
MINI REVIEW
published: 06 June 2019

doi: 10.3389/fimmu.2019.01276

Frontiers in Immunology | www.frontiersin.org 1 June 2019 | Volume 10 | Article 1276

Edited by:

Francesca Chiodi,

Karolinska Institute (KI), Sweden

Reviewed by:

Davide Corti,

Vir Biotechnology, Switzerland

Sergio Abrignani,

Istituto Nazionale Genetica Molecolare

(INGM), Italy

*Correspondence:

William B. Messer

messer@ohsu.edu

Specialty section:

This article was submitted to

Viral Immunology,

a section of the journal

Frontiers in Immunology

Received: 08 February 2019

Accepted: 20 May 2019

Published: 06 June 2019

Citation:

Lyski ZL and Messer WB (2019)

Approaches to Interrogating the

Human Memory B-Cell and

Memory-Derived Antibody Repertoire

Following Dengue Virus Infection.

Front. Immunol. 10:1276.

doi: 10.3389/fimmu.2019.01276

Approaches to Interrogating the
Human Memory B-Cell and
Memory-Derived Antibody Repertoire
Following Dengue Virus Infection
Zoe L. Lyski and William B. Messer*

Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, United States

Memory B-cells (MBCs) are potential antibody secreting immune cells that differentiate

and mature following host exposure to a pathogen. Following differentiation, MBCs

remain in peripheral circulation after recovery and are poised to secrete antigen-specific

antibodies if and when they are re-exposed to their cognate antigen. Consequently,

MBCs form the founder population and provide one of the first lines of pathogen-specific

defense against reinfection. The role MBCs play is complicated for viruses that are

heterologous, such as dengue virus (DENV), which exist as antigenically different

serotypes. On second infection with a different serotype, MBCs from initial dengue

infection rapidly proliferate and secrete antibodies: many of these MBC derived

antibodies will be cross-reactive and weakly neutralizing, while some antibodies may

recognize epitopes conserved across serotypes and have the capacity to broadly

neutralize 2 or more serotypes. It is also possible that a new population of MBCs and

antibodies specific for the second virus serotype need to arise for long-term broader

immunity to develop. Methods to interrogate and track memory B cell responses are

important for evaluating both natural immunity and vaccine response. However, the

low abundance of MBCs for any specific pathogen makes it challenging to interrogate

frequency, specificity, and breadth for the pathogen of interest. This review discusses

current approaches that have been used to interrogate the memory B cell immune

response against viral pathogens in general and DENV specifically. Including strengths,

limitations, and future directions. Single-cell approaches could help uncover the DENV

specific MBC antibody repertoire, and improved methods for isolating DENV specific

monoclonal antibodies from human peripheral blood cells would allow for a functional

analysis of the anti-DENV repertoire.

Keywords: dengue, virus, hybridoma, B-cell immortalization, ELISPOT, flow cytometry, long-term immunity,

monoclonal antibody

INTRODUCTION

Neutralizing antibody responses play a critical role in anti-viral immunity–controlling and
preventing infection, and are an important aim of vaccination. During initial infection, naïve host
B-cells, specific to the infecting antigen, proliferate and differentiate into short-lived plasmablasts
that secrete antibodies at a high rate to combat the existing infection. Following viral clearance,

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2019.01276
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2019.01276&domain=pdf&date_stamp=2019-06-06
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:messer@ohsu.edu
https://doi.org/10.3389/fimmu.2019.01276
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01276/full
http://loop.frontiersin.org/people/678600/overview
http://loop.frontiersin.org/people/136428/overview


Lyski and Messer Methods to Interrogate MBC Responses

two distinct layers of humoral immunity remain to protect
against repeat infection with the same antigen—antibodies in
the sera, constitutively produced by long lived plasma cells
(LLPCs) and memory B-cells (MBC) primed to expand and
secrete antibodies upon antigen re-exposure.

LLPCs, are terminally differentiated, non-dividing cells that
reside in the bone marrow and produce antibodies for years to
decades (1–3) providing protection against repeat infections with
the same antigen (4, 5). These antibodies are typically assessed
by in vitro neutralization and binding assays, and in many cases
regarded as correlates of protection against viral pathogens (6).

MBCs make up the second line of antibody-mediated
defense, providing protection by rapidly activating, proliferating
and secreting antibodies in response to cognate antigen.
Once regarded as a backup to LLPC-derived antibodies,
the specificity and breadth of potential MBC responses are
increasingly appreciated, especially with regard to protection
against heterogeneous but antigenically related viral pathogens,
such as influenza, different serotypes of DENV, and viral escape
mutants (5, 7).

Naïve B-cells, MBC precursors, originate in the bone marrow
before migrating to the spleen where they undergo further
differentiation, redistribute to lymph nodes, and await antigen
encounter. Recent work in mice suggests that MBCs originate
in low affinity germinal center compartments within peripheral
lymph nodes (5), which might contribute to more broadly
reactive Ig receptors and increase the breadth of recall responses
(5, 7). MBCs form a heterogeneous population, and it is
thought that they preferentially differentiate upon reinfection.
Specifically, IgG MBCs favor differentiating into plasmablasts
whereas IgM MBCs preferentially re-enter germinal centers to
undergo further rounds of affinity maturation (5, 8–10).

MBCs can be identified by their B-cell receptor (BCR), a
membrane bound immunoglobulin (Ig) identical to the antibody
they secrete upon activation. Upon reinfection, the recall
response is rapid, dominated by high affinity isotype switched
antibodies, IgG, IgA, or IgE, depending on pathogen. This recall
response leads to the generation of new antigen-specific LLPCs
and MBCs (5).

Although human MBCs have been characterized for many
important viral pathogens, including HIV (11), RSV (12),
influenza (13), human DENV MBC derived antibodies were not
fully characterized until 2010 (14, 15). Mosquito-transmitted
DENV is responsible for ∼100 million symptomatic cases
and 35,000 deaths annually (16) making it the most common
and serious vector-borne disease affecting humans. DENV
is an enveloped positive sense RNA virus, that circulates
as four distinct serotypes (DENV 1-4), with 60–85% shared
sequence homology (17). Repeat infections often occur in
DENV endemic regions–Asia, Latin America, Africa, and parts
of Oceana. Population growth, increased global travel, and
spread of the vector have led to increasing epidemics. DENV
infection causes symptoms that include high fever and rash.
A portion of patients (∼500,000 per year) develop severe
dengue—referred to as dengue shock syndrome (DSS) or dengue
hemorrhagic fever (DHF)—which can further progress to organ
failure and death. First (1◦) infection with one serotype is

thought to provide life-long protection against that serotype,
but only short-lived protection against heterologous infection
(18). Secondary (2◦) infection with a different serotype can
lead to broader protection, up to all four serotypes, but comes
at a greater risk of serious disease during acute infection,
through a process of antibody dependent enhancement (19),
which occurs when sub-neutralizing antibodies bind to virus
and facilitate uptake into cells via Fc receptors (20). The
mechanism by which subsequent broader immunity develops
is incompletely understood: while it is known that immediately
following second infection the antibody response contains a
large proportion of cross-reactive antibodies that can neutralize
both viruses (21) the relative contribution of type specific,
weakly cross-neutralizing and broadly neutralizing antibodies
to long-term immunity is unclear, and may depend on virus
maturation state (22). Further complicating the hypothesized
role of broadly cross-neutralizing antibodies is the recent finding
by Raut et al. (23) that in vitro neutralization assays using
mature and partially mature tissue-culture derived DENV1
over-estimated by almost 15-fold the potency of heterotypic
neutralizing antibodies when compared to neutralizing potency
against the same fully mature DENV1 circulating in humans.
Deeper understanding of the diversity and epitope-specificity
of 1◦ MBCs could lead to the development of subunit
vaccines that preferentially elicit potently neutralizing antibodies
against all 4 DENV serotypes while avoiding potentially
enhancing antibodies.

Analyses of human antibody response to DENV infection
have traditionally characterized serum antibodies, a product of
LLPCs through virus neutralization, binding, and enhancement
assays (24). More recently, greater focus has been put on
characterizing B-cells that produce these antibodies. Historically,
methods to interrogate antigen-specific B-cells, particularly in
humans, have been challenging to develop (25, 26). However,
complex, studying individual and population MBCs and the
monoclonal antibodies (mAbs) they produce is an area of
critical importance. Such studies allow for better understanding
of the nature of human immune response to pathogens
such as DENV, and are expected to lead to more rationally
designed vaccines.

Over several decades, methods to interrogate antigen-
specific MBCs have had several useful functions: identifying
subset of MBCs available to respond to repeat infections
(27, 28), tracking MBCs prior to and after vaccination
or booster (6), isolating and characterizing human mAbs
following natural infection or vaccination (29), and
analyzing memory-derived antibody repertoires (28).
Only recently have these methods been employed in the
DENV field. Here we review the leading approaches for
characterizing human DENV MBCs, evaluating their strengths,
limitations and potential for further contribution to the field
(summarized in Table 1).

Limiting Dilution Assay (LDA)
The LDA was first used to detect virus-specific MBCs in mice
over 20 years ago (32). This approach allows the frequency and
specificity of rare antigen-specific MBCs in circulation to be
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TABLE 1 | Summary of human DENV-specific monoclonal antibodies isolated from immune donors.

References Method Efficiency #Donors mAbs

isolated

Key findings

Schieffelin et al. (15) B-cell immortalization (EBV) N/A 1

> 2

years

post

infection

3 DENV-specific MBCs were in circulation >2 years post

exposure

2% of cultures were DENV2 specific

All isolated mAbs were IgG1

Beltramello et al. (14) B-cell immortalization (EBV) with

CpG

Screened and cloned by

limiting dilution.

6.5–14% 5

3-1◦

2-2◦

200 days

to >8

years post-

infection

70 All of the isolated mAbs were IgG: 68 IgG1, 1 IgG3, 1

IgG4

13 mAbs recognized EDIII and were the most potently

neutralizing of all the mAbs isolated (5 serotype specific,

8 cross reactive)

34 mAbs recognized DI/DII they were highly cross

reactive and less neutralizing, 6 mAbs recognized PrM,

11 mAbs recognized non-structural proteins, and 1

recognized capsid

Smith et al. (27) B cells immortalized (EBV) with

CpG and CHK2. Screened by

ELISA. Positive wells fused to

generate hybridomas.

>10-fold increase

in the # of

successful human

hybridomas

generated

12

6–1◦

6–2◦

4–24

years

post infection

37 29/37 isolated mAbs recognized E protein, 26 were IgG1

and 3 were IgG2

26/37 isolated mAbs were cross reactive, most bound to

EDI/II

5- isolated mAbs EDIII specific (1C7, 1M23, 2J20, 1B23,

1M19) all cross reactive

3-mAbs had moderate to strong neutralizing potency

against at least one serotype (2D22, 5J7, 2J20)

8- isolated mAbs PrM specific, mAbs exhibited

enhancing properties

Smith et al. (30) B-cell immortalization (EBV) CpG

and CHK2

Screened by ELISA and

neutralization then fused to

generate hybridomas

N/A 3

2–1◦

1–2◦

1–9

years post-

infection

50 Most potently neutralizing mAbs bound to EDIII (1M7) or

complex (1F4) epitopes on intact virions. DENV specific

MBC frequency similar between primary and secondary

donors at 14–18 DENV specific MBC per thousand B

cells.

15 of the isolated mAbs were non-neutralizing, and

bound to rE or PrM.

Cox et al. (25) FACS using E (DENV2-80E) and

dual labeled secondary

antibodies

Isolated double positive MBCs

20 million PBMCs,

148 DENV E+

MBCs sorted.

1 from an

endemic

region

Serum

neutralized

all

4 serotypes

9 DENV E specific MBCs are present in naturally infected

donors. Authors isolated and characterized DENV

neutralizing mAbs from MBCs against envelope domain I

and the fusion loop. Of the sorted MBCs following 2

week stimulation in culture 64% were positive for IgG,

20% were positive for DENV by ELISA, 8% secreted

DENV2 specific mAbs

Of the 9 mAbs isolated 1-non-neutralizing,

3-serotype-specific, 2-neutralized 2–3 serotypes

3-neutralized 4 serotypes.

Appanna et al. (28) FACS using fluorescently labeled

DENV3. Isolated DENV positive

MBCs

N/A 4

2◦
19 40–60% of the DENV-specific MBCs sorted bound to

DENV

Most mAbs isolated bound to complex epitopes, 24.4%

bound to PrM and 17.8% bound to rE

Majority were cross reactive and weakly neutralizing

Nivarthi et al. (31) B-cell immortalization (EBV) CpG

and CHK2 followed by fusion

N/A 2

1◦ DENV-

4

8 Frequency of DENV-specific B-cells in circulation

0.19–0.2%.

Of the 8 mAbs isolated, 2 neutralized DENV-4 and

recognize regions on EDI/EDII hinge.

enumerated. PBMCs or enriched B-cells are stimulated ex vivo
with a mitogen cocktail along with non-proliferating feeder cells.
With this approach MBCs become antigen-secreting cells. The
cells can be enumerated by ELISpot (described later) or secreted
antibodies assayed by antigen-specific ELISA. This approach has
been used to determine the frequency of viral-specific MBCs in
humans following vaccination or natural infection (6, 33–35).

Strengths and Limitations
Non-specific stimulation of human MBCs allows for the
characterization of multiple antigen-specific MBC derived
antibodies from a single PBMC sample (6). Antibody containing
supernatant or MBCs can be used for a wide range of
assays including: ELISpot, ELISA, and neutralization. The
major limitations of this approach are that the cells are not
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immortalized therefore longevity is limited, surface BCR is down-
regulated, and single antigen-specific MBCs clones cannot be
identified and subjected to downstream sequencing and cloning.

Enzyme-Linked Immunosorbent Spot
Assay (ELISpot)
Provides a sensitive and specific tool to detect antigen-specific
MBCs. First described over 35 years ago (36) as a method
for quantifying rare B and T cells and is still widely used
today, as it is sensitive enough to detect a single antigen-
specific cell. Plasmablasts can be studied directly ex vivo, but
MBCs must be stimulated to become antibody-secreting cells.
Membrane-bound antigen enables binding of mAbs secreted
by B-cells. Bound antibody is detected using a secondary
antibody and a colorimetric substrate, resulting in colored
spots on the membrane that can be easily enumerated using
imaging software. Advances in ELISpot technology have allowed
researchers to detect different isotypes of MBCs that recognize
multiple epitopes and multiple antigens (37). Recently developed
multifunctional FluoroSpot assays allow enumeration of cross-
reactive and type-specific DENV and Zika MBCs following
natural infection and vaccination (19, 38). This allows researchers
to determine serotype specificity on a single-cell basis, rather than
polyclonal level.

Strengths and Limitations
ELISpot is highly sensitive and allows for the enumeration of rare
cells of interest—frequency, specificity, and antibody isotype can
be determined. The major limitation is that it does not allow
for isolation and downstream analysis—Functional properties
of antibodies, such as neutralization cannot be assessed, and
cells’ BCRs of interest cannot be sequenced or cloned for
mAb production.

Hybridoma Approaches
The use of hybridomas to immortalize MBCs was first described
over 40 years ago (39). Hybridomas are made by fusing a
myeloma cell with a B-cell from an immunized or naturally
infected individual, the resulting hybrid cell secretes mAbs
specific to their antigen. Technical advances have made it feasible
to generate hybridomas from human peripheral blood MBCs
(40). These advances include expanding B-cells prior to fusion,
finding new human myeloma cells to fuse with, and improved
fusion techniques including electrical cytofusion (41). Using
optimized techniques Yu et al. (41), fusion efficiency improved
from 0.001 (40) to 0.43% (41) which enabled them to isolate
neutralizing mAbs against RSV and influenza from human
peripheral MBCs. Hybridoma technology is a well-established
and indispensable platform for generating high-quality mAbs
and has been used to produce mAbs against a wide range of viral
antigens including DENV.

Strengths and Limitations
Major advantages of this approach include pairing of BCR
heavy and light chains (42), native constant region of the
mAb expressed allowing Fc-mediated effector functions, such

as enhancement to be accessed (40). Finally, the hybridoma
products are stable in culture and can be frozen for future use.

One major limitation of this approach is extremely low fusion
efficiency. Consequently, traditional hybridoma strategies are not
as well suited for identifying rare antigen-specific MBCs that
circulate in low numbers in the periphery of immune donors,
as overall only a small amount of the total B cell repertoire
is captured.

The second major limitation has been the challenge of
making human, rather than mouse, derived hybridomas. Work
by Wahala et al. (43) found that humans and mice recognize
distinct and different epitopes on the DENV virion following
immunization in mice or natural infection in humans. Nearly all
neutralizing antibodies found in humans after natural infection
recognize complex quaternary epitopes on the surface of whole
virions (44, 45), in contrast to the DENV neutralizing antibody
response in mice, where the majority of neutralizing antibodies
recognize a single domain region, domain III, on the envelope
glycoprotein (43).

B-Cell Immortalization
MBC immortalization can be achieved through transforming
peripheral MBCs using Epstein Barr Virus (EBV), or through
expression of BCL-6, and BCL-XL. This results in stable cell
lines that express BCR on the surface and secrete antibodies,
making them a useful tool in the generation of human mAbs and
has become a leading approach in characterizing DENV-specific
MBCs in humans.

EBV transformation for B-cell cultures was developed in the
1970’s Steinitz et al. (46) when normal human B-cells were
infected with EBV, a lymphotropic herpesvirus, transforming
MBCs into stable antibody secreting cell lines. Supernatants
can be screened for specificity to antigen of choice and serial
dilution down to a single cell enables this method to be
applied to mAb production. Many groups have utilized and
continue to utilize EBV immortalization to isolate human mAbs
against a wide variety of human pathogens, including HIV
(47), SARS coronavirus (48), Influenza (49), RSV (50), and
DENV (14, 15, 51).

Another technique employed to immortalizeMBCs is through
forced expression of BCL-6 (required for GC formation) and
BCL-XL (anti-apoptotic Bcl-2 protein family). Both are expressed
in GC B-cells, and by introducing these genes into peripheral
blood MBCs and culturing with CD40L and IL-21, they become
highly proliferating with surface and secreted Ig (52). BCL-6 +

BCL-XL transduced cells express AICDA, encoding the enzyme
activation-induced cytidine deaminase (AID), at the same levels
as isolated tonsil derived GC B-cells, but not normally expressed
in peripheral MBCs or plasma cells. AID mediates somatic
hypermutation (SHM) and class-switch recombination (CSR)
and therefore increases diversity of the BCR. AID is functional
in these cells and low levels of SHM is observed in the Ig
genes of expanded B-cells. These cells can be maintained for
prolonged periods of time in culture to allow for mAb production
(53). Using this approach, researchers have identified neutralizing
mAbs in humans that recognize RSV (52), Hepatitis C virus (54),
influenza (55), and DENV (56).
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Strengths and Limitations
Immortalized B-cells have a plasmablast-like phenotype, with
secretory and membrane-bound Ig, which makes them a
powerful tool for discovery and characterization of mAbs. Probes
that bind to BCRs of interest enable the isolation of antigen-
specific B-cells from a polyclonal population. Immortalized cells
are stable and can be frozen for future use. The presence of AID
and the potential for SHM can be utilized to generate clones that
have higher or lower affinities than the parental clone, allowing
for a method of affinity maturation in culture (53).

Transformation efficiency for BCL-6+BCL-XL is 60–80% in
humans (53), and EBV transformation have improved from 10
to >30% with the addition of TLR agonists, typically CpG or
R848 (50, 57). This approach requires significant numbers of cells
to yield few cells of interest. Because cells proliferate with this
approach, frequency of particular antigen-specific MBCs cannot
be enumerated.

Using EBV-transformed human B-cells to generate
human hybridomas can increase efficiency by as much as
25-fold compared to that of using untransformed PBMCs.
Therefore, Investigators often utilize a combination approach
of EBV immortalization followed by fusion to isolate
human DENV-specific mAbs from naturally infected or
vaccinated donors (28, 55).

Antigen—Specific Flow Cytometry
Flow cytometry-based approaches have been used to enumerate
antigen specific MBCs against model antigens in mice (58) and
humans (33). However, viral antigen-specific flow cytometry has
been utilized more recently, Weitkamp et al. (59) identified
human rotavirus specific B-cells, Scheid et al. (60) characterized
low-frequency HIV specific MBCs in humans and Woda et al.
(61) characterized DENV-specific MBCs in human immune
donors. Recognizing the complex and quaternary nature of
DENV neutralizing epitopes (45) Authors Woda and Mathew
(26) and Appanna et al. (28) used fluorescently labeled whole
DENV virus (62) as a probe to detect DENV-specific MBCs in
immune donors while Cox et al. (25) used biotinylated DENV
envelope protein as a probe along with dual labeled streptavidin
antibodies to identify DENV envelope-specific MBCs. This
method enabled researchers to isolate 8 DENV-neutralizing
mAbs from a single donor (Table 1).

Strengths and Limitations
Antigen choice is important, DENV neutralizing epitopes
are comprised of complex conformational structures and not
recapitulated by simple linear peptides or recombinant proteins
(45). However, whole viruses are inherently sticky and adheres
to host cells. To tackle this non-specific binding (26, 61) utilized
fluorescently labeled Vero cell supernatant as well as dual labeled
probes to decrease background (63). A major strength of this
approach is the possibility of tracking multiple serotypes of
DENV- specific MBCs prior to and post infection or vaccination
(61) as well as the potential for single cell sorting antigen-
specific MBCs for downstream assays such as immortalization,
sequencing, or cloning (25).

FUTURE DIRECTIONS

An important early advancement in the field of human mAb
generation was the advent of single-cell RT-PCR approaches
(64) that allow for sequencing, cloning, and characterization
of each BCR from individually sorted MBCs. This approach
remains useful when the population of interest represents a
large proportion of total cells in population (plasmablasts during
acute infection), or when a valid probe or screening approach
exists to identify MBCs of interest prior to sequencing. In
addition to generating mAbs, sequencing of the BCR provides
information about B-cell clonal evolution during infection.While
groundbreaking, this single-cell approach is time and resource
intensive as it requires heavy and light chains to undergo PCR,
sequencing, and cloning independently and remain correctly
paired for transfection into expression plasmids.

This single-cell approach provides a glimpse into the overall
antibody repertoire, which has a potential diversity of more than
1 × 1013 in humans, but high throughput methods that capture
the entire antigen-specific MBC repertoire recently developed
with other pathogens would be expected to advance the DENV
field as well. High-throughput droplet microfluidic approaches
(65) allow for individual partitioning of single B-cells, that are
individually barcoded and allow for paired sequencing of Ig heavy
and light chains from a single B cell captured within a droplet.
From this, a complete Ig library can be generated, as well this
approach allows for simultaneous sequencing of barcoded Ig
genes with the possibility of co-expressed functional genes to
fully understand the pathogen specific MBC repertoire. MAbs
that are generated from these antibody gene sequences allow for
a functional analysis of the repertoire.

Another high throughput approach (66, 67) recently used
to isolate mAbs from humans involves using microfluidics to
partition individual cells then physically link heavy and light
mRNAs and perform overlap extension PCR to generate a
continuous heavy-light chain amplicon for cloning into a yeast
display system for Fab or IgG which allows screening for
antigen specificity and affinity by FACS. Through this approach
researchers were able to isolate broadly neutralizing antibodies
against HIV, Ebola, and influenza.

The ability to fully interrogate the MBC response established
after natural infection to viral antigens will allow researchers to
durably and comprehensively interrogate vaccine responses to
further understand the differences between natural and vaccine
derived immunity.
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