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      Anaphylaxis is a serious allergic reaction with a 
rapid onset and potentially fatal outcome. It can 
be induced by insect venoms, food, drugs, latex, 
and other allergens and may aff ect as much as 
1 – 15% of the population with an increasing 
prevalence ( 1 – 4 ). Anaphylaxis is characterized by 
severe hypotension, vascular leakage, cardiac ar-
rhythmia, hypothermia, and bronchial constric-
tion as well as gastrointestinal and skin symptoms. 
In particular, cardiovascular and pulmonary dys-
function often lead to death. 

 Most anaphylactic reactions are caused by 
IgE-mediated hypersensitivity reactions result-
ing from cross-linking of allergen-specifi c IgE 
molecules bound to the IgE receptor on tissue 
mast cells and basophils. However, an alternative 
mechanism involving IgG and macrophages 
has also been described ( 5 ). The allergen-induced 
activation of mast cells results in the formation 
and release of multiple mediators that are re-

sponsible for the acute and potentially life-threat-
ening symptoms of anaphylactic reactions ( 6 ). 
These mediators include preformed substances 
like histamine or the proteases tryptase and chy-
mase, which are released upon mast cell activa-
tion, and lipid mediators like platelet-activating 
factor (PAF), cysteinyl leukotrienes, or prosta-
glandin D 2 , which are newly synthesized ( 7 ). 
In the context of anaphylactic reactions, these 
mediators have been shown to act on multiple 
organs. PAF, histamine, and tryptase activate en-
dothelial cells (ECs) to induce vasodilatation and 
increased capillary leakage ( 8 – 12 ). PAF, espe-
cially, can activate leukocytes ( 13, 14 ), and most 
anaphylactic mediators induce the contraction 
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 Anaphylactic shock is a severe allergic reaction involving multiple organs including the 

bronchial and cardiovascular system. Most anaphylactic mediators, like platelet-activating 

factor (PAF), histamine, and others, act through G protein – coupled receptors, which are 

linked to the heterotrimeric G proteins G q /G 11 , G 12 /G 13 , and G i . The role of downstream sig-

naling pathways activated by anaphylactic mediators in defi ned organs during anaphylactic 

reactions is largely unknown. Using genetic mouse models that allow for the conditional 

abrogation of G q /G 11 - and G 12 /G 13 -mediated signaling pathways by inducible Cre/loxP-

mediated mutagenesis in endothelial cells (ECs), we show that G q /G 11 -mediated signaling 

in ECs is required for the opening of the endothelial barrier and the stimulation of nitric 

oxide formation by various infl ammatory mediators as well as by local anaphylaxis. The sys-

temic effects of anaphylactic mediators like histamine and PAF, but not of bacterial lipo-

polysaccharide (LPS), are blunted in mice with endothelial G �  q /G �  11  defi ciency. Mice with 

endothelium-specifi c G �  q /G �  11  defi ciency, but not with G �  12 /G �  13  defi ciency, are protected 

against the fatal consequences of passive and active systemic anaphylaxis. This identifi es 

endothelial G q /G 11 -mediated signaling as a critical mediator of fatal systemic anaphylaxis 

and, hence, as a potential new target to prevent or treat anaphylactic reactions. 
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monophosphate) cGMP levels were determined in RFL6 
fi broblasts incubated with WT, G �  q /G �  11 -defi cient, or G �  12 /
G �  13 -defi cient lung ECs treated without or with thrombin, 
PAF, or ionomycin ( Fig. 1 B ). Although thrombin and PAF 
induced a signifi cant increase in cGMP levels in cocultures 
containing WT and G �  12 /G �  13 -defi cient ECs, the eff ects in 
cocultures containing G �  q /G �  11 -defi cient ECs were strongly 
reduced. None of the stimuli induced guanylyl cyclase acti-
vation when added to RFL6 fi broblasts or ECs alone (unpub-
lished data). The eff ect of ionomycin was not aff ected by 
G �  q /G �  11  or G �  12 /G �  13  defi ciency in ECs. This indicates 
that G q /G 11 , but not G 12 /G 13 , are critically involved in throm-
bin- and PAF-induced NO-dependent stimulation of guany-
lyl cyclase activity. 

 Because the phosphorylation state of the myosin light 
chain (MLC) is a critical determinant of endothelial contrac-
tility, we analyzed the eff ect of thrombin on MLC phosphory
lation in WT, G �  q /G �  11 -defi cient, and G �  12 /G �  13 -defi cient 
ECs. As shown in  Fig. 1 (C and E) , thrombin induced a rapid 
increase in MLC phosphorylation that was maximal after  � 3 
min, whereas thrombin had no eff ect on MLC phosphoryla-
tion in ECs lacking G �  q /G �  11 . The defect of thrombin-
induced MLC phosphorylation in G �  q /G �  11 -defi cient cells 
could be rescued by adenovirus-mediated expression of G �  q  
( Fig. 1 D ). Lack of G �  12 /G �  13  did not completely block 
thrombin-induced MLC phosphorylation but led to a re-
duced and more transient response to thrombin. Interestingly, 
the abrogation of thrombin-induced MLC phosphorylation 
in cells lacking G �  q /G �  11  was not accompanied by any defect 
in thrombin-induced RhoA activation, whereas thrombin-
induced RhoA activation was abrogated in ECs lacking 
G �  12 /G �  13  ( Fig. 1 F ). 

 Generation of mice with EC-specifi c G �  q /G �  11  and G �  12 /

G �  13  defi ciency 

 For in vivo experiments, we restricted G �  q /G �  11  and G �  12 /
G �  13  double defi ciency to ECs by using a bacterial artifi cial 
chromosome (BAC) transgenic mouse line that expresses 
a fusion protein of the Cre recombinase with the modi-
fi ed estrogen receptor binding domain ( Cre ER T2 ) ( 31 ) under 
the control of the  tie2  promoter (see Materials and methods). 
The inducible endothelium-specifi c Cre transgenic mouse line 
( tie2-Cre ER T2 ) did not show any Cre activity in the absence 
of tamoxifen when crossed with the  Gt ( ROSA ) 26Sor  Cre 
reporter mouse line ( Fig. 2 A ).  However, after treatment 
of animals with tamoxifen, ECs showed Cre-mediated re-
combination, indicating that Cre had been activated with 
high effi  cacy. Cre-mediated recombination was exclusively 
observed in ECs of various organs ( Fig. 2 A ). The lack of G �  q /
G �  11  and G �  12 /G �  13  in ECs of tamoxifen-treated  tie2 -
 Cre ER T2 ; Gnaq  fl ox/fl ox ; Gna11   � / �   (EC-G �  q /G �  11 -KO) and  tie2 -
 Cre ER T2 ; Gna12   � / �  ; Gna13  fl ox/fl ox  (EC-G �  12 /G �  13 -KO) mice 
was verifi ed by Western blotting of pulmonary EC lysates from 
the respective mouse lines ( Fig. 2 B ). Western blot analysis of 
platelets, leukocytes, and vascular smooth muscle cells showed 
no diff erence between WT and EC-G �  q /G �  11 -KO mice with 

of bronchial smooth muscles ( 9, 15, 16 ). Other organs and 
cells, such as the heart ( 9, 10, 17 ), nervous system ( 9, 18 ), 
platelets ( 10, 19 ), or vascular smooth muscle cells ( 9, 16 ), are 
also directly aff ected by anaphylactic mediators. 

 Most of the anaphylactic mediators exert their eff ects 
through G protein – coupled receptors (GPCRs), which are 
linked to heterotrimeric G proteins of the G i , G q /G 11 , and 
G 12 /G 13  families ( 8, 12, 20 – 24 ). The G proteins G q /G 11  cou-
ple receptors to  �  isoforms of phospholipase C resulting in 
inositol-1,4,5-trisphosphate – mediated mobilization of intra-
cellular Ca 2+  and diacylglycerol-dependent activation of protein 
kinase C, whereas G 12 /G 13  couple receptors to the activation 
of the Rho/Rho kinase – mediated signaling pathway. G i -type 
G proteins couple receptors in an inhibitory fashion to ade-
nylyl cyclase and, in addition, serve as the major source of G 
protein  �  �  complexes which can regulate a variety of channels 
and enzymes ( 25 – 28 ). 

 Many mediators of the eff ector phase of anaphylactic re-
actions have been described, and their cellular eff ects in the 
heart and the vascular, bronchial, and immune systems have 
been analyzed. However, the downstream signaling pathways 
mediating the eff ects in defi ned organs during anaphylaxis 
remain largely unclear. In this study, we analyzed the role of 
defi ned endothelial G protein – mediated signaling pathways 
in anaphylaxis. By conditional mutagenesis of genes encoding 
particular G protein  �  subunits, we show that the endothelium-
specifi c ablation of the G q /G 11 -mediated signaling pathway, but 
not the G 12 /G 13 -mediated signaling pathway, blocks nitric oxide 
(NO) formation and loss of the endothelial barrier function in 
response to various vasoactive stimuli. Lack of endothelial 
G q /G 11  also protects mice from the deleterious consequences 
of PAF injection as well as of active and passive systemic ana-
phylaxis. Our data identify endothelial G q /G 11 -mediated sig-
naling as an essential mediator of systemic anaphylaxis. 

  RESULTS  

 Endothelial effects of infl ammatory mediators acting 

via GPCRs are mediated primarily by G q /G 11  

 To analyze the role of G q /G 11 - and G 12 /G 13 -mediated signal-
ing in endothelial responses to vasoactive mediators, we gener-
ated ECs lacking the  �  subunits of G q /G 11  or G 12 /G 13 . We 
have previously generated fl oxed alleles of the genes encoding 
G �  q  ( Gnaq ) and G �  13  ( Gna13 ) which allow the conditional in-
activation of these genes in G �  11 - or G �  12 -defi cient back-
grounds ( 29, 30 ). To induce G �  q /G �  11  or G �  12 /G �  13  double 
defi ciency, we prepared pulmonary microvascular ECs from 
WT,  Gnaq  fl ox/fl ox ; Gna11   � / �  , and  Gna12   � / �  ; Gna13  fl ox/fl ox  mice 
and infected them with an adenovirus transducing the recom-
binase Cre. As shown in  Fig. 1 A , expression of Cre recombi-
nase in  Gnaq  fl ox/fl ox ; Gna11   � / �   or  Gna12   � / �  ; Gna13  fl ox/fl ox  ECs 
resulted in G �  q /G �  11  and G �  12 /G �  13  defi ciency, respectively.  

 We then analyzed the role of G q /G 11 - and G 12 /G 13 -me-
diated signaling in the regulation of endothelial NO forma-
tion by known endothelial stimuli acting via GPCRs. To 
determine NO-dependent activation of guanylyl cyclase, we 
performed a transfer bioassay in which (cyclic guanosine 
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(PAR-1) – activating peptide SFLLRN-NH 2 , histamine, PAF, 
and leukotriene C 4  each induced a dose-dependent in-
crease in the leakage of Evans blue dye ( Fig. 3, A and B ; 
Fig. S2, available at http://www.jem.org/cgi/content/full/
jem.20082150/DC1).  In addition, intradermal injection of 
control buff er resulted in a small extravasation of Evans blue 
that was signifi cantly smaller than the one seen in response to 
the vasoactive stimuli, suggesting that the manipulation 
resulted in the local release or production of some active me-
diators. Both basal vascular permeability and stimulus-induced 
increases in vascular permeability were severely reduced in 
mice with endothelial-specifi c G �  q /G �  11  defi ciency but not 

regard to G �  q /G �  11  expression (Fig. S1, available at http://www
.jem.org/cgi/content/full/jem.20082150/DC1). 

 Blockade of endothelial G q /G 11 -mediated signaling, 

but not G 12 /G 13 -mediated signaling, inhibits local 

extravasation in response to various stimuli 

 We then analyzed the eff ect of various vasoactive substances 
on the vascular permeability in EC-G �  q /G �  11 -KO and EC-
G �  12 /G �  13 -KO mice. In the absence of any intradermal 
injection, the vascular leakage of Evans blue given i.v. was 
negligible (unpublished data). Intradermal injection of lyso-
phosphatidic acid (LPA), the protease-activated receptor 1 

  Figure 1.     The role of G q /G 11  and G 12 /G 13  in the regulation of NO production and MLC phosphorylation in pulmonary ECs.  (A) Lysates of pul-

monary ECs prepared from WT,  Gnaq  fl ox/fl ox ; Gna11   � / �   (q/11-KO), or  Gna12   � / �  ; Gna13  fl ox/fl ox  (12/13-KO) mice were infected with Cre-transducing adenovirus 

and were analyzed by Western blotting with antibodies directed against G �  q /G �  11 , G �  13 , or  � -tubulin. Arrowheads indicate the position of the 43-kD 

marker protein. The presented data are representative of at least fi ve experiments performed with samples from different animals. (B) WT G �  q /G �  11 -defi -

cient (q/11-KO) and G �  12 /G �  13 -defi cient (12/13-KO) ECs were incubated without and with 1 U/ml thrombin (thromb.), 100 nM PAF, or 100 nM ionomycin 

(ionom.), and NO bioavailability was assessed in a transfer bioassay by determining cGMP production in detector RFL6 fi broblasts by radioimmunoassay. 

Shown are the results of three separate experiments (mean values  ±  SEM). (C – E) WT, G �  q /G �  11 - (q/11-KO), and G �  12 /G �  13 -defi cient (12/13-KO) ECs were 

incubated in the absence or presence of 1 U/ml thrombin for 1, 3, or 10 min, and the amount of phosphorylated MLC (pMLC) was determined using a 

phosphorylation site-specifi c antibody (see Materials and methods). Where indicated (Ad-G �  q  +), cells had been transfected with G �  q  using an adenoviral 

transfection system. Shown are representative Western blots of cell lysates using the indicated antibodies (C and D) and the results of the densitometric 

evaluation of three independently performed experiments (E). Shown are mean values  ±  SEM. Arrowheads indicate the position of the 25- or 43-kD 

(D, bottom) marker proteins. (F) Effect of 1 U/ml thrombin on RhoA activity in WT, G �  q /G �  11 -defi cient (q/11-KO), and G �  12 /G �  13 -defi cient lung ECs 

(12/13-KO). Data are from three independently performed experiments (mean values  ±  SD).   
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 Systemic effects of histamine and PAF but not of LPS 

are blocked in EC-G �  q /G �  11 -KO mice 

 i.v. injection of histamine induced a rapid and transient drop 
in the systolic blood pressure to levels of  � 50 mmHg in WT 
mice ( Fig. 4 A ).  Normal values were restored  � 90 min after 
the application of histamine. In EC-G �  q /G �  11 -KO mice, the 
same dose decreased blood pressure for only  � 20 min with 
maximal hypotensive values of  � 90 mmHg, whereas mice 
with endothelium-specifi c G �  12 /G �  13  defi ciency responded 
comparable to WT mice ( Fig. 4 A ). The strongly reduced 
hypotensive response of EC-G �  q /G �  11 -KO mice to hista-
mine was not caused by a general defect in the regulation of 
the vascular tone, as is indicated by the indistinguishable re-
sponse of WT, EC-G �  q /G �  11 -KO, and EC-G �  12 /G �  13 -KO 
mice to the NO-donor sodium nitroprusside as well as to the 

in mice lacking G �  12 /G �  13  in ECs. The small remaining re-
sponse to the PAR1-activating peptide observed in EC-G �  q /
G �  11 -KO mice was not further reduced in mice lacking both 
G �  q /G �  11  and G �  12 /G �  13  in ECs ( Fig. 3 B ). To test the regu-
lation of the endothelial barrier in a more complex model 
of local anaphylaxis, we sensitized mice by intradermal injec-
tion of anti-DNP IgE antibodies and subsequently injected 
DNP – human serum albumin (HSA) systemically. In addition, 
in this IgE-mediated model of local anaphylaxis opening of 
the endothelial barrier was not signifi cantly aff ected in EC-
G �  12 /G �  13 -KO mice, whereas mice with endothelium-spe-
cifi c G �  q /G �  11  defi ciency showed strongly reduced vascular 
permeability ( Fig. 3 C ). Thus, local regulation of vascular 
permeability requires G q /G 11 -mediated signaling in ECs but 
not G 12 /G 13 . 

  Figure 2.     Generation of mice with EC-specifi c G �  q /G �  11  and G �  12 /G �  13  defi ciency.  (A) Gt(ROSA26)SorCre reporter mice carrying the  tie2 - Cre ER T2  

transgene were treated with vehicle alone (untr.) or with tamoxifen (+Tam.) and then killed. The indicated organs were sectioned and stained for  � -galac-

tosidase activity. Bars, 50  μ m. Inserts represent 2 ×  magnifi cations of the indicated areas. (B) Lysates from lung ECs prepared from tamoxifen-treated 

WT, EC-G �  q /G �  11 -KO (q/11-KO), or EC-G �  12 /G �  13 -KO (12/13-KO) mice were analyzed by Western blotting with antibodies directed against G �  q /G �  11 , 

G �  13 ,  � -tubulin, or  � -actin. Arrows indicate the position of the 43-kD marker protein. Shown are representative data from three independently per-

formed experiments.   
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KO mice ( Fig. 4  and not depicted). Thus, endothelial G �  q /G �  11  
defi ciency does not protect from endotoxic shock. 

 Anaphylactic shock depends on endothelial G q /G 11  

 To further evaluate the role of endothelial G protein – mediated 
signaling pathways under pathophysiologically more relevant 
conditions, we set up models for passive and active systemic 
anaphylaxis. To test the role of endothelial G q /G 11  and G 12 /
G 13  in passive systemic IgE-dependent anaphylaxis, we in-
jected WT and EC-G �  q /G �  11 -KO and EC-G �  12 /G �  13 -KO 
mice i.v. with anti-DNP IgE and challenged them 24 h later 
with DNP-HSA. As shown in  Fig. 5 A , WT and EC-G �  12 /
G �  13 -KO mice responded with a rapid drop in systolic blood 
pressure down to values of  � 35 mmHg.  After a few minutes, 
the blood pressure started to slowly rise but remained hypo-
tensive for more than 90 min. Both lines also showed a strong 
increase in their hematocrit when determined 10 min after 
application of the allergen as an indicator of severe extravasation 

NO synthase (NOS) inhibitor  N   �  -nitro- l -arginine methyl 
ester ( l -NAME;  Fig. 4, B and C ). 

 We then tested the eff ect of endothelium-specifi c G �  q /
G �  11  and G �  12 /G �  13  defi ciency on the systemic response to 
PAF, which is thought to be a critical mediator of anaphylac-
tic shock ( 32 – 34 ). i.v. injection of PAF induced severe hypo-
thermia ( Fig. 4 D ) and resulted in the death of WT and 
EC-G �  12 /G �  13 -KO mice within 20 min ( Fig. 4 E ). However, 
mice with endothelial G �  q /G �  11  defi ciency were protected 
from PAF-induced shock, and all of the animals assessed sur-
vived the injection of PAF with only a transient drop in body 
temperature ( Fig. 4, D and E ). Mice lacking only G �  11  dem-
onstrated an intermediate phenotype with more severe hypo-
thermia than EC-G �  q /G �  11 -KO mice and a survival rate of 
only 25% (two of eight tested animals; unpublished data). In-
terestingly, the intraperitoneal injection of the endotoxin 
LPS induced a severe hypotension and eventual lethality in 
WT and EC-G �  12 /G �  13 -KO as well as in EC-G �  q /G �  11 -

  Figure 3.     Basal and stimulated endothelial permeability in EC-specifi c G �  q /G �  11 - and G �  12 /G �  13 -defi cient mice.  (A and B) Evans blue extrava-

sation was determined in fi ve to eight mice per genotype after intracutaneous injection of 20  μ l of the indicated doses of PAF, histamine, LPA (A), or the 

PAR-1 peptide SFLLRN-NH 2  (B). Shown are the amounts of Evans blue determined in skin explants as described in the Materials and methods. (C) At least 

fi ve mice per genotype were sensitized by intracutaneous injection of anti-DNP IgE antibodies. 24 h later, DNP-HSA was injected i.v., and Evans blue 

extravasation was determined as described in the Materials and methods. Values are means  ±  SEM. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001 (compared 

with basal).   
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( Fig. 5, C and D ). Mice lacking only G �  11  exhibited an 
intermediate phenotype in the active systemic anaphylaxis 
model showing a survival rate of 20% (2 of 10 animals; un-
published data). 

  DISCUSSION  

 The pathological processes induced by mediators of anaphy-
laxis involve diverse organs such as the bronchial and immune 
systems, blood vessels, or the heart and require complex cell –
 cell and mediator – mediator interactions which involve vari-
ous signaling pathways ( 5, 35, 36 ). In this study, we addressed 
the role of defi ned endothelial G protein – mediated signaling 
pathways in the pathomechanism of systemic anaphylaxis. 

of plasma ( Fig. 5 B ). Under the same conditions, mice with 
endothelial lack of G �  q /G �  11  showed only a small and very 
transient reduction in blood pressure, and the hematocrit of 
EC-G �  q /G �  11 -KO mice remained unchanged after allergen 
administration ( Fig. 5, A and B ). 

 We then actively sensitized mice with BSA together with 
adjuvant. 2 wk later, mice were challenged with an i.v. injec-
tion of the same allergen. Within minutes after this challenge, 
all mice developed severe hypothermia ( Fig. 5 C ), and WT 
and EC-G �  12 /G �  13 -KO mice died within 20 min ( Fig. 5 D ). 
However, mice with endothelium-specifi c G �  q /G �  11  defi -
ciency recovered from hypothermia after  � 1 h, and all of the 
tested animals ( n  = 5) survived the anaphylactic challenge 

  Figure 4.     Role of endothelial G q /G 11  and G 12 /G 13  in the systemic effects of histamine, PAF, and LPS.  (A) Arterial blood pressure was monitored 

telemetrically in mice before and after i.v. injection of carrier solution (squares) or 10 mg/kg histamine (circles). Shown are mean values of fi ve to seven 

animals per genotype  ± SD. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001 (compared with WT). The arrow indicates the time point of injection. (B) Arterial blood 

pressure was monitored telemetrically in anesthesized mice ( n   ≥  5 per genotype) before and after i.v. injection of 50 mg/kg  L- NAME. Shown is the maxi-

mal blood pressure change, in millimeters of mercury, after injection of the NOS inhibitor. Values are the means  ±  S.D. (C) Arterial blood pressure was 

monitored telemetrically in mice before and after i.v. injection of 1 mg/kg sodium nitroprusside. Shown are mean values of 5 – 8 animals per genotype  ±  S.D. 

(D and E) Five to six mice per genotype were injected i.v. with 1.9  μ g/g PAF, and body temperature (D) and survival (E) were monitored over 120 min. 

Numbers below the time points of the temperature plot indicate the number of animals still alive at the indicated times (mean values  ±  SD). (F) Three WT 

and EC-G �  q /G �  11 -KO mice were injected i.p. with 80  μ g/g LPS, and the blood pressure was monitored telemetrically for the indicated time period. Shown 

are the mean values  ±  SD.   
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we were able to study the role of G q /G 11  and G 12 /G 13  in the 
endothelium of adult animals in which lack of G �  q /G �  11  or 
G �  12 /G �  13  did not lead to any obvious defects. There was 
also no acute or delayed change in the systemic blood pres-
sure after induction of endothelial G �  q /G �  11  or G �  12 /G �  13  
defi ciency (unpublished data). At the same time, the short and 
transient drop in blood pressure induced by i.v. injection of 
histamine was strongly reduced in EC-G �  q /G �  11 -KO mice, 
indicating that pharmacological responses were aff ected. Thus, 
although endothelial G q /G 11  and G 12 /G 13  are obviously not 
critically involved in the regulation of vascular functions un-
der basal physiological conditions, G q /G 11 -mediated signaling 
plays a crucial role in the regulation of endothelial functions 
under infl ammatory and anaphylactic conditions. Studies in 
mice lacking G �  13  have indicated a critical role of endothelial 
G 13  in embryonic angiogenesis ( 38, 40 ). Female EC-G �  12 /
G �  13 -KO mice are fertile, and we have not observed any de-
fects in wound healing suggesting that endothelial G 12 /G 13  
are not required for adult angiogenesis in the female repro-
ductive system or during wound healing. However, the poten-
tial role of G 13  in tumor angiogenesis remains to be evaluated. 

 The stimulation of endothelial permeability by infl amma-
tory and anaphylactic mediators like thrombin, bradykinin, 
histamine, PAF, etc. requires the retraction of ECs as a result 

We report here that the endothelium-specifi c ablation of 
G q /G 11  prevents the loss of the endothelial barrier function 
induced by various infl ammatory mediators as well as by local 
anaphylaxis. The systemic eff ects of anaphylactic mediators 
like histamine and PAF as well as of IgE-mediated passive ana-
phylaxis were blunted in EC-G �  q /G �  11 -KO mice, and mice 
with endothelium-specifi c G �  q /G �  11  defi ciency, but not with 
G �  12 /G �  13  defi ciency, were protected against the fatal con-
sequences of active systemic anaphylaxis. Thus, the blockade 
of endothelial G q /G 11  signaling is suffi  cient to protect against 
fatal anaphylactic shock, indicating that endothelial G q /G 11 -
mediated signaling is critically involved in local and systemic 
anaphylactic reactions. In contrast, endothelial G q /G 11  does 
not appear to play a role in septic shock as the degree of hypo-
tension and the lethality after systemic administration of 
LPS was indistinguishable between WT and EC-G �  q /G �  11 -
KO mice. 

 The analysis of the role of G q /G 11 - and G 12 /G 13 -mediated 
signaling pathways in the adult endothelium under in vivo 
conditions has been hampered by the fact that mice lacking 
the  �  subunits of these G proteins are embryonic lethal ( 37 –
 39 ). By crossing a newly generated inducible and endothe-
lium-specifi c Cre transgenic mouse line with conditional and 
null alleles of the genes encoding G �  q /G �  11  and G �  12 /G �  13 , 

  Figure 5.     Passive and active anaphylaxis in endothelium-specifi c G �  q /G �  11 - and G �  12 /G �  13 -defi cient mice.  (A and B) Mice were either sensi-

tized with anti-DNP IgE antibodies (A, circles; B, black bars) or received buffer (A, squares; B, white bars). 24 h later, animals were challenged by i.v. injec-

tion of DNP-HSA as described in Materials and methods. Shown is the arterial blood pressure monitored telemetrically before and after administration of 

DNP-HSA (A) as well as the change in hematocrit 10 min after administration of DNP-HSA (B). The data represent mean values of fi ve to six animals per 

group  ± SD. *, P  <  0.05; **, P  <  0.01; ***, P  <  0.001 (compared with WT). The arrow in A indicates the time point of DNP-HSA injection. (C and D) Body tem-

perature (C) and survival (D) of mice sensitized with BSA and challenged 14 d later with BSA (circles) or buffer (squares). Experiments were performed 

with a total of fi ve WT, four EC-G �  12 /G �  13 -KO, fi ve EC-G �  q /G �  11 -KO (immunized), and three EC-G �  q /G �  11 -KO (nonimmunized) mice. Numbers below the 

time points of the temperature plot indicate the number of mice still alive at the indicated times. Shown are mean values  ±  SD.   
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This study identifi es endothelial G q /G 11 -mediated signaling as 
a critical process in the pathophysiology of systemic anaphy-
laxis. Because lack of G q /G 11 -mediated signaling does not af-
fect basal physiological regulation of endothelial function, it 
may be an interesting target to treat systemic anaphylaxis. 

 MATERIALS AND METHODS 
 Chemicals and antibodies.   For Western blotting, the following antibodies 

were used: anti-G �  q/11  and anti-G �  13  (Santa Cruz Biotechnology, Inc.), anti –

  � -tubulin and anti-MLC (Sigma-Aldrich), and anti-pMLC (Cell Signaling 

Technology). Histamine, thrombin, PAF, LPA, PAR-1 peptide (SFLLRN-

NH 2 ), Evans blue, anti – DNP-IgE, DNP-HSA, and BSA were obtained from 

Sigma-Aldrich. Ionomycin was obtained from Invitrogen. 

 Genetic mouse models.   All procedures of animal care and use in this study 

were approved by the local animal ethics committee (Regierungspr ä sidium 

Karlsruhe, Germany). The generation of fl oxed alleles of the genes encoding 

G �  q  ( Gnaq ) and G �  13  ( Gna13 ) and of null alleles of the genes encoding G �  11  

( Gna11 ) and G �  12  ( Gna12 ) have been described previously ( 29, 30, 37, 39 ). 

 To generate an inducible EC-specifi c Cre transgenic mouse line, a cas-

sette consisting of the  Cre ER T2  followed by a polyadenylation signal from 

bovine growth hormone and a module containing the  � -lactamase gene 

fl anked by frt sites was introduced into the coding ATG of the mouse  tie2  

gene carried by a BAC using ET recombination as previously described ( 54 –

 56 ). Correct recombinants were verifi ed by Southern blotting. After FLPe-

mediated recombination, the recombined BAC was injected into male 

pronuclei derived from fertilized FvB/N oozytes. Transgenic off spring were 

analyzed for BAC insertion by genomic PCR amplifi cation. To verify in-

ducibility and activity of the Cre fusion protein,  tie2 - Cre ER T2  mice were 

mated with animals of the Cre reporter transgenic line Gt(ROSA)26Sortm1sor 

(ROSA26-LacZ). Cotransgenic progeny from these matings were treated 

i.p. with 5  ×  1 mg/d tamoxifen or vehicle alone and were killed 14 d after 

induction. For histological analysis of  � -galactosidase activity, staining was 

performed on 10 – 12- μ m cryosections followed by eosin counterstaining. 

 Isolation of mouse primary pulmonary ECs.   Mouse lung ECs were iso-

lated as described previously ( 57 ). Lungs were minced and digested in 50 U/ml 

dispase for 1 h at 37 ° C with shaking (350 rpm). After fi ltration, the cells were 

washed in PBS containing 0.5% BSA. Cells were incubated with anti-CD144 

antibody-coated (BD) magnetic beads (Invitrogen) for 1 h at room tempera-

ture, washed, and isolated with a magnet (Invitrogen). Cells were grown in 

DMEM/F12 (Invitrogen) supplemented with 10% FBS, penicillin/streptomy-

cin, and EC growth supplement with heparin (PromoCell) on fi bronectin-

coated wells. To induce Cre-mediated recombination or to express G �  q , the 

cells were infected with 5  ×  10 7  PFU of Adeno-Cre-GFP virus (Vector Labo-

ratories) or Adeno-G �  q  virus ( 58, 59 ) 72 h before the experiments. 

 RhoA activation assay.   RhoA activation in primary ECs was detected by 

a luminescence-based G-LISA RhoA activation assay kit (tebu-bio) accord-

ing to the manufacturer ’ s instructions. Briefl y, mouse primary lung ECs 

were grown on 12-well plates and stimulated with 1 U/ml thrombin for 1 

min, washed with 1.5 ml of ice-cold PBS, and lysed in 150  μ l of lysis buff er 

on ice. Protein concentrations were measured and equalized with lysis buff er 

if necessary. 

 Detection of MLC phosphorylation.   For detection of MLC phosphory-

lation, mouse primary ECs were cultured on 24-well plates. The cells were 

stimulated with 1 U/ml thrombin for the indicated time periods and lysed in 

2 ×  Laemmli buff er, incubated for 10 min at 100 ° C, and then loaded on 12% 

SDS PAGE gels. MLC phosphorylation was detected by Western blotting 

using an anti-pMLC antibody (1:1,000). 

 Determination of NO production.   NO formation was determined as 

previously described ( 60 ). Lung ECs from WT,  Gnaq  fl ox/fl ox ; Gna11   � / �  , or 

of increased actomyosin-mediated contraction as well as the 
disruption of cell – cell contacts ( 41, 42 ). Endothelial contrac-
tion is regulated by the phosphorylation state of the MLC 
which in its phosphorylated form allows myosin to interact 
with actin and to generate contractile forces ( 43, 44 ). Analo-
gous to the situation in smooth muscle cells ( 45 – 47 ), the dual 
regulation of MLC phosphorylation in ECs via the Ca 2+ -de-
pendent MLC kinase activation and the Rho/Rho kinase –
 mediated myosin phosphatase inhibition is believed to be 
initiated by the dual coupling of receptors to G q /G 11  and 
G 12 /G 13 , respectively ( 44 ). Our in vitro studies using G �  q /G �  11 - 
and G �  12 /G �  13 -defi cient pulmonary ECs indicate that 
thrombin-induced MLC phosphorylation is abrogated in the 
absence of G q /G 11 , a defect which can be rescued by transfec-
tion of cells with G �  q , whereas RhoA activation by thrombin 
was not aff ected in G �  q /G �  11 -defi cient ECs. In cells lacking 
G 12 /G 13 , MLC phosphorylation in response to thrombin was 
only reduced and RhoA activation was blocked. This indi-
cates that the G 12 /G 13 -RhoA – mediated signaling pathway 
plays only a minor role in thrombin-induced MLC phos-
phorylation in primary pulmonary ECs. This is consistent with 
our in vivo data, which show that endothelial G �  12 /G �  13  
defi ciency has no eff ect on vascular leakage induced by 
thrombin, PAF, histamine, or anaphylactic reactions, whereas 
G �  q /G �  11  defi ciency blocked these eff ects. A predominant 
role of G q /G 11  compared with G 12 /G 13  was recently also dem-
onstrated for thrombin-induced increase in endothelial 
permeability analyzed in vitro ( 48 ). Thus, G q /G 11 -mediated 
signaling, rather than G 12 /G 13 , is critically involved in the regu-
lation of endothelial barrier function by infl ammatory media-
tors acting via GPCRs. 

 The role of NO in systemic anaphylaxis has been contro-
versial ( 49, 50 ). Recently, it was shown that the systemic in-
hibition of NOSs prevented mortality in various models of 
anaphylaxis in mice ( 51 ). This eff ect could also be seen in 
mice lacking the endothelial NOS (eNOS) but not the in-
ducible NOS (iNOS). Although eNOS is expressed in ECs, 
it can also be found in various other tissues, and it has been 
suggested that it is the NO production in non-ECs which is 
involved in anaphylaxis ( 52 ). Our data indicate that the stim-
ulation of NO formation in isolated ECs depends on G q /G 11  
but not on G 12 /G 13 . In addition, endothelium-specifi c lack 
of G q /G 11  results in a strong reduction in histamine-induced 
hypotension and various anaphylactic reactions very similar 
to the eff ects seen in mice lacking eNOS ( 51, 53 ). Thus, our 
data are consistent with a primary role of endothelial NOS in 
systemic anaphylaxis. 

 Using conditional mutagenesis, we have generated mice 
with inducible endothelium-specifi c G �  q /G �  11  or G �  12 /G �  13  
defi ciency. When challenged with anaphylactic mediators or 
subjected to systemic anaphylaxis, EC-G �  q /G �  11 -KO mice 
were protected, whereas mice with endothelium-specifi c 
G �  12 /G �  13  defi ciency responded like WT animals. Endothe-
lial G �  q /G �  11  defi ciency blocked MLC phosphorylation and 
NO formation as well as increases in vascular permeability in-
duced by various infl ammatory and anaphylactic mediators. 
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