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Extracting information from noisy signals is of fundamental importance for both biological

and artificial perceptual systems. To provide tractable solutions to this challenge, the

fields of human perception and machine signal processing (SP) have developed powerful

computational models, including Bayesian probabilistic models. However, little true

integration between these fields exists in their applications of the probabilistic models for

solving analogous problems, such as noise reduction, signal enhancement, and source

separation. In this mini review, we briefly introduce and compare selective applications of

probabilistic models in machine SP and human psychophysics. We focus on audio and

audio-visual processing, using examples of speech enhancement, automatic speech

recognition, audio-visual cue integration, source separation, and causal inference to

illustrate the basic principles of the probabilistic approach. Our goal is to identify

commonalities between probabilistic models addressing brain processes and those

aiming at building intelligent machines. These commonalities could constitute the closest

points for interdisciplinary convergence.

Keywords: signal processing, multisensory perception, audiovisual integration, optimal cue integration, causal

inference, speech enhancement, automatic speech recognition, human psychophysics

INTRODUCTION

Human perception and machine signal processing (SP) both face the fundamental challenge of
handling uncertainty. Probabilistic models provide powerful tools for representing and resolving
uncertainty (Rao et al., 2002). For example, a simple probabilistic model for estimating a speech
signal from a noisy audio recording can be constructed as follows: The stimulus parameter of
interest (e.g., the phoneme) is represented as a latent variable S. The existing information or
expectation regarding S prior to the data observation is represented by the prior probability
distribution, p(S) (“prior”). The perceptual system’s responses (often referred to as measurements)
are usually stochastic: they fluctuate from trial to trial even when the stimulus remains constant.
The conditional probability density function (PDF) of obtaining the measurements X given S is
described by the likelihood function of S, p(X| S) (“likelihood”). Probabilistic models commonly
use the framework of Bayesian inference, which specifies how belief is optimally updated in light of
new evidence. Computationally, this is achieved by applying the Bayes’ theorem (Pouget et al., 2013;
Ghahramani, 2015) to combine the likelihood and the prior to calculate the posterior probability
distribution (“posterior”), p(S |X):

p(S|X) = p(X|S) p(S)/p(X) (1)

Signal reconstruction often requires a point-estimator for S. Three methods are commonly used.
Themaximum likelihood estimator (MLE) is the S value thatmaximizes the likelihood (Equation 2)
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or equivalently the log-likelihood, implying a uniform (flat) prior.
The maximum a-posteriori (MAP) estimator can be seen as
maximizing the likelihood after factoring in an informative prior
(Equation 3) and is equal to the posterior mode. The minimum
mean square error (MMSE) estimator is the a-posteriori expected
value for S (Equation 4) and is equal to the posterior mean (Yuille
and Bülthoff, 1996; Maloney, 2002).

MLE : Ŝ = arg max
si

p(X|Si) (2)

MAP : Ŝ = arg max
si

p(Si|X) (3)

MMSE : Ŝ =

∫

Si p(Si|X)dSi (4)

Similar probabilistic approaches are applied in sensory
perception and machine SP for solving analogous problems,
such as robust perception. However, although recent reviews
have separately summarized probabilistic models in each of
these disciplines (Kolossa and Häb-Umbach, 2011; Ma, 2012;
Hendriks et al., 2013; Ursino et al., 2014), reviews that draw
parallels between the models across the disciplines are lacking.
Here, we will introduce and compare selective applications
of probabilistic models in psychology, neuroscience, and
machine SP, focusing on audio and audio-visual processing.
We use the topics of speech enhancement, automatic speech
recognition, audio-visual cue integration, and source separation
as examples, because probabilistic models have played a
particularly important role in advancing these research areas.
We emphasize two important aspects of resolving uncertainty:
noise reduction and source separation. While in recent years
machine learning approaches have had a great impact in SP
(Deng and Li, 2013; Padmanabhan and Premkumar, 2015),
neuroscience (Yamins and DiCarlo, 2016), and cognitive science
(Lake et al., 2017), here we highlight the commonalities between
basic probabilistic models for machine and perceptual SP.

NOISE REDUCTION AND SPEECH
ENHANCEMENT

Statistical approaches in speech enhancement for reducing
background noise usually deal with single-channel signals,
e.g., from a single microphone. The variance of a signal is
generally understood as the power of the signal, and the PDFs
characterize the coefficients of the digitized signals. Traditionally,
the complex Fourier coefficients of the speech and noise
components aremodeled with a zero-meanGaussian distribution
[but later research suggests that super-Gaussian PDFs are more
appropriate; see Lotter and Vary (2005), Martin (2005), and
(Rehr and Gerkmann, 2018)], and the frequency bands are
assumed to be statistically independent (Ephraim and Malah,
1984, 1985; Porter and Boll, 1984). The variances (i.e., the power)
of the speech and noise coefficients are time-variant; therefore,
the parameters must be continuously updated using adaptive
power estimators. A common way to derive the estimators is
by computing the MMSE between the true speech coefficients
and the estimated coefficients, which leads to a linear filter

known as the Wiener filter (Ephraim and Malah, 1984; Martin,
2001; Gerkmann and Hendriks, 2012). The Wiener filter has
been adapted for multi-channel (e.g., multi-microphone array)
processing (Krawczyk-Becker and Gerkmann, 2016), which
additionally allows exploiting the spatial properties of sound
(Kay, 1993; Balan and Rosca, 2002; Doclo et al., 2015). For multi-
channel noise reduction, a well-known concept is the minimum-
variance distortionless response (MVDR) beamformer. This
beamformer minimizes the power of the output signal while
ensuring that the sounds from the target speaker are not distorted
or suppressed. The MVDR beamformer can be derived as the
MLE of the speech coefficients if the background noise is assumed
to follow a multivariate complex Gaussian distribution (Kay,
1993; Balan and Rosca, 2002).

Another classical probabilistic approach for estimating speech
and noise coefficients is to use mixture models, most commonly
Gaussian mixture models (GMMs) and hidden Markov models
(HMMs) (Rabiner, 1989), with machine-learning methods
(Ephraim, 1992; Burshtein and Gannot, 2002; Zhao and Kleijn,
2007; Chazan et al., 2016). The time-varying speech components
are characterized by a sequence of discrete states related to
the phonemes uttered by a speaker. Each state is described by
a PDF linking it to the statistics of the observations. GMMs
explicitly quantify the joint contributions of different states,
whereas HMMs treat the states as latent variables that are related
through Markov processes. The resulting estimator is a mixture
of clean speech estimates from all possible combinations of
available states; the states that best explain the observations have
the strongest influence on the overall estimate. The advantage of
a mixture estimator is that it takes into account all possible states
and is more robust than basic MLEs.

Auditory systems of animals maintain robust neuronal
representation of relevant sounds in noisy environments
(Mesgarani et al., 2014). The dominant model for characterizing
auditory neuronal responses is the spectrotemporal receptive
field (STRF) (Zhao and Zhaoping, 2011; David, 2018; King et al.,
2018). STRF is a linear filter that approximates the neuronal
response at a given time as a linear weighted sum of the stimulus
power at recent time points in different spectral channels (King
et al., 2018). The weights can be viewed as a discrete-time
version of the Wiener filter if they are estimated via the MMSE
between the model output and the measured neuronal response,
assuming Gaussian response noise with constant variance (Meyer
et al., 2017). STRF is usually applied as part of a linear-
nonlinear (LN) model—linear input followed by static nonlinear
response generation (Chichilnisky, 2001; Paninski, 2003; Sharpee
et al., 2004). However, standard STRF and LN models do not
incorporate the highly nonlinear and dynamic neural processes
which are important for noise robustness (for reviews, see
Meyer et al., 2017; King et al., 2018). For example, auditory
neurons adapt to stimulus statistics, such as the mean level and
the contrast (i.e., the sound level variance) of recent sounds,
and adjust their sensitivity accordingly; this adaptation enables
efficient and robust neural coding (Fritz et al., 2003; David
et al., 2012; Rabinowitz et al., 2013; Willmore et al., 2014, 2016;
Lohse et al., 2020). STRF models extended with adaptive kernels
(Rabinowitz et al., 2012) and other nonlinear features, such as
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input nonlinearity (Ahrens et al., 2008), synaptic depression
(Mesgarani et al., 2014), gain normalization (Mesgarani et al.,
2014), or top-down influence, such as feedback (Calabrese et al.,
2011) and selective attention (Mesgarani and Chang, 2012), have
been shown to better account for noise robustness. In addition,
mixture-model approaches from SP (e.g., GMM) can be used to
scale these models to higher-dimensional stimuli (Theis et al.,
2013). In machine SP, machine-learning algorithms inspired by
the nonlinear, adaptive, and/or top-down features of auditory
neurons are being developed to improve speech enhancement
(Ephraim, 1992; Hendriks et al., 2013; Lee and Theunissen,
2015; Rehr and Gerkmann, 2018, 2019). Future research could
aim at building brain-inspired robust and flexible models to
cope with various noise types, cluttered real-world data, and
adversarial data.

AUDIO-VISUAL INTEGRATION MODELS IN
A SINGLE-SOURCE SETUP

Probabilistic approaches have been extensively used for
automatic speech recognition (ASR): the translation of audio
signals into written text. Identifying the spoken words based
only on the acoustic input signal can be challenging, especially
if noise is present. Incorporating visual information (e.g.,
mouth shape, lip movement) can substantially improve ASR
performance (Hennecke et al., 1996) in noisy environments,
because visual features provide contextual and complementary
(but additionally redundant) information about the audio scene
and are insensitive to the acoustic background noise (Nefian
et al., 2002). This approach is known as audio-visual speech
recognition (AVSR). AVSR systems require dynamic models
for optimal audio-visual (AV) integration. The performance
of conventional HMMs, although being time-flexible, is
limited by their strong restrictive assumptions, e.g., that the
signal-generating system is a single process with few states
and an extremely limited state memory (Brand et al., 1997).
Nevertheless, a variety of HMM extensions have been proposed
to better solve the AV fusion problem (Potamianos et al., 2003).
One approach is to use a combination of feature fusion and
decision fusion (Neti et al., 2000; Potamianos et al., 2003).
Feature fusion applies fusion on the feature level; it trains a single
HMM classifier on the concatenated vector of audio and visual
features (Adjoudani and Benoît, 1996). Decision fusion applies
fusion on the classifier output level; it linearly combines the
likelihoods of audio-only and visual-only streams into a joint
AV likelihood, using weights that capture the reliability of each
sensory modality (Jain et al., 2000; Neti et al., 2000). Measures
of reliability include the inverse variance (Hershey et al., 2004),
signal-to-noise ratio (Adjoudani and Benoît, 1996; Hennecke
et al., 1996), harmonics-to-noise ratio (Yumoto et al., 1982), or
an equivalent index (Neti et al., 2000).

Two other extensions of HMMs are coupled HMMs (Brand
et al., 1997; Abdelaziz et al., 2015) and factorial HMMs
(Ghahramani and Jordan, 1997). These models have several
advantages over conventional HMMs for AVSR: (1) they allow
state asynchrony between the audio and visual components while

preserving their natural correlation over time (Nefian et al., 2002;
Abdelaziz et al., 2015), (2) they can model multiple interacting
processes without violating the Markov condition (Brand et al.,
1997), (3) the distributed state representations employed by these
models allow automatic decomposition of superposed states
(Ghahramani and Jordan, 1997), and (4) they are less sensitive
to the initial conditions of parameters (Brand et al., 1997).

AVSRmodels are inspired by the human ability of using visual
information to reduce auditory ambiguity (Schwartz et al., 2004).
In human perception, a research topic related to AV fusion is
generally known as cue integration. A cue is a sensory signal that
bears information about the state of some stimulus property,
e.g., identity or position. Psychophysical and neurophysiological
studies have shown that the brain combines multiple cues both
within and across sensory modalities to reduce uncertainty
(for a review, see Fetsch et al., 2013). Computationally, to
reduce uncertainty means to minimize the variance of perceptual
estimates. One of the most well-known computational models
for cue integration in psychophysics is the forced fusion model
(Figure 1A), also known as the optimal cue integration model
or the MLE model. This model proposes that a minimum-
variance estimate for the target stimulus attribute S given
multiple cues can be computed as the weighted linear sum of
the MLEs for individual cues, and the weights are determined
by each cue’s relative reliability (Alais and Burr, 2004; Ernst and
Bülthof, 2004; Rohde et al., 2015). A cue’s reliability is defined
as its inverse variance, 1

σ 2
i
, which is akin to how reliability is

defined in a MVDR beamformer (Kay, 1993; Balan and Rosca,
2002). The forced fusion model assumes that the cues are
redundant, i.e., they are regarding a single stimulus attribute and
therefore should be completely integrated. Under the simplifying
assumptions of a uniform prior p(S) and independent Gaussian
noises, the posterior p(S | X1, X2, . . . , Xn) is also a Gaussian, with
its mean given by weighted summation:

Ŝopt =

n
∑

i=1

wiŜi ,wi =

1
σ 2
i

∑n
i

1
σ 2
i

(5)

where Ŝopt is the optimal combined estimate, Ŝi is the MLE for an
individual cue i, and wi is the weight determined by the relative
reliability of cue i. These weights (wi) minimize the variance of
the combined estimate, and thus Ŝopt is a minimum-variance
unbiased estimator for S [for a mathematical proof, see Colonius
and Diederich (2018)]. This forced fusion model is analogous to
the aforementioned fusion models used in multi-stream HMM
for AVSR (Neti et al., 2000). The reliability-based weighting is
similar to the stream weights that are determined by the inverse
variance (Hershey et al., 2004). However, in the forced fusion
model the weights are fixed, while in AVSR it has been shown
that dynamic stream weights resulted in better performance
(Meutzner et al., 2017). Furthermore, even in the seemingly
simple case of fusing information from multiple microphones,
the noise captured by individual microphones is typically
correlated, especially in low frequencies. As a consequence, the
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FIGURE 1 | Three probabilistic models for audio-visual cue integration in human psychophysics. Gray nodes depict the latent stimulus attribute S (e.g., identity or

position) or the latent causal structure C. White notes depict the sensory measurements X in response to the sensory cues (a: auditory, v: visual). Left panel: The

generative models and the underlying structures. The likelihood functions are derived under the assumptions that the auditory and visual cues are corrupted by

independent Gaussian noise. Black arrows represent the direction of generative process, and gray arrows represent the direction of inference. Middle panel: A-priori

knowledge. Right panel: Optimal estimates by Bayesian inference (adapted from Ursino et al., 2014 Box 1, copyright © 2014 Elsevier Ltd, and Shams and Beierholm,

2010 Figure 1, copyright © 2010 Elsevier Ltd; reused with permission). (A) Forced fusion model. The auditory and visual cues are assumed to have a common cause.

The prior is usually assumed to be uniform, in which case this model is equivalent to an MLE. The optimal estimate is a linear weighted summation of unimodal MLEs,

and the weights are the relative cue reliabilities (precision). This model describes complete cue integration (fusion). (B) Interaction prior model. The joint prior

distribution p(Sa, Sv ) reflects the prior knowledge about the audio-visual correspondence in the environment. A common choice is a 2D Gaussian or Gaussian-mixture

function with higher probabilities along the identity line Sa = Sv. The estimates could be linear or non-linear functions (ga, gv ) depending on the specific interaction prior.

This model can describe complete fusion, partial integration, or segregation of cues. (C) Causal inference model. The latent variable C determines the causal structure

that generates the cues and mediates cue integration: cues are integrated if they have a common cause (C = 1) and processed separately if they have independent

causes (C = 2). The model infers the probability of the unknown causal structure p(C |Xv, Xa) and weights the estimates Ŝa and Ŝv accordingly using some decision

strategy (Wozny et al., 2010). The estimates are nonlinear combinations of the cues and usually require Monte Carlo simulation to obtain (Körding et al., 2007). This

model can be recast as the coupling prior model (B) by integrating out the latent variable C, in which case it will no longer explicitly represent the causal structure.

minimum-variance estimate typically takes into account the full
correlation matrices of the noise (Doclo et al., 2015).

Recent psychophysical research has suggested that the MLE-
type complete fusion is not a general property of human
multisensory perception (e.g., Battaglia et al., 2003; Arnold et al.,
2019; Meijer et al., 2019). To capture the full spectrum of cue
interaction spanning from complete fusion to partial integration
to segregation, extensions of the forced fusion model have been
proposed. Among them, the coupling prior model (Figure 1B),

also known as the interaction prior model, extends the forced
fusion model (Figure 1A) by adding a joint prior distribution
to represent the correlation or co-occurrence statistics between
the cues (Shams et al., 2005; Rowland et al., 2007; Ernst, 2012;
Parise et al., 2014). For example, in a speech recognition task
with auditory and visual cues, a coupling prior model could
use a bivariate prior p(Sa, Sv) to describe the joint probability
distribution for the auditory (Sa) and visual (Sv) representations
of the stimulus attribute (e.g., syllables). The coupling prior
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can be conveniently modeled using a 2D Gaussian p(Sa, Sv) =
NSa, Sv(s, 6), with the mean s being the expected stimulus value,
and the covariance matrix Σ consisting of variances along the
principle axes (e.g., Ernst, 2007). The p(Sa, Sv) distribution is
sharper if the AV coupling is relatively constant (due to statistical
regularities in the environment or acquired through adaptation
or learning). The forced fusion model is a special case of the
coupling prior model where p(Sa, Sv)= 0 for all Sa 6= Sv. Another
method for characterizing the coupling prior is to use a GMM
to represent the correlated and the uncorrelated components
(e.g., Roach et al., 2006; Sato et al., 2007); the resulting mixture
estimator is more general and robust than MLE.

The coupling prior model for cue integration is analogous to
a GMM for AVSR, where the AV coherence (i.e., dependency
between the auditory and visual modalities) is expressed as a
joint AV PDF (Rivet et al., 2014). It can be viewed as loosely
similar to the basic concept of coupled HMMs for AVSR, too.
However, unlike coupled HMMs, the coupling prior model is not
dynamic and does not describe time-variant signals. Moreover,
the coupling prior model explicitly constrains the joint prior
distribution of the cues, whereas coupled HMMs implicitly learn
the hidden states that generate the cues.

SOURCE SEPARATION AND CAUSAL
INFERENCE

In machine SP, the most common scenario of source separation
is blind source separation (BSS): separating two or more source
signals given mixture observations (Jutten and Herault, 1991;
Castella et al., 2010). A fundamental challenge in BSS is the
label permutation problem: to track which speech signal belongs
to which speaker/source (Hershey et al., 2016). To achieve this,
a model needs to jointly solve two problems: isolating a single
speech signal from a dynamic mixture of sounds from multiple
speakers and the background noise, and assigning the speech
signal to the corresponding speaker (Ephrat et al., 2018). A
Bayesian approach to solve BSS is applying GMMs and HMMs
that either constrain or learn the unobservable source structure
underlying the mixture signals (Roweis, 2001, 2003; Hershey
and Casey, 2002; Yilmaz and Rickard, 2004). Inspired by human
perception, recent machine SP models have been exploiting
the intrinsic AV coherence to improve BSS performance (Rivet
et al., 2014). Full joint AV models based on maximizing the
AV likelihood can successfully extract source signals from
underdetermined mixtures (Sodoyer et al., 2002). However, such
models are limited to instantaneous mixtures, where multiple
source signals contribute to the mixtures without delay at a given
time point. Similarly in human perception, most existing mixture
models for cue integration consider only instantaneous mixtures
(e.g., Magnotti and Beauchamp, 2017). If multiple source signals
contribute to the mixtures with different levels of delay—known
as convolutive mixtures—alternative techniques are required to
resolve the added ambiguities in BSS (e.g., Rivet et al., 2007; Liu
et al., 2012. For a review, see Rivet et al., 2014).

In natural environments, the structure of the source(s) giving
rise to the signals is often ambiguous or unobservable; therefore,

to properly associate a signal with its source, the observer needs
to infer cause-effect relationships based on the noisy data. This
is an example of the so-called inverse problem in information
processing: inferring the cause given the effect (Ghahramani,
2015). Humans are remarkably apt at solving this problem, being
able to focus on a target speaker while filtering out interfering
sounds and background noise, as exemplified by the well-known
cocktail party effect (Cherry, 1953). However, the causal inference
problem is challenging for machine SP, especially in AVSR, as it
is difficult to determine which signals in the mixture data came
from the same source and thus should be fused.

Machine SP could draw inspiration from the causal inference
model in human psychophysics (Figure 1C), which explicitly
characterizes the hidden causal structure of the source signal(s)
(Körding et al., 2007; Shams and Beierholm, 2010; Magnotti and
Beauchamp, 2017). This model proposes that humans estimate
the hidden causal structure based on statistical regularities of the
environment and use this estimate to arbitrate between grouping
or segregating sensory cues (Noppeney and Lee, 2018). The
basic structure of this model has two hierarchies. In the higher
hierarchy is a binary latent variable representing whether the
multiple cues share a common cause, denoted as C (short for
“cause”). C = 1 means the cues have a common cause, and C =

2 means the cues have two separate causes. The a-priori belief
for C is the causal prior, and it influences whether and to which
degree cues are integrated: cues are integrated only if they have
a common cause, in which case the model is equivalent to a
forced-fusion MLE model (Figure 1A); in contrast, the cues are
processed separately if they originate from different causes. The
causal structure is unknown, so the model needs to infer C by
combining bottom-up sensory data with top-town causal priors
and calculating the posterior p (C|Xa, Xv) for different C values.
The model additionally computes the PDF for the task-relevant

estimate p
(

Ŝ
∣

∣

∣
Xa, Xv, C

)

under the assumption of common or

separate causes, respectively. A final estimate for the stimulus
attribute is obtained by combining these estimates according
to some decision strategy. For example, if a model-averaging
decision strategy is applied, which is based on the use of MMSE,
then the resulting final estimate is the weighted average of the
estimates obtained under C = 1 and C = 2, respectively, with the
weights being the corresponding posterior probabilities for C =

1 and C = 2 (Körding et al., 2007; Wozny et al., 2010).

SUMMARY AND OUTLOOK

Here we reviewed a selection of probabilistic models of
audio- and AV-processing applied in machine SP and in
human perception, focusing on speech enhancement, speech
recognition, cue integration, and causal inference (Table 1).
In their cores, these models are stimulus-response functions:
they describe a probability distribution of responses given a
stimulus and parameters, and the parameters can be estimated
from experimental data or machine learning methods. Basic
probabilistic models are often linear filters with Gaussian PDFs
(e.g., Wiener filter, classic STRF), which can be extended
with nonlinear, adaptive, and/or top-down features (e.g., super-
Gaussian prior, gain control, selective attention). In addition,
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TABLE 1 | An overview of selective probabilistic models of audio- and audio-visual (AV) processing in machines and human perception.

Problem Model Main features and advantages Limitations

Noise reduction and speech enhancement

Machine speech

enhancement

Estimation of speech

coefficients

Wiener filter with simple

Gaussian PDFs

Linear, low computational cost, easy

to implement

Gaussian PDFs not appropriate for

modeling speech Fourier coefficients.

Super-Gaussian is better

MVDR beamformer Suitable for multi-channel noise

reduction

GMM Dynamics of speech and noise

captured by states of a mixture

model. Mixture estimator

Typically restricted to a small number

of classes; limited robustness in

reverberant conditions

HMM Improves modeling of temporal

behavior by including state

transitions. Mixture estimator

Strong restrictive assumptions,

intolerant to state asynchrony in AV

combined streams, sensitive to initial

parameter values

Auditory neural processing Maintaining robust

neuronal representation of

relevant sounds

Spectrotemporal receptive

field (STRF)

Computational simplicity, analytic

tractability, interpretability

Does not capture the highly nonlinear

and dynamic features of auditory

neurons

Audio-visual (AV) integration and speech recognition

Machine ASR ASR GMM/HMM Captures the dynamics of speech Other modalities cannot be easily

included

AVSR Coupled HMM, factorial

HMM

Improves AV fusion over conventional

HMM for AVSR

Human AV integration Optimal AV cue

combination

Forced fusion (MLE) model Reliability-weighting,

minimum-variance unbiased

estimator

Complete fusion only; does not

account for cue coherence or causal

structure

Accounting for AV

correlation

Coupling prior model, can

use GMM

Joint AV prior distribution. Can

capture the full range of AV integration

Cannot infer causal relationships

Source separation and causal inference

Machine source separation Source separation, label

permutation problem

Blind source separation

techniques with GMM,

HMM, etc.

Does not need a-priori information

about causal structure; works for

instantaneous mixtures and

convolutive mixtures

Human AV integration Causal inference Causal inference model Explicitly represents the underlying

causal structure; more general than

forced-fusion and coupling prior

models

Can be computationally expensive

the use of mixture models (e.g., GMM, HMM) simultaneously
accounts for multiple possible states and permits more robust
parameter estimation. Furthermore, basic probabilistic models

can be adapted to characterize multiple input channels or

streams (e.g., MVDR beamformer). If multiple inputs are
combined (e.g., cue integration, AVSR), fusion models with
reliability-based weighting and MLE are typically applied.
However, forced fusion is not always appropriate. Therefore, to
capture the large spectrum of input interactions, some models
incorporate the correlation between the inputs (e.g., coupling
prior model, coupled or factorial HMM) instead of assuming
fusion. Moreover, causal inference models estimate the hidden
source or causal structure of the inputs, by factoring in causality
which is important for determining input integration or source
separation. More advanced models, such as those in machine
learning, are beyond the scope of this mini review. In short,
this brief tutorial linked the analogous counterparts among

probabilistic models developed in artificial and natural systems
and identified the closest points of potential overlap between
these models.
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