science Foundation of China 365 (No. 81972857), and the Natural Science Foundation of 366 Chongqing City (No. cstc2021jscx-msxm0029). The other 367 authors have no conflicts of interest to declare. 368 369

370 *Ethical Statement:* The authors are accountable for all 371 aspects of the work in ensuring that questions related 372 to the accuracy or integrity of any part of the work are 373 appropriately investigated and resolved.

374

Open Access Statement: This is an Open Access article 375 distributed in accordance with the Creative Commons 376 Attribution-NonCommercial-NoDerivs 4.0 International 377 License (CC BY-NC-ND 4.0), which permits the non-378 commercial replication and distribution of the article with 379 the strict proviso that no changes or edits are made and the 380 original work is properly cited (including links to both the 381 formal publication through the relevant DOI and the license). 382 See: https://creativecommons.org/licenses/by-nc-nd/4.0/. 383 384

385 References

- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics
 2020: GLOBOCAN Estimates of Incidence and Mortality
 Worldwide for 36 Cancers in 185 Countries. CA Cancer J
 Clin 2021;71:209-49.
- Bernier J, Domenge C, Ozsahin M, et al. Postoperative
 irradiation with or without concomitant chemotherapy
 for locally advanced head and neck cancer. N Engl J Med
 2004;350:1945-52.
- Du J, Nordfors C, Ahrlund-Richter A, et al. Prevalence
 of oral human papillomavirus infection among youth,
 Sweden. Emerg Infect Dis 2012;18:1468-71.
- Guo T, Eisele DW, Fakhry C. The potential impact
 of prophylactic human papillomavirus vaccination on
 oropharyngeal cancer. Cancer 2016;122:2313-23.
- 401 5. Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human402 papillomavirus and rising oropharyngeal cancer incidence

	in the United States. J Clin Oncol 2011;29:4294-301.	403
6.	Gillison ML, Chaturvedi AK, Anderson WF, et al.	404
	Epidemiology of Human Papillomavirus-Positive Head	405
	and Neck Squamous Cell Carcinoma. J Clin Oncol	406
	2015;33:3235-42.	407
7.	Senkomago V, Henley SJ, Thomas CC, et al. Human	408
	Papillomavirus-Attributable Cancers - United States, 2012-	409
	2016. MMWR Morb Mortal Wkly Rep 2019;68:724-8.	410
8.	Schache AG, Powell NG, Cuschieri KS, et al. HPV-	411
	Related Oropharynx Cancer in the United Kingdom:	412
	An Evolution in the Understanding of Disease Etiology.	413
	Cancer Res 2016;76:6598-606.	414
9.	Craig SG, Anderson LA, Schache AG, et al.	415
	Recommendations for determining HPV status in patients	416
	with oropharyngeal cancers under TNM8 guidelines: a	417
	two-tier approach. Br J Cancer 2019;120:827-33.	418
10.	Ang KK, Harris J, Wheeler R, et al. Human papillomavirus	419
	and survival of patients with oropharyngeal cancer. N Engl	420
	J Med 2010;363:24-35.	421
11.	Rieckmann T, Tribius S, Grob TJ, et al. HNSCC cell	422
	lines positive for HPV and p16 possess higher cellular	423
	radiosensitivity due to an impaired DSB repair capacity.	424
	Radiother Oncol 2013;107:242-6.	425
12.	Gillison ML, D'Souza G, Westra W, et al. Distinct risk	426
	factor profiles for human papillomavirus type 16-positive	427
	and human papillomavirus type 16-negative head and neck	428
	cancers. J Natl Cancer Inst 2008;100:407-20.	429
13.	Tsai CJ, McBride SM, Riaz N, et al. Evaluation of	430
	Substantial Reduction in Elective Radiotherapy Dose and	431
	Field in Patients With Human Papillomavirus-Associated	432
	Oropharyngeal Carcinoma Treated With Definitive	433
	Chemoradiotherapy. JAMA Oncol 2022;8:364-72.	434
14.	Machtav M. Moughan I. Trotti A. et al. Factors associated	435
	with severe late toxicity after concurrent chemoradiation	436
	for locally advanced head and neck cancer: an RTOG	437
	analysis. I Clin Oncol 2008:26:3582-9.	438
15.	Owadally W. Hurt C. Timmins H. et al. PATHOS: a phase	439
	II/III trial of risk-stratified, reduced intensity adjuvant	440
	treatment in patients undergoing transoral surgery for	441
	Human papillomavirus (HPV) positive oropharyngeal	442
	cancer. BMC Cancer 2015:15:602.	443
16.	Gillison ML. Trotti AM. Harris I. et al. Radiotherapy plus	444
10.	cetuximab or cisplatin in human papillomavirus-positive	445
	oropharvngeal cancer (NRG Oncology RTOG 1016):	446
	a randomised, multicentre, non-inferiority trial Lancet	447
	2019:393:40-50.	448
17.	Mehanna H. Robinson M. Hartley A. et al. Radiotherapy	449
- / •	plus cisplatin or cetuximab in low-risk human	450
	p	

451		papillomavirus-positive oropharyngeal cancer (De-		Journal of Radiation Oncology Biology Physics	499
452		ESCALaTE HPV): an open-label randomised controlled		2019;105:E416.	500
453		phase 3 trial. Lancet 2019;393:51-60.	29.	Huang SH, O'Sullivan B, Su J, et al. Hypofractionated	501
454	18.	Chera BS, Amdur RJ, Green R, et al. Phase II Trial		radiotherapy alone with 2.4 Gy per fraction for head	502
455		of De-Intensified Chemoradiotherapy for Human		and neck cancer during the COVID-19 pandemic: The	503
456		Papillomavirus-Associated Oropharyngeal Squamous Cell		Princess Margaret experience and proposal. Cancer	504
457		Carcinoma. J Clin Oncol 2019;37:2661-9.		2020;126:3426-37.	505
458	19.	Seiwert TY, Foster CC, Blair EA, et al. OPTIMA: a	30.	Gabani P, Lin AJ, Barnes J, et al. OA02 - Dose De-	506
459		phase II dose and volume de-escalation trial for human		Escalated Radiation Therapy versus Standard	507
460		papillomavirus-positive oropharyngeal cancer. Ann Oncol		Dose Radiation Therap y in Definitive Treatment	508
461		2019;30:297-302.		of HPV-Positive Oropharyngeal Squamous Cell	509
462	20.	Petrelli F, Luciani A, Ghidini A, et al. Treatment de-		Carcinoma. International Journal of Radiation	510
463		escalation for HPV+ oropharyngeal cancer: A systematic		Oncology*Biology*Physics 2019;103:E1.	511
464		review and meta-analysis. Head Neck 2022;44:1255-66.	31.	Tam M, Wu SP, Gerber NK, et al. Radiotherapy dose	512
465	21.	Chen AM, Felix C, Wang PC, et al. Reduced-dose		and survival outcomes in human papillomavirus positive	513
466		radiotherapy for human papillomavirus-associated		oropharyngeal cancer. Journal of Laryngology and	514
467		squamous-cell carcinoma of the oropharynx: a single-arm,		Otology 2020;134:533-40.	515
468		phase 2 study. Lancet Oncol 2017;18:803-11.	32.	Chin RI, Spencer CR, DeWees T, et al. Reevaluation of	516
469	22.	Marur S, Li S, Cmelak AJ, et al. E1308: Phase II Trial of		postoperative radiation dose in the management of human	517
470		Induction Chemotherapy Followed by Reduced-Dose		papillomavirus-positive oropharyngeal cancer. Head and	518
471		Radiation and Weekly Cetuximab in Patients With HPV-		Neck-Journal for the Sciences and Specialties of the Head	519
472		Associated Resectable Squamous Cell Carcinoma of the		and Neck 2016;38:1643-9.	520
473		Oropharynx- ECOG-ACRIN Cancer Research Group. J	33.	White R, Abel S, Hasan S, et al. Practice patterns and	521
474		Clin Oncol 2017;35:490-7.		outcomes following radiation dose de-escalation for	522
475	23.	Yom SS, Torres-Saavedra P, Caudell JJ, et al. Reduced-		oropharyngeal cancer. Laryngoscope 2020;130:E171-E6.	523
476		Dose Radiation Therapy for HPV-Associated	34.	Patel RR, Ludmir EB, Augustyn A, et al. De-	524
477		Oropharyngeal Carcinoma (NRG Oncology HN002). J		intensification of therapy in human papillomavirus	525
478		Clin Oncol 2021;39:956-65.		associated oropharyngeal cancer: A systematic review of	526
479	24.	Misiukiewicz K, Gupta V, Miles BA, et al. Standard of		prospective trials. Oral Oncol 2020;103:104608.	527
480		care vs reduced-dose chemoradiation after induction	35.	Lechner M, Liu J, Masterson L, et al. HPV-associated	528
481		chemotherapy in HPV+ oropharyngeal carcinoma patients:		oropharyngeal cancer: epidemiology, molecular	529
482		The Quarterback trial. Oral Oncol 2019;95:170-7.		biology and clinical management. Nat Rev Clin Oncol	530
483	25.	Fietkau R, Hecht M, Hofner B, et al. Randomized		2022;19:306-27.	531
484		phase-III-trial of concurrent chemoradiation for locally	36.	O'Sullivan B, Huang SH, Siu LL, et al. Deintensification	532
485		advanced head and neck cancer comparing dose reduced		candidate subgroups in human papillomavirus-related	533
486		radiotherapy with paclitaxel/cisplatin to standard		oropharyngeal cancer according to minimal risk of distant	534
487		radiotherapy with fluorouracil/cisplatin: The PacCis-trial.		metastasis. J Clin Oncol 2013;31:543-50.	535
488		Radiother Oncol 2020;144:209-17.	37.	Garset-Zamani M, Carlander AF, Jakobsen KK, et	536
489	26.	Moore EJ, Van Abel KM, Routman DM, et al. Human		al. Impact of specific high-risk human papillomavirus	537
490		papillomavirus oropharynx carcinoma: Aggressive de-		genotypes on survival in oropharyngeal cancer. Int J	538
491		escalation of adjuvant therapy. Head Neck 2021;43:229-37.		Cancer 2022;150:1174-83.	539
492	27.	Chera BS, Amdur RJ, Tepper JE, et al. Mature results of a	38.	Ferris RL, Flamand Y, Weinstein GS, et al. Transoral	540
493		prospective study of deintensified chemoradiotherapy for		robotic surgical resection followed by randomization to	541
494		low-risk human papillomavirus-associated oropharyngeal		low-or standard-dose IMRT in resectable p16+ locally	542
495		squamous cell carcinoma. Cancer 2018;124:2347-54.		advanced oropharynx cancer: a trial of the ECOGACRIN	543
496	28.	Echevarria M, Yang GQ, Naghavi AO, et al. Effectiveness		Cancer Research Group (E3311). J Clin Oncol 2020;38.	544
497		of Dose De-escalation of Primary and/or Elective Neck	39.	Deasy JO, Moiseenko V, Marks L, et al. Radiotherapy	545
498		in HPV positive Oropharyngeal Cancers. International		dose-volume effects on salivary gland function. Int J Radiat	546

Yang et al. Reduced-dose radiation improves therapeutic outcomes

Page 16 of 16

Oncol Biol Phys 2010;76:S58-63. 547 40. Posner M, Misiukiewicz DK, Hwang M, et al. Survival and 548 Quality of Life Analysis in a Randomized Deintensification 549 Trial for Locally Advanced HPV Positive Oropharynx 550 Cancer Patients. International Journal of Radiation 551 Oncology Biology Physics 2020;106:1146. 552 41. Judy GD, Green R, Aumer SL, et al. Preservation of 553 swallowing function with de-intensified chemoradiation 554 555 therapy for HPV-associated oropharyngeal squamous cell carcinoma. Adv Radiat Oncol 2018;3:356-65. 556 42. Pearlstein KA, Wang K, Amdur RJ, et al. Quality 557 of Life for Patients With Favorable-Risk HPV-558 Associated Oropharyngeal Cancer After De-intensified 559 Chemoradiotherapy. Int J Radiat Oncol Biol Phys 560 2019;103:646-53. 561 43. Hegde JV, Shaverdian N, Felix C, et al. Functional 562 Outcomes After De-escalated Chemoradiation Therapy (English Language Editor: A. Kaseem) 563 for Human Papillomavirus-Positive Oropharyngeal 564

> Cite this article as: Yang MQ, Liu YC, Sui JD, Jin F, Li D, Zhang L, Wang NH, Xie Y, Wang Y, Wu YZ. Reduced-dose radiation in human papillomavirus-associated oropharyngeal carcinoma can improve outcome: a systematic review and metaanalysis. Ann Transl Med 2022;10(24):1391. doi: 10.21037/atm-22-5935

	Cancer: Secondary Analysis of a Phase 2 Trial. Int J Radiat	565
	Oncol Biol Phys 2018;100:647-51.	566
44.	Yang GQ, Gintz D, Naghavi AO, et al. De-escalation of	567
	primary target and elective neck doses in HPV-positive	568
	oropharyngeal cancers. International Journal of Radiation	569
	Oncology Biology Physics 2018;100:1326-7.	570
45.	Kennedy J, Gintz D, Shah K, et al. Small Reductions	571
	in Dose Appear Equally Effective for HPV Positive	572
	Oropharyngeal Cancer Patients. International Journal of	573
	Radiation Oncology Biology Physics 2017;98:E28-E9.	574
46.	Yan SX, Mojica J, Barbee D, et al. De-escalation in HPV	575
	Era: Definitive Unilateral Neck Radiation for T3 or	576
	N2b/N3 p16+ Tonsil Squamous Cell Carcinoma Using	577
	Prospectively Defined Criteria. International Journal of	578
	Radiation Oncology Biology Physics 2019;105:E431.	579
		580
(En	glish Language Editor: A. Kaseem)	581

© Annals of Translational Medicine. All rights reserved.