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Abstract: Attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy is
a simple, cheap, and fast method to collect chemical compositional information from microalgae.
However, (semi)quantitative evaluation of the collected data can be daunting. In this work,
ATR–FTIR spectroscopy was used to monitor changes of protein, lipid, and carbohydrate content in
seven green microalgae grown under nitrogen starvation. Three statistical methods—univariate linear
regression analysis (ULRA), orthogonal partial least squares (OPLS), and multivariate curve
resolution-alternating least squares (MCR–ALS)—were compared in their ability to model and predict
the concentration of these compounds in the biomass. OPLS was found superior, since it i) included all
three compounds simultaneously; ii) explained variations in the data very well; iii) had excellent
prediction accuracy for proteins and lipids, and acceptable for carbohydrates; and iv) was able to
discriminate samples based on cultivation stage and type of storage compounds accumulated in
the cells. ULRA models worked well for the determination of proteins and lipids, but carbohydrates
could only be estimated if already determined protein contents were used for scaling. Results
obtained by MCR–ALS were similar to ULRA, however, this method is considerably easier to perform
and interpret than the more abstract statistical/chemometric methods. FTIR-spectroscopy-based
models allow high-throughput, cost-effective, and rapid estimation of biomass composition of
green microalgae.

Keywords: microalgae; FTIR spectroscopy; statistical methods; carbohydrates; lipids; proteins;
nitrogen starvation

1. Introduction

Microalgae are photosynthetic microorganisms able to convert water and carbon dioxide into
valuable organic molecules by means of sunlight. Thanks to fast growth rates (doubling times in
the order of hours) as well as minimal water and nutrients requirements, microalgal cultivation has
high industrial and commercial potential for the sustainable production of biomass-derived fuels
and chemicals, combined with the possibility of wastewater remediation and CO2 mitigation [1]. A wide
range of algae-based products are already used in various sectors, including bioenergy, food and feed,
green chemicals, and even cosmetics and therapeutics [2]. Three major classes of compounds are found
in microalgae, which together contribute to more than 50% of their total biomass: amino acids (25–70%),
carbohydrates (8–65%), and fatty acids/lipids (0–45%). Amino acids and proteins can be supplied
as high nutritional value ingredients in the human diet and animal feed [3–5], but also used as organic
biofertilizer to sustain crop productivity and preserve soil fertility [6,7]. Carbohydrates, including
starch and polysaccharides, can be transformed into fermentable sugars for bioethanol production [8],
used as emulsion stabilizer and bio-coagulant or as precursors for synthetic rubber and bioplastic
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generation [9,10]. Fatty acids and lipids can be converted into biodiesel through transesterification of
triacylglycerides (TAGs) [11], but also constitute healthy food and feed supplements (e.g., omega-3
fatty acids) [3–5,12].

Due to the high metabolic flexibility of microalgal cells, the concentration of the major
classes of compounds can drastically change in the produced biomass, depending on the culturing
conditions [13,14]. For example, nutrient deprivation, especially nitrogen starvation, has been shown to
stress microalgal cultures and induce an intra-cellular accumulation of energy-rich molecules as a result
of the reallocation of photosynthetically fixed carbon under limiting nutrient conditions [15,16].
Microalgae can dramatically increase their lipid and/or carbohydrate content in the matter of days
or even hours via carbon partitioning, which appears to be species-specific [17,18]. To follow these
rapid changes, a fast, simple, and cost-effective method is needed to enable effective monitoring of
microalgal cultures, rapidly selecting highly productive strains, and understanding their metabolic
behavior under different growing parameters and nutrients deficiency conditions.

Fourier transform infrared (FTIR) spectroscopy has been shown to be useful for the analysis of
chemical compounds in biological samples, including microbial biomass, for intra- and extracellular
metabolites [19–21] and microalgal biomass [22–24]. FTIR spectra give rise to characteristic bands,
which reflect the biochemical composition of the sample. Qualitative and quantitative differences
in the molecular composition of the sample are deduced by the position (traditionally expressed in
wavenumbers (cm−1) instead of wavelength) and intensity (the ‘height of’ or ‘area under’) of these
characteristic bands.

Each microalgal strain has been shown to produce a unique FTIR spectrum, with specific peaks
occurring at defined wavelengths, which is dependent on the environmental conditions [23,25]. So far
FTIR spectroscopy has been generally used for semi-quantitative screening only, i.e., the determination
of the relative abundances of molecular compounds in microalgal biomasses [26–28]. Only a few
studies have explored the possibility of absolute quantification of the microalgal components
by FTIR spectroscopy [29,30]. These studies were limited to one (or maximum a few) model species,
all cultivated under constant growth conditions, and the calculated concentrations were mainly
derived from linear regression analysis after calibration against external standards as reference
substances. These factors, coupled to the complexity of the spectra, including overlapping of bands,
as well as the dependency on sample cell size and external standards might generate misleading
and inaccurate quantifications under large scale ‘real’, varying growth conditions, where the chemical
biomass composition changes both qualitatively and quantitatively (i.e., microalgae will produce
different chemical compounds, not only different amounts of the same compounds).

In this study, ATR–FTIR (attenuated total reflection–FTIR) spectroscopy was used to quantitatively
assess species-specific changes of protein, lipid and carbohydrate content in the biomass of six
natural Nordic microalgal strains [31] and one culture collection (control) strain during progressive
nitrogen starvation. During ATR–FTIR spectroscopic measurements, infrared radiation reflected
by a crystal with high refractive index is partially absorbed by the sample and finally collected
by a detector [32,33]. In the current investigation, freeze-dried algal biomass was directly applied on
the diamond crystal to avoid time-consuming sample pre-processing plaguing other FT–IR spectroscopic
techniques, which often even cause non-uniform samples. Minimal to no sample preparation in
ATR–FTIR spectroscopy allows high throughput (up to 30 samples/hour) and simultaneously gives
a plethora of information on the biochemical composition of each sample. ATR–FTIR spectroscopy
therefore is a superior alternative to the traditional analytical methods, which are generally more
laborious, time-consuming, error-prone, and often require expensive and harmful reagents.

Three different statistical methods—univariate linear regression analysis (ULRA), orthogonal
partial least squares (OPLS), and multivariate curve resolution alternating least squares
(MCR–ALS)—were compared as mathematical tools to predict the amount of proteins, lipids,
and carbohydrates in the algal biomass from the collected spectra; the robustness and applicability
of the models were evaluated by comparing the predicted values with values received after classical
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chemical extractions. ULRA and OPLS models were built based only on empirical and spectral data
from microalgal biomass measurements, whereas MCR–ALS, a statistical approach here applied for
the first time to resolve microalgal IR spectra, was modeled using reference substances (i.e., albumin,
algal lipid extract, and cellulose, to represent proteins, lipids, and carbohydrates, respectively) as initial
pure spectral components. The proposed FTIR spectroscopy-based models can find application in
cost-effective and rapid estimation of biomass composition of any green microalgal species.

2. Results and Discussion

2.1. Algal Biomass Composition Based on Classical Extractions and ATR–FTIR Spectral Analysis

The biomass of six natural Nordic microalgal strains and a culture collection strain
exposed to N-starvation was analyzed after classical extraction and compared to data received
by ATR–FTIR spectroscopy. While the classical extraction of proteins was relatively fast and easy
to perform (few steps, short incubation times) and gave accurate results, methods to extract lipids
and carbohydrates were more laborious and involved error-prone critical steps (carbohydrate hydrolysates
for example are hard to dissolve in the phenol-sulfuric acid solution prior to spectrophotometric
analysis). The extraction efficiency varied from one species to another and between culture stages of
the same species, making estimations of the concentrations difficult and leading to further experimental
errors. Indeed, chemical extraction of compounds from microalgae can be difficult due to one to
multiple thick cell walls surrounding the algae, which are particularly hard to break for some species.
Additionally, compounds (e.g., sporopollenin) have been identified in the cell wall of several green
microalgae, which act as a protective barrier against chemical and biological degradation due to their
recalcitrant nature [34,35]. Pre-treatment of the biomass is therefore required but not always efficient
and suboptimal extraction is leading to underestimated quantities [36,37]. Furthermore, extraction
and purification steps required in the traditional chemical methods lead to further losses and increase
the uncertainty of the measurements due to potential errors at each step.

With regard to microalgal biomass composition, as expected the protein content decreased along
the N starvation period in all seven algal species, while the content of lipids or carbohydrates increased.
The partitioning of carbon into these two storage compounds was, however, species dependent;
while C. vulgaris 13-1 preferentially accumulated lipids, Scenedesmus sp. B2-2 mainly accumulated
carbohydrates, and Desmodesmus sp. RUC-2 accumulated both compounds. Details on daily nitrogen
removal from the growth medium and measured concentrations of proteins, lipids, and carbohydrates
in the algal biomass (from day 0 of nitrogen starvation) are reported in the Appendix A (Tables A1
and A2, respectively). The concentration of the compounds (as% DW) in the biomass ranged from
9–48% for proteins, 0–13% for lipids, and 13–55% for carbohydrates.

ATR–FTIR spectral data were rapidly collected from freeze-dried algal biomass samples
(and reference compounds) and processed. No sample preparation was needed, this approach
therefore is highly time-efficient and easy. Despite the intrinsic complexity of the FTIR spectra derived
from biological samples [38], the characteristic bands for each compound of interest (at ~1745 cm−1 for
lipids, ~1650 cm−1 for proteins, and ~1010 cm−1 for carbohydrates) identified in the reference spectra
could easily be detected in all spectra originating from biomass of the algal species (Figure 1).
Compound amounts differing between spectroscopic analysis and biochemical extraction were
considered as outliers and excluded from the statistical analyses: the amount of lipids and carbohydrates
in C. astroideum RW10 at the end of the N starvation period (day 6, 8) appeared overestimated, likely
due to a carryover of impurities after chemical extraction, while the concentration of carbohydrates
in C. vulgaris 13-1 at day 0 of the N starvation period was probably underestimated using this
method, likely due to inefficient cell wall hydrolyzation. The exclusion of these outliers (Table A2)
considerably improved the fitting of data and predictive power of the models (i.e., higher R2 and Q2)
for lipids and carbohydrates with all the statistical methods tested (data not shown). FTIR spectra of
the excluded samples are given in the Appendix A (Figure A1). While spectra from the same culture
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collected in previous and consecutive sampling match, the empirical values deteriorate. This points to
an experimental error in the empirical values rather than in the spectral recording.Molecules 2019, 24, x FOR PEER REVIEW 4 of 17 
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and reference spectra (b) for lipids (extract from S. obliquus UTEX 417), proteins (bovine serum 
albumin, BSA) and carbohydrates (microcrystalline cellulose, MCC). Diagnostic bands are marked for 
carbohydrates (one star (*), 960–1130 cm−1); proteins (two stars (**), 1580–1700 cm−1) and lipids (three 
stars (***), 1710–1765 cm−1). 
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alternating least squares (MCR–ALS) analyses. Independent predictions were then obtained by 
testing the models with full cross validation (LOO-CV) and, for ULRA and OPLS, with an external 
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2.2.1. Method 1: ULRA, based on FTIR spectral band intensities 

The ULRA model built using FTIR spectral band intensities gave good correlations (R2 > 0.8) for 
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Figure 1. Examples of ATR–FTIR spectra (a) from the biomass of three microalgal species (C. vulgaris
13-1, S. obliquus UTEX 417, C. astroideum RW10) taken at harvest (day 6 or 8 after nitrogen starvation),
and reference spectra (b) for lipids (extract from S. obliquus UTEX 417), proteins (bovine serum
albumin, BSA) and carbohydrates (microcrystalline cellulose, MCC). Diagnostic bands are marked
for carbohydrates (one star (*), 960–1130 cm−1); proteins (two stars (**), 1580–1700 cm−1) and lipids
(three stars (***), 1710–1765 cm−1).

2.2. Statistical Methods (ULRA, OPLS, and MCR–ALS) Can Facilitate the Prediction of Protein-, Lipid-
and Carbohydrate-Content in Microalgae

Three different statistical approaches were used to build models based on the processed
ATR–FTIR spectral data, derived from the biomass of the seven different green microalgal species
at different stages of cultivation under nitrogen starvation. The intensities (determined as the area under
the peak) of diagnostic bands for proteins, lipids, and carbohydrates were used for univariate linear
regression analysis (ULRA), whereas the entire spectra in the fingerprint region (800–1800 cm−1) were
considered for orthogonal partial least squares (OPLS) and multivariate curve resolution alternating
least squares (MCR–ALS) analyses. Independent predictions were then obtained by testing the models
with full cross validation (LOO-CV) and, for ULRA and OPLS, with an external dataset (samples from
the microalga Desmodesmus sp. 2-6, not included when building the models). Predicted values of
the three compounds of interest were plotted against their values derived from classical chemical
extractions, and both model accuracy and predictive ability were evaluated.
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2.2.1. Method 1: ULRA, based on FTIR spectral band intensities

The ULRA model built using FTIR spectral band intensities gave good correlations (R2 > 0.8) for
proteins and lipids (Figure 2a,b), with relatively small errors for both calibration (RMSEC = 3.2, 1.25)
and internal (RMSECV = 3.4, 1.3) and external validations (RMSEP = 3.2, 0.7) (Table 1).Molecules 2019, 24, x FOR PEER REVIEW 5 of 17 
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Figure 2. Correlation between determined (by classical extractions) and predicted concentrations
(as percentage of dry weight, DW) of (a) proteins, (b) lipids, (c) carbohydrates, and (d) the ratio of
carbohydrates to proteins, based on ULRA models of FTIR spectral band intensities. R2 represents
the coefficient of determination of linear regression. White symbols indicate data points of the calibration
set; black symbols indicate data points of the external validation set.

Carbohydrates, however, were more difficult to model: a rather low correlation between predicted
and actual values (R2 = 0.65, Figure 2c) was obtained resulting in a high error (RMSEC = 4.4). This model
therefore has poor predictive performance (RMSECV = 4.6), especially for new data (RMSEP = 9.3)
(Table 1). The residual prediction deviation (RPD) was calculated to compare the robustness and validity
between the models, based on their cross validation. Minimum RPD values required for possible
quantitative predictions lay between 2–2.5; higher values indicate good (2.5–3) or excellent (>3)
prediction accuracy [39]. As shown in Table 1, the ULRA models built for proteins and lipids had
good (RPD = 2.7) and acceptable (RPD = 2.2) predictive abilities, respectively, whereas the accuracy
of the model built for carbohydrates was unsatisfactory (RPD = 1.6). The observed difficulties
to model carbohydrates are related both to X and Y variables; limitations in chemical extraction
and quantification of carbohydrates result in higher errors of the Y variables. Errors in the X variable
arise from the baseline correction and normalization of the ATR–FTIR spectra. ATR–FTIR spectral bands
are proportionally more intensive at lower wavenumbers as compared to transmission FTIR spectra,
because of the increased penetration depths of the IR radiation at lower wavenumbers (higher
wavelength). Carbohydrates, absorbing in the lowest wavenumber region of all three major classes of
compounds (960–1130 cm−1) will therefore give rise to relatively stronger bands compared to proteins
and especially lipids, which absorb at shorter wavelengths (higher wavenumbers, at 1660 and 1740 cm−1,
respectively). Furthermore, the region in the FTIR spectrum corresponding to carbohydrates is highly
complex, consisting of a large number of overlapping bands, some of them having contributions from
the functional groups of other molecules (e.g., stretching of PO2 and Si-O groups) [30]. These factors,
together with potential errors in baseline correction and normalization, might lead to inaccurate
estimations of the amount of carbohydrates. However, calculating the carbohydrate/protein ratio
for both FTIR spectral band intensities improved the ULRA model considerably compared to
the concentrations determined after extractions; the explained variance increased to R2 = 0.84 (Figure 2d)
and the error decreased even for the independent predictions (RMSEC, RMSECV, RMSEP < 0.5
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and RPD = 2.5, Table 1). Using the accuracy of the ULRA model to predict the amount of proteins
therefore allows to indirectly estimate the carbohydrate content.

Table 1. Comparison of the models ULRA, OPLS, and MCR–ALS to predict the content of proteins,
lipids, and carbohydrates in microalgal biomass. N: number of samples; R2: coefficient of determination;
RMSEC/CV/P: root mean square error of calibration/cross validation/prediction; Q2: predictive R2; lof:
lack of fit; RPD: residual predictive deviation; LOO-CV: leave one out cross validation; 5CV: five-fold
cross validation.

Univariate Linear Regression Analysis (ULRA)

Y Variable N Intercept slope R2 RMSEC Q2 a RMSECV a RPD a RMSEP d

Proteins 52 3.793 145.371 0.876 3.211 0.859 3.417 2.693 3.186
Lipids 50 −0.027 149.447 0.816 1.189 0.798 1.246 2.248 0.726

Carbohydrates 46 0.426 66.945 0.647 4.413 0.611 4.634 1.621 9.33
Carbohydrates/Proteins 46 0.027 0.375 0.844 0.428 0.833 0.442 2.476 0.684

Orthogonal Partial Least Squares (OPLS)

Y Variable N Components b R2X(cum) R2Y(cum) RMSEC Q2(cum) c RMSECV c RPD c RMSEP d

(model) 46 2 + 2 + 1 0.984 0.861 0.837
Proteins 46 0.916 2.944 0.898 3.073 2.994 1.48
Lipids 46 0.901 0.932 0.877 0.979 2.859 1.135

Carbohydrates 46 0.768 3.797 0.735 3.826 1.964 4.081

Multivariate Curve Resolution Alternating Least Squares (MCR–ALS)

Y Variable N lof PCA (%) lof exp
(%) R2 RMSEC RMSECV a

(model) 52 0.798 5.854 0.997
Proteins 52 0.851 3.521 3.699
Lipids 50 0.768 1.335 1.392

Carbohydrates 46 0.632 4.508 4.73
a LOO-CV. b Predictive + Orthogonal in X + Orthogonal in Y. c 5CV. d external validation.

2.2.2. Method 2: OPLS Based on the Fingerprint Region of FTIR Spectra

FTIR spectra derived from biological material (e.g., whole cells) typically present
superimposed spectra of individual chemical components, which can be difficult to deconvolute.
Multivariate data analysis is a powerful tool for the interpretation of these complex spectral data
and allows prediction of the chemical composition in the sample by reducing its dimensionality [33].
In principal component analysis (PCA), the maximal variation of the data is identified along principal
components (latent variables), which can be used to detect spectral (and thus chemical) differences
between samples. Analysis of PCA loadings identifies the specific spectral regions responsible for
these differences [40,41]. In order to find a relation between principal components and independent
variables (i.e., analytical data from e.g., classical chemical extractions), partial least squares (PLS)
regression can be used. PLS builds models for both X (spectral) and Y (independent) variables and then
maximizes their correlation. OPLS is a variant of PLS analysis, in which the orthogonal variance in
X (i.e., the variation that is not correlated to Y) is also considered, thus improving interpretability
and predictions of the model [42].

Our OPLS model was able to discriminate the algal samples based on their ATR–FTIR spectra,
and thus their biochemical composition, explaining more than 98% of the variance in X and 86%
of the variance in Y (Table 1). The model was built using five significant principal components:
two predictive components, two orthogonal components in X, and one orthogonal component
in Y. The first predictive component, explaining most of the variation in the samples (R2X = 0.78,
R2Y = 0.66) was positively correlated (>75%) to the spectral region assigned to proteins (1500–1700 cm−1)
and negatively correlated (>75%) to the region assigned to carbohydrates (980–1100 cm−1); the second
predictive component was positively correlated (>75%) to the band assigned to lipids (1700–1780 cm−1)
and negatively (>50%) to specific bands in the carbohydrate region (Appendix A, Figure A2).
Thus, the first component can differentiate the biomass of stressed and non-stressed microalgae,
as non-stressed cells prevalently contain proteins, while storage compounds (such as carbohydrates)
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are progressively accumulated during nitrogen starvation. Furthermore, the second component was
able to predict which one of the two storage compounds (lipids or carbohydrates) was preferentially
produced by different microalgal species during the nitrogen stress and points out a change in
the composition (nature) of carbohydrates, not only their relative amounts. The prediction accuracy of
the total variation of X and Y (based on 5-fold CV) was high (Q2 > 0.80), demonstrating the robustness
of the model, which has the advantage to include and consider all three y-variables (i.e., all three classes
of compounds) simultaneously.

When modeled separately, excellent correlation coefficients (R2Y ≥ 0.90) were found for single
y-variables of both proteins and lipids (Figure 3a,b), and a good correlation coefficient (R2Y = 0.77)
for carbohydrates (Figure 3c). Errors occurring from calibration and internal validation were smaller
compared to the corresponding ULRA models: the error occurring from external validation was
slightly higher for lipids (RMSEP = 1.1), but far lower for proteins (RMSEP = 1.5) and carbohydrates
(RMSEP = 4.1) (Table 1). The accuracy of the model assessed by RPD statistic revealed a very
good predictive ability for proteins (RPD = 3) and lipids (RPD = 2.9), but was also acceptable for
carbohydrates (RPD = 2) without referencing it to protein concentrations first. Thus, quantitative
prediction of carbohydrates is also possible using the OPLS method.
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2.2.3. Method 3: MCR–ALS Based on the Fingerprint Region of FTIR Spectra

Three pure component spectra from reference substances (proteins: BSA, lipids: microalgal
extract, carbohydrates: MCC, Figure 1b) were manually supplied as initial estimates to calculate
the corresponding relative concentration profiles in our algal biomass samples using MCR–ALS. In this
statistical approach, the original complex spectra are decomposed into a set of ‘pure’ components,
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resulting in both spectral profiles and concentration estimates for these components [43]. It has
to be noted, however, that ‘pure’ components do not necessarily mean pure chemical compounds,
as the resolving power of MCR–ALS greatly depends on the dataset. Indeed, in our case, MCR–ALS
was unable to correctly unmix the complex spectra from the original data set via singular value
decomposition: the contribution of each of the pure identified components resulted in overlapping
peaks especially in the carbohydrate and protein regions (data not shown). Using the spectra of
reference substances as initial estimates helped the MCR–ALS algorithm to reach an endpoint with
purer profiles.

We applied lack of fit (lof) and explained variance (R2) to evaluate the quality of the model
and received a very good fit (R2 > 99%), with relatively low uncertainty (lof PCA = 0.8% lof exp. = 5.9%)
using the three major classes of compounds as components (Table 1). The model’s prediction ability on
the concentration of proteins, lipids, and carbohydrates in the algal samples was evaluated by fitting
the calculated concentration profiles for each of the three pure components with the values received
by extractive methods (Figure 4). We received results similar to ULRA: the best model was obtained to
quantify the protein amount, with good correlation (R2 = 0.85) and low error values for calibration
(RMSEC = 3.5) and cross-validation (RMSECV = 3.7); acceptable correlation (R2 = 0.77) and error values
(RMSEC = 1.3, RMSECV = 1.4) were obtained for lipid quantification, whereas carbohydrates could only
be estimated approximately (R = 0.63, RMSEC = 4.51, RMSECV = 4.73). Similar to the ULRA model,
high complexity and proportionally higher intensity of the carbohydrate region in ATR–FTIR spectra
hinder correct quantification of carbohydrates.
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It is important to keep in mind that MCR–ALS per se is not an entirely quantitative method
due to potential rotational ambiguities. Nevertheless, it can still offer a bilinear description of
the data and can provide meaningful models to semi-quantitatively estimate chemical components
in the samples. Most importantly, MCR–ALS has the advantage of being performed and interpreted
without much effort; it provides spectral and concentration profiles, which are easy to validate.
Furthermore, it can be performed by open-source, user-friendly graphical interfaces ([44], https:
//www.umu.se/en/research/infrastructure/visp/).

3. Materials and Methods

3.1. Algal Cultivation and Sampling Preparation

Samples of algal biomass used in this work were obtained from six different natural green
microalgae previously isolated in Sweden (Chlorella vulgaris 13-1, Coelastrella sp. 3-4, Coelastrum
astroideum RW10, Desmodesmus sp. RUC-2, Scenedesmus sp. B2-2, and Desmodesmus sp. 2-6) and one
culture collection strain (Scenedesmus obliquus UTEX 417) [31]. The microalgae were cultivated in
duplicate batch experiments (R1, R2) in flat panel photobioreactors (width × height × depth = 30 ×
30 × 1.5 cm) [45] illuminated from one side by white LED panel with adjustable light intensity of
45–650 µmol photons/m2/s under photoautotrophic conditions for 12 days in BBM [46] as cultivation
medium containing an initial nitrogen concentration of 5 mM. The algal cultures were homogenously
mixed by bubbling a 3% v/v CO2/air mixture through a silicon tube with small holes placed horizontally
at the bottom of the bioreactor. N consumption during algal cultivation was regularly monitored
by chemical reduction (Griess reaction followed by vanadium chloride oxidation in concentrated HCl)
and spectrophotometric analysis [47]. After complete N depletion from the medium (day 0) samples
were collected every second day to evaluate changes in protein, lipid and carbohydrate content under
N starvation. Biomass was separated from the medium by centrifugation and freeze-dried overnight
for downstream analyses (chemical extractions and FTIR spectroscopy).

3.2. Chemical Extraction of Proteins, Lipids, and Carbohydrates

The protein content was determined by total protein precipitation [48] followed by colorimetric
assay and spectrophotometric quantification. Approx. 2 mg of freeze-dried algal biomass were
dissolved in 200 µL of a 24% trichloroacetic acid (TCA) solution (w/v), vortexed and incubated at 95 ◦C
for 15 min. The colorimetric assay was performed using the DC Protein Assay kit (BIO-RAD) following
manufacturer’s instructions and the protein absorbance was read at 750 nm in a spectrophotometer
(Varian Cary 50 Bio, Agilent Technologies). Proteins were quantified based on a calibration curve built
with different concentrations of bovine serum albumin (BSA) as protein standard.

The lipid content was determined as described by [15]. Briefly, approx. 5–15 mg of freeze-dried
biomass was dissolved in a 4:5 (v/v) chloroform: methanol solution with glass beads and treated in a bead
beater (Bullet Blender homogenizer, Next Advance, USA) to achieve cell disruption. The extracted
lipids were resuspended in 7:1 (v/v) hexane: diethyl ether, purified through pre-equilibrated silica
columns (Sep-Pak Silica Vac cartridges, Waters), methylated in a methanol/H2SO4 solution for 3 h
at 70 ◦C and quantified in a gas chromatograph (TRACE 1310 GC, Thermo Scientific) using a 30 m
column (FAMEWAX, Restek Corporation) and nitrogen as carrier gas.

The carbohydrate content was determined by hydrolysis followed by phenol-sulfuric acid
extraction and a colorimetric essay [49]. Hydrolysis of approx. 2 mg of freeze-dried biomass was
performed in HCl at 90 ◦C for 3 h. After neutralization with NaOH, solutions of 5% phenol (v/w)
and 0.45 H2O: 2.5 H2SO4 (v/v) were added to 0.05 mL of samples, following incubation at 35 ◦C
for 30 min prior spectroscopic measurements at 483 nm. Carbohydrates were quantified based on
a calibration curve built with different concentrations of glucose as sugar standard.

Concentrations of proteins, lipids, and carbohydrates were calculated and expressed as percentage
of biomass dry weight (% DW).

https://www.umu.se/en/research/infrastructure/visp/
https://www.umu.se/en/research/infrastructure/visp/
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3.3. ATR–FTIR Spectroscopy and Spectral Data Processing

The microalgal biomass was analyzed by attenuated total reflectance–Fourier transform
infrared (ATR–FTIR) spectroscopy using a Bruker Vertex 80v spectrometer (Bruker Optik GmbH,
Ettlingen, Germany) under vacuum conditions, equipped with a Bruker PLATINUM ATR accessory
and diamond internal reflection element and a deuterated-triglycine sulfate (DTGS) detector. A few
milligrams of freeze-dried biomass were directly applied and pressed on the crystal plate and raw spectra
were recorded in the range of 400–4000 cm−1 (128 scans per sample, 4 cm−1 spectral resolution)
using OPUS (version 6.5). Additionally, infrared spectra from pure BSA (bovine serum albumin),
microcrystalline cellulose (MCC) and total lipids extracted from the microalga S. obliquus UTEX 417
(methanol extract) were collected and used as reference spectra for proteins, carbohydrates, and lipids,
respectively. The diamond crystal was carefully cleaned with ethanol before each measurement to
avoid carryover of biomass from previous samples. Interpretation of the spectral data was based
on band assignments described previously [50]: peaks in the range 980–1200 cm−1 were assigned to
carbohydrates, deriving from ring vibrations of carbohydrates and asymmetric -C-O-C- stretch in
polysaccharides; peaks at ca. 1660 cm−1 and 1540 cm−1 (amide I and amide II vibrations from C=O
stretching vibrations and N–H bending vibrations of peptide bonds, respectively) were used to
estimate protein content; and the peak between 1710–1760 cm−1 was assigned to lipids and fatty acids
(deriving from non-peptide -C=O stretches).

Raw infrared spectra collected from 58 samples were imported in MATLAB and processed
using the free, open source MATLAB-based script provided by the Vibrational Spectroscopy Core
Facility at Umeå University (www.umu.se/en/research/infrastructure/visp/downloads/). Spectra were
baseline corrected by asymmetric least squares (AsLS λ = 1000000; AsLS P = 0.001), total area
normalized and mildly smoothed (Savitzky-Golay filter with a first order polynomial and a frame of 5).
Only the fingerprint region between 800–1800 cm−1 was considered for downstream analyses, being
the most informative for algal biomass composition [25] and least sensitive to potential baseline
correction and normalization errors. Infrared spectral band intensity analysis was performed
by measuring the area under the absorption bands diagnostic for proteins (1580–1700 cm−1), lipids
(1710–1765 cm−1), and carbohydrates (960–1130 cm−1), using the built-in function of the same
MATLAB-based script used for processing the spectra.

3.4. Modeling and Statistical Analysis

Three different statistical methods were used to model the relationship between experimental data
(measured concentration via chemical extraction) and spectral data and evaluate the predictive power
of the FTIR spectroscopic analysis on protein, lipid, and carbohydrate content in microalgal biomass:
univariate linear regression analysis (ULRA), orthogonal partial least squares (OPLS), and multivariate
curve resolution alternating least squares (MCR–ALS). Data obtained from the microalgal species Chlorella
vulgaris 13-1, Coelastrella sp. 3-4, Coelastrum astroideum RW10, Desmodesmus sp. RUC-2, Scenedesmus sp.
B2-2, and S. obliquus UTEX 417 (n = 52) were used as calibration set to build the models. Data collected
from the microalgal species Desmodesmus sp. 2-6 (n = 6) were used as external validation set in
ULRA and OPLS methods to test the universality of the models.

3.4.1. ULRA

Univariate linear regression models were inferred by using experimental data (% DW) as dependent
variable and the infrared spectral band intensity (i.e., integrated area under the absorption bands)
as independent variable. The statistical software R was used for data processing (model calibration
and validation) [51]. Strong outliers clearly deviating from the regression model and likely resulting
from poor chemical extraction (n = 2 for lipids, n = 6 for carbohydrates) were removed from
the corresponding datasets. The predictive power of each model was evaluated using the leave-one-out
cross validation (LOO-CV) method (internal validation). The following statistical parameters were

www.umu.se/en/research/infrastructure/visp/downloads/
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calculated: intercept and slope coefficient; R2 (coefficient of determination), estimator of the goodness of
fit; RMSEC (root mean square error of calibration), estimator of the predictive ability of the model based
on the calibration dataset; Q2, i.e., the predictive R2, and RMSECV (root mean square error of cross
validation), estimators of the predictive ability of the model based on LOO-CV; RPD (residual predictive
deviation), a qualitative estimator of the model predictions calculated as the ratio of the dependent
variable SD to RMSECV; RMSEP (root mean square error of prediction), estimator of the predictive
ability of the model on the external dataset (external validation). RMSEC, RMSECV, and RMSEP were
calculated as

RMSE(C, P) =

√∑n
i = 1(ŷi − yi)

2

n
RMSECV =

√∑n
i = 1(ŷi − yi)

2

n− 1
(1)

where ŷi represents predicted values (from the model) and yi represents values from chemical
extractions.

3.4.2. OPLS

A dataset including processed infrared spectra and estimated concentrations of proteins, lipids,
and carbohydrates for the 52 algal biomass samples was imported to SIMCA-P (v. 15, Umetrics AB,
Sweden). Sample names were set as primary ID; wavelengths (cm−1) and names of biochemical
compounds (proteins, lipids, carbohydrates) were set as secondary ID; infrared spectral intensities
(at 2 cm−1 intervals, following zero-filling) represented X-variables (independent) and were scaled to
center (Ctr); estimated concentrations of biochemical compounds represented y-variables (dependent)
and were scaled to unit variance (UV). A single OPLS model was created including all three y-variables.
Outliers were excluded as in ULRA. The number of significant components was calculated by k-fold
cross validation, with k = 5. The following statistical parameters were calculated: number of
significant components (predictive, orthogonal in X and Y); R2X (cum) and R2Y (cum), the cumulative
fraction of X and Y variation explained by the model; RMSEC (equivalent to RMSEE in SIMCA);
Q2 (cum), the cumulative fraction of Y variation predicted by the model according to cross-validation,
RMSECV, RMSEP.

3.4.3. MCR–ALS

Concentration profiles of proteins, lipids and carbohydrates in the algal biomass samples were
determined by MCR–ALS analysis using the free, open-source MATLAB script by the Vibrational
Spectroscopy Core Facility at Umeå University (www.umu.se/en/research/infrastructure/visp/

downloads/). Infrared spectra from the biomass samples were imported and processed as described
above. The three reference spectra were imported and used as initial estimates and MCR–ALS modeling
was performed with 50 iterations and 0.1 convergence limit (default values). The following statistical
parameters were calculated at the end of the modelling: lack of fit for PCA and for the experimental
variation (%) at optimum; R2 (%) at optimum. Lack of fit is defined as the difference among the input
data and the data reproduced by MCR–ALS. This value is calculated according to the expression

lack o f f it (%) =

√√∑n
i, j ei j2∑n
i, j di j2

(2)

where dij represents an element of the input data matrix and eij is the related residual obtained from
the difference between the input element and the MCR–ALS reproduction. The two lack of fit values
calculated are differing by the input data matrix D used: either the raw experimental data matrix or
the PCA reproduced data matrix using the same number of components as in the MCR–ALS model [43].
Estimates of proteins, lipids, and carbohydrates obtained by MCR–ALS analysis of spectral data

www.umu.se/en/research/infrastructure/visp/downloads/
www.umu.se/en/research/infrastructure/visp/downloads/
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and their measured concentrations by chemical extractions were fitted and R2 calculated to measure
the strength of the linear relationships.

4. Conclusions

ATR–FTIR spectroscopy is a simple, fast, and cost-efficient technique that allows to collect a broad
range of information on the chemical composition of complex biological samples. The method
is non-destructive and requires neither extraction nor external agents (labels, dyes, or markers).
We applied this method to quantitatively monitor changes in the content of proteins, lipids,
and carbohydrates of locally isolated green microalgal species at different stages of cultivation under
progressive nitrogen starvation. Considerable time could be saved by being able to directly measure very
small quantities of dried biomass without any pre-treatment/preparation, allowing high-throughput
screening of algal cultures. We tested three alternative statistical methods (ULRA, OPLS, and MCR–ALS)
with good statistical confidence to address accuracy and prediction ability. Generally, all models showed
good correlations between spectral and empirical data, good prediction abilities for the concentrations
of proteins and lipids, and acceptable approximations for the concentrations of carbohydrates.
The prediction of carbohydrate concentration has room for improvement, especially via MCR–ALS
modeling, e.g., by exploring a wider range of constraints. The OPLS method, however, was able to
model all three components simultaneously with high prediction ability (even for carbohydrates)
and was therefore the most robust approach. OPLS further provided insights in the biomass composition
in relation to the algal cultivation stage and displayed the preferential storage compound accumulating
in the algal cells. Potential application areas of this method are wide, including the screening of
new algal strains and the evaluation of species-specific metabolic response to different environmental
stresses for boosting the production of specific classes of compounds.
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Appendix A

Table A1. Daily concentration of nitrogen (mM) in the culture medium showing the nutrient
consumption of each microalgal strain during the cultivation period 0-10 days. Cv 13-1: C. vulgaris; Ca
RW10: C. astroideum; So UTEX: S. obliquus; Ds RUC-2: Desmodesmus sp.; Cs 3-4 Coelastrella sp.; Ds 2-6:
Desmodesmus sp.; Ss B2-2: Scenedesmus sp.

Cultivation Time Cv 13-1 Ca RW10 So UTEX Ds RUC-2 Cs 3-4 Ds 2-6 Ss B2-2

(day) Nitrogen (mM)

1 5.4 ± 0.09 5.3 ± 0.11 5.1 ± 0.17 5.2 ± 0.12 5.0 ± 0.17 5.2 ± 0.2 4.7 ± 0.08
2 5.1 ± 0.01 4.9 ± 0.27 4.8 ± 0.54 4.9 ± 0.25 4.9 ± 0.12 5.2 ± 0.21 4.5 ± 0.11
3 4.6 ± 0.16 4.7 ± 0.12 3.8 ± 0.79 4.2 ± 0.50 4.5 ± 0.16 5.2 ± 0.13 4.4 ± 0.03
4 4.3 ± 0.33 4.6 ± 0.10 2.6 ± 0.83 2.6 ± 0.57 3.4 ± 0.19 5.2 ± 0.21 4.1 ± 0.02
5 3.2 ± 0.10 3.8 ± 0.22 1.4 ± 0.44 0.0 0.8 ± 0.32 4.9 ± 0.20 3.7 ± 0.11
6 2.3 ± 0.51 2.1 ± 0.24 0.0 - 0.0 4.3 ± 0.04 3.6 ± 0.06
7 0.0 1.1 ± 0.21 - - - 3.0 ± 0.05 2.7 ± 0.04
8 - 0.0 - - - 0.0 2.3 ± 0.25
9 1.5 ± 0.30
10 0.0
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Table A2. Concentrations of proteins, lipids and carbohydrates in microalgal biomass (expressed
as percentage of dry weight, % DW), obtained with classical chemical extractions (mean ± SD, n = 4).
Cv 13-1: C. vulgaris; Ca RW10: C. astroideum; Ds RUC-2: Desmodesmus sp.; So UTEX: S. obliquus; Cs 3-4
Coelastrella sp.; Ss B2-2: Scenedesmus sp.; Ds 2-6: Desmodesmus sp. R1, R2 indicate the reactors used for
the duplicate batch experiments; D(n) refers to the day of nitrogen starvation. Samples marked in bold
were removed from the statistical analyses (outliers).

Sample Proteins (%
DW) Lipids (% DW) Carbohydrates (% DW)

Cv 13-1 R1 D0 21.6 ± 0.5 1.5 ± 0.2 13.8 ± 0.1
Cv 13-1 R1 D2 18.6 ± 1.6 3.7 ± 1.0 38.9 ± 1.2
Cv 13-1 R1 D4 18.7 ± 0.6 7.6 ± 0.4 37.0 ± 2.1
Cv 13-1 R1 D6 20.3 ± 0.1 8.6 ± 2.2 34.7 ± 1.1
Cv 13-1 R1 D8 17.2 ± 0.5 12.6 ± 0.5 34.4 ± 0.1
Cv 13-1 R2 D0 23.8 ± 0.3 1.3 ± 0.3 13.3 ± 1.2
Cv 13-1 R2 D2 16.6 ± 2.4 5.0 ± 0.6 40.2 ± 0.4
Cv 13-1 R2 D4 18.5 ± 0.2 6.8 ± 2.1 37.6 ± 1.8
Cv 13-1 R2 D6 20.5 ± 0.1 7.1 ± 1.2 38.3 ± 0.9
Cv 13-1 R2 D8 21.2 ± 1.6 10.3 ± 1.6 35.5 ± 1.3

Ca RW10 R1 D0 40.1 ± 2.9 0.2 ± 0.2 29.9 ± 0.1
Ca RW10 R1 D2 27.2 ± 0.4 0.6 ± 0.0 26.9 ± 0.4
Ca RW10 R1 D4 18.2 ±1.7 3.7 ± 1.0 38.2 ± 1.0
Ca RW10 R1 D6 15.9 ± 1.0 6.2 ± 0.4 53.6 ± 0.2
Ca RW10 R1 D8 16.9 ± 0.6 9.3 ± 0.6 55.3 ± 1.0
Ca RW10 R1 D0 47.5 ± 1.3 0.0 ± 0.0 26.8 ± 2.7
Ca RW10 R2 D2 25.2 ± 2.1 1.0 ± 0.0 28.6 ± 0.7
Ca RW10 R2 D4 18.0 ± 0.2 4.2 ± 0.1 40.3 ± 0.6
Ca RW10 R2 D6 18.2 ± 2.60 6.3 ± 0.1 50.7 ± 3.8
Ca RW10 R2 D8 18.7 ± 3.4 9.1 ± 0.4 52.5 ± 1.0
Ds RUC-2 R1 D0 37.7 ± 0.8 0.5 ± 0.1 28.8 ± 1.0
Ds RUC-2 R1 D2 13.0 ± 1.4 2.9 ± 0.8 32.6 ± 1.2
Ds RUC-2 R1 D4 8.7 ± 2.3 5.0 ± 0.9 37.2 ± 2.1
Ds RUC-2 R1 D6 11.7 ± 04 7.2 ± 1.1 41.9 ± 1.8
Ds RUC-2 R2 D0 37.4 ± 3.7 0.8 ± 0.0 30.0 ± 3.0
Ds RUC-2 R2 D2 13.8 ± 0.8 3.8 ± 0.9 31.9 ± 3.3
Ds RUC-2 R2 D4 9.5 ± 2.2 4.8 ± 0.1 39.2 ± 1.6
Ds RUC-2 R2 D6 11.8 ± 2.1 5.7 ± 0.4 43.8 ± 0.1
So UTEX R1 D0 37.3 ± 1.0 0.2 ± 0.0 20.7 ± 1.4
So UTEX R1 D2 33.3 ± 0.5 0.9 ± 0.1 25.8 ± 1.2
So UTEX R1 D4 19.0 ± 1.9 2.2 ± 0.2 45.4 ± 0.3
So UTEX R1 D6 16.5 ± 2.4 3.2 ± 1.6 42.4 ± 1.3
So UTEX R2 D0 36.8 ± 1.5 0.3 ± 0.1 21.1 ± 2.3
So UTEX R2 D2 33.3 ± 2.3 1.2 ± 0.3 29.0 ± 3.7
So UTEX R2 D4 20.7 ± 1.1 2.6 ± 0.5 46.0 ± 0.7
So UTEX R2 D6 16.4 ± 0.7 3.6 ± 0.5 39.9 ± 2.8

Cs 3-4 R1 D0 23.6 ± 0.9 0.6 ± 0.1 37.3 ± 1.9
Cs 3-4 R1 D2 17.5 ± 3.1 1.5 ± 0.0 39.5 ± 1.0
Cs 3-4 R1 D4 16.0 ± 0.5 2.9 ± 1.3 42.5 ± 0.2
Cs 3-4 R1 D6 13.7 ± 0.2 3.5 ± 0.1 44.7 ± 1.2
Cs 3-4 R2 D0 21.3 ± 1.6 0.9 ± 0.4 37.1 ± 2.2
Cs 3-4 R2 D2 15.2 ± 3.2 2.0 ± 0.1 38.5 ± 0.5
Cs 3-4 R2 D4 14.1 ± 0.1 3.3 ± 0.5 41.6 ± 0.1
Cs 3-4 R2 D6 11.4 ± 2.9 3.3 ± 0.3 46.6 ± 2.5
Ss B2-2 R1 D0 37.2 ± 0.9 0.4 ± 0.0 26.3 ± 2.2
Ss B2-2 R1 D2 14.6 ± 2.0 1.6 ± 0.1 43.0 ± 0.6
Ss B2-2 R1 D4 12.6 ± 1.8 2.1 ± 0.7 47.9 ± 2.2
Ss B2-2 R1 D6 14.4 ± 1.8 3.4 ± 0.4 47.2 ± 2.2
Ss B2-2 R2 D0 36.6 ± 1.9 0.2 ± 0.1 25.7 ± 0.8
Ss B2-2 R2 D2 16.8 ± 1.3 2.4 ± 0.7 46.0 ± 0.8
Ss B2-2 R2 D4 12.7 ± 0.4 1.9 ± 0.1 48.4 ± 1.3
Ss B2-2 R2 D6 12.8 ± 0.3 3.1 ± 0.0 47.7 ± 2.5
Ds 2-6 R1 D0 28.1 ± 1.7 0.8 ± 0.0 31.2 ± 1.1
Ds 2-6 R1 D2 19.3 ± 0.9 1.9 ± 0.8 34.5 ± 3.1
Ds 2-6 R1 D4 18.8 ± 1.8 3.0 ± 0.8 31.7 ± 0.1
Ds 2-6 R2 D0 24.1 ± 1.4 1.6 ± 0.4 29.5 ± 3.4
Ds 2-6 R2 D2 19.1 ±. 0.5 1.9 ± 0.4 30.7 ± 2.3
Ds 2-6 R2 D4 21.1 ± 1.4 2.1 ± 0.5 32.3 ± 1.7
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Figure A1. ATR–FTIR spectra (a) from the biomass of C. vulgaris 13-1 taken at day 0 or 2 after nitrogen
starvation, and (b) from the biomass of C. astroideum RW10 taken at day 4, 6, or 8 after nitrogen
starvation, which were excluded from the statistical analyses. R1 (upper spectra) and R2 (lower spectra)
indicate the reactors used for the duplicate batch experiments. Numbers close to spectra (%) indicate
the concentration of lipids (peak at 1710–1765 cm−1) and carbohydrates (peak at 960–1130 cm−1)
in the corresponding microalgal biomass obtained with classical chemical extractions (expressed
as percentage of dry weight).
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Figure A2. OPLS scores plots (a) of algal biomass samples harvested at different days of nitrogen
starvation (day 0: blue; day 2: red; day 4: yellow; day 6: light blue; day 8: violet) and loading plots for
the first (b) and second (d) predictive component. FTIR spectral bands positively correlated (>75%)
to each predictive component are marked in blue, those negatively correlated (>75% in (b) and 50% in
(d)) are marked in red, including in the corresponding spectra ((c) and (e), respectively).
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