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Abstract 

Fructose, a prevalent hexose, has become a widely used food additive, with its usage rising significantly 
because of socio-economic advancements and shifts in human dietary habits. Excessive fructose intake has been 
implicated in obesity, cardiovascular disease, metabolic syndromes, inflammation, and cancer, among other dis-
orders. This review discusses the absorption, distribution, and metabolism of fructose and the links between fruc-
tose metabolism and major metabolic pathways. The role of fructose in metabolic diseases, including metabolic 
dysfunction-associated fatty liver disease, hyperinsulinemia, and hyperuricemia, is also highlighted. Furthermore, 
the role of fructose in the development of chronic inflammation, including gut inflammation, liver inflammation, 
and neuroinflammation, is discussed. Lastly, in the context of cancer development, this review summarizes the dual 
role of fructose in tumors, both pro- and anti-tumor effects. Future studies on the role of fructose in cancer should 
focus on the complexity of physiological and pathological conditions, such as the specific tumor microenviron-
ment and metabolic status. Fructose has been shown to induce metabolic reprogramming of multiple immune cells 
and increase pro-inflammatory immune responses; therefore, inhibiting or promoting its metabolism may regulate 
immune responses. And targeting fructose metabolism may be a promising approach to treating metabolic diseases, 
inflammation, and cancer.
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Introduction
Humans have a natural preference for sweet foods, which 
induce strong sensory pleasure and can increase the 
chances of survival of individuals in extreme environments, 
leading to a stronger evolutionary advantage [1]. Fructose 
is the sweetest known hexose in nature, often considered a 
healthy sugar primarily owing to its low glycemic index and 
impact on blood glucose fluctuations [2, 3].

Moderate fructose consumption increases energy 
availability without significantly impacting insulin lev-
els, making it a great long-term energy source, espe-
cially for physically active individuals [4]. Short-term or 
appropriate doses of fructose can help lower blood pres-
sure and body mass index, improve glucose tolerance, 
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and be a valuable nutrient [5, 6]. However, extensive 
research has highlighted the hazards of fructose to 
human health. Indeed, high fructose intake can lead to 
obesity, metabolic disorders, and cardiovascular and cer-
ebrovascular diseases [3, 7–11], and has been linked to 
inflammation, as excessive intake induces the secretion of 
various pro-inflammatory cytokines [12–14]. Also fruc-
tose is inextricably associated with cancer occurrence 
and development [7, 15, 16].

The increasing prevalence of metabolic disorders in 
modern society and their association with excessive 
fructose intake emphasize the importance of fructose 
in metabolic dysregulation [17–19]. Inflammatory dis-
eases often coincide with metabolic disorders, illustrat-
ing the systemic effects of fructose on human health [12, 
20]. Additionally, the emerging link between fructose 
and cancer biology, both beneficial and detrimental, has 
made fructose a hot research topic in oncological stud-
ies [21, 22]. Therefore, herein, we reviewed the recent 
research on fructose metabolism and its contribution to 
metabolic diseases and inflammatory responses, focusing 
on the association between fructose intake and cancer.

First, this review outlines the absorption, transporta-
tion, and metabolic pathways of fructose, highlighting 
its differences from glucose metabolism. Subsequently, 
it analyzes the mechanism underlying the role of fruc-
tose in metabolic disorders, such as obesity and meta-
bolic dysfunction-associated fatty liver disease (MAFLD; 
also known as nonalcoholic fatty liver disease, NAFLD). 

This review also explores how fructose triggers sys-
temic inflammation by disrupting the intestinal barrier 
and inducing endoplasmic reticulum (ER) and oxidative 
stress. This review provides insights into the dual role of 
fructose in cancer in promoting tumor cell proliferation 
and metabolic reprogramming and potentially potentiat-
ing immune anti-tumor responses under specific condi-
tions. A summary of the current preventative strategies 
for fructose-related health risks and key directions for 
future research are finally proposed to provide a theo-
retical basis for the prevention and treatment of fructose-
related diseases.

Fructose and fructose metabolism
Fructose, an isomer of glucose and the most common 
type of ketohexose, is found in high concentrations in 
honey, fruits, and vegetables. It combines with glucose 
in equal quantities to form sucrose, a major cyclic disac-
charide in plants. In industrial food production, fructose 
is essential owing to its high sweetness, ease of storage, 
and low cost, hence, it is added to several beverages and 
manufactured foods as sugar in sucrose or high-fructose 
syrup to increase food palatability [23]. With the contin-
uous increase in pre-made foods and drinks, the global 
consumption of fructose has significantly increased by an 
estimated 1,000% over the past 50 years [24].

The absorption and metabolism of fructose differ from 
those of glucose (Table 1). Glucose relies on transporter 
proteins such as  Na+- and glucose-linked transporter 1 

Table 1 Metabolic differences between fructose and glucose

GLUT5 glucose transporter 5, GLUT2 glucose transporter 2, GLUT8 glucose transporter 8, SGLT1 Sodium-Glucose Cotransporter 1, TCA Cycle Tricarboxylic Acid Cycle, 
Acetyl-CoA Acetyl Coenzyme A

Fructose Glucose

Chemical Structure

Absorption Pattern Fructose is absorbed in the intestine via GLUT5, then transported to the liver 
by GLUT2 and possibly GLUT8

Glucose is absorbed in the intestine via SGLT1 
and transported into the bloodstream 
by GLUT2

Initial Phosphorylation Phosphorylated by Ketohexokinase to form fructose-1-phosphate Phosphorylated by hexokinase to form
glucose-6-phosphate

Key Enzyme Ketohexokinase, Aldolase B Hexokinase, Phosphofructokinase-1,

Rate-limiting Steps Bypasses glucokinase and
phosphofructokinase

Controlled by hexokinase and
phosphofructokinase

Glycolysis Directly catalyzed to glyceraldehyde 3-phosphate and dihydroxyacetone 
phosphate, thus entering glycolysis

Phosphorylated by hexokinase and enter
glycolysis

TCA Cycle Pyruvate from glycolysis enters the mitochondria, converted to acetyl-CoA,
entering the TCA cycle
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(SGLT1) for absorption active transport, whereas fruc-
tose primarily relies on glucose transporter 5 (GLUT5), 
which facilitates its absorption via passive diffusion [25]. 
The key rate-limiting enzymes involved in the metabo-
lism of glucose and fructose also differ. This allows 
fructose to bypass some key rate-limiting steps and 
directly enter the metabolic pathways. The absorption 
and metabolism of glucose are strictly regulated, which 
makes glucose a stable source of energy, while the unreg-
ulated metabolic characteristics of fructose make it more 
likely to cause harm. The following sections provide an 
overview of fructose absorption, transport mechanisms, 
and metabolic pathways in different tissues.

Fructose absorption and transport
Typically, fructose concentration in human peripheral 
blood plasma is 0.04 mM. Following oral administra-
tion of large amounts of fructose (0.5 g/kg), serum fruc-
tose levels surge 50–100-fold [26–28]. Despite this initial 
spike, the body reaches fasting levels within 2 h [29–31] 
as fructose metabolism differs from that of glucose in 
that the site of fructose metabolism is centralized in the 
intestine and liver [32, 33]. Fructose was first believed 
to be metabolized primarily in the liver; however, fruc-
tose enters the intestine first and is passively transported 
across the cell membrane from the intestinal lumen into 
intestinal epithelial cells via GLUT5 (also known as hex-
ose transporter receptor, SLC2A5) localized at the brush 
border of intestinal epithelial cells, highlighting the intes-
tinal role in fructose metabolism. GLUT5, a fructose-
specific transporter with a greater affinity for fructose 
than glucose, is important for the intestinal absorption 
of dietary fructose. GLUT5-deficient mice have approxi-
mately 90% lower serum fructose levels and 75% lower 
levels in the jejunum than their wild-type counterparts 
[34]. In hepatocytes, as GLUT5 is poorly expressed in the 
liver, it may not be the primary transporter of fructose; 
rather, GLUT2 may be [35, 36]. Additionally, GLUT8 has 
an affinity for fructose that may contribute to fructose 
transport in hepatocytes [37, 38].

Metabolism of fructose in specific organs or tissues
Fructose entering intestinal epithelial cells is phospho-
rylated by ketohexokinase (KHK) and converted into 
glucose, lactate, glycerate, and other organic acids [19]. 
Fructose-derived metabolites enter the liver via the por-
tal vein [39]. If ingested at relatively low doses and rates 
of intake, fructose is readily cleared by the intestines [40]. 
However, on exceeding the intestinal absorption capac-
ity, fructose reaches the liver, where it is metabolized [32, 
41]. Reportedly, 90% of normal dietary fructose is pro-
cessed primarily in the intestine [32, 42, 43]. However, 
if excess fructose is consumed, it will be transferred to 

the liver for metabolism [39, 44, 45]. Particularly, excess 
fructose is excreted from the intestinal epithelium via 
GLUT2 and enters the portal vein, reaching the liver 
[46]. In hepatocytes, fructose is first phosphorylated to 
fructose 1-phosphate by KHK, and this reaction is rapid 
and irreversible. The high affinity of KHK for fructose 
and the fact that KHK is not regulated by its end prod-
ucts or denaturation allows fructose to enter the liver for 
rapid extraction and metabolism, with negligible escape 
into circulation. Subsequently, fructose 1-phosphate is 
cleaved by aldolase B into dihydroxyacetone phosphate 
and glyceraldehyde (Fig. 1).

Shared similarities exist between the metabolisms 
of fructose in the intestine and liver; however, the abil-
ity of intestinal epithelium to metabolize fructose is very 
limited. Only GLUT5 transports fructose in the small 
intestine compared to the liver; the ability of GLUT5 
to transport fructose is limited despite its increase in 
expression upon fructose intake [46, 47]. However, other 
proteins that transport fructose are expressed in the 
small intestine at much lower levels than GLUT5, yet are 
not regulated by fructose [37, 48]. Conversely, in the liver, 
the expression of proteins and enzymes associated with 
the transport and metabolism of fructose is high. In con-
trast, the small intestine is more inclined to rapidly trans-
locate fructose than to metabolize it, and the expression 
of its associated proteins and enzymes is inducible. Con-
sidering the harmful effects of excess fructose, restrict-
ing fructose metabolism in the small intestine may be a 
potential protection strategy for intestinal cells [49, 50]. 
Therefore, the small intestine is the site of fructose trans-
port and the initial site of metabolism, whereas the liver 
is the primary site of fructose metabolism. This strategy 
of different division of labor can be attributed to evolu-
tionary selection.

In addition to the small intestine and liver, the remain-
ing organs can also metabolize fructose. Indeed, previ-
ous studies have reported that the kidney can metabolize 
fructose [51, 52]. In healthy kidneys, the proximal tubule 
is the primary site of fructose metabolism, which takes 
up urinary fructose via GLUT5 and metabolizes it in the 
cytoplasm [53, 54]. Moreover,  Na+- and glucose-linked 
transporter 5 (SGLT5), expressed only in the kidney, is 
also an essential transporter protein for fructose reab-
sorption [55–57]. Notably, the kidney produces endog-
enous fructose, which characterizes the metabolism of 
this fructose as an important risk factor for kidney injury 
[54, 58, 59]. Along with the liver, intestine, and kidney, 
which metabolize most of fructose, adipose tissues and 
muscles can also metabolize the remaining fructose [60–
62]. Adipocytes and muscles take up fructose through 
GLUT5; however, they metabolize fructose primarily 
with hexokinase [63, 64]. As fructose is metabolized in 
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various tissues or organs, excessive fructose intake can be 
harmful.

Fructose in relationship to central carbon metabolism
Fructose is mostly phosphorylated by fructokinase to 
generate fructose-1-phosphate, unlike glucose, which 
enters glycolysis via phosphorylation by hexokinase 
to form glucose-6-phosphate (Table  1). Consequently, 
fructose-derived glyceraldehyde and dihydroxyacetone 

phosphate bypass glucokinase and phosphofructokinase, 
the key rate-limiting enzymes, and enter the glycolysis/
gluconeogenic carbon pool. Glyceraldehyde is catalyzed 
by glyceraldehyde kinase to form 3-phosphoglyceralde-
hyde, which enters the glycolytic pathway. In contrast, 
glyceraldehyde can form dihydroxyacetone phosphate 
catalyzed by alcohol dehydrogenase, glycerol kinase, and 
glycerol phosphate dehydrogenase. Dihydroxyacetone 
phosphate is then converted to 3-phosphoglyceraldehyde 

Fig. 1 Fructose metabolism. Fructose first enters the intestine and is passively transported from the intestinal lumen across the cell membrane 
to the intestinal epithelial cells by glucose transporter 5 (GLUT5). Excess fructose reaches the liver through the portal vein for further metabolism. 
After entering hepatocytes, glucose transporter protein 2/8 (GLUT2/8) facilitates the transport of fructose, which is rapidly phosphorylated by KHK 
to fructose 1-phosphate and further metabolized to glucose, lactate, glycerate, and other organic acids
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by phosphoglycan isomerase and enters the glycolytic 
pathway.

The metabolic pathways are complex and overlap. 
Fructose is closely linked to glycolysis and impacts other 
metabolic pathways. For example, fructose-derived dihy-
droxyacetone phosphate or fructose-6-phosphate can 
enter the pentose phosphate pathway (PPP) through 
hexose phosphate isomerase [65]. Lodge et  al. observed 
fructose labeled with C13 in PPP, specifically ribose-
5-phosphate [66]. While ribose-5-phosphate and its 
derivatives can be used to synthesize DNA, RNA, and 
other important biomolecules, this shows the important 
role of fructose in the PPP.

Furthermore, fructose can be converted to glucose 
through gluconeogenesis, which occurs frequently in 
the kidneys [54, 67], maintaining glucose homeostasis. 
In contrast, glucose can be converted to fructose via the 
polyol pathway [68, 69]. This highlights the close rela-
tionship between fructose and glucose.

The complicated biochemical processes of fructose 
metabolism include intestinal absorption, liver trans-
port, and integration into the central metabolic pathways 
[70]. Consuming fructose more than the body can digest 
induces metabolic disturbances. The liver is an essential 
organ for this process. Understanding these metabolic 
pathways and their health effects is essential, especially 
considering the increasing global fructose consumption.

Role of Fructose in metabolic diseases
Several studies have linked consuming large amounts of 
fructose to the development of obesity and metabolism-
related diseases, such as abnormal lipid metabolism, 
MAFLD, and gout [71–77]. In this section, the review 
summarizes several metabolic diseases associated with 
fructose and briefly describe their causal mechanisms 
(Table 2 and Fig. 2).

Fructose consumption promotes obesity
The prevalence of obesity has been steadily increasing, 
with the same trend seen for the consumption of fructose, 
potentially linking fructose and obesity [2]. In a study, 
participants who consumed soda with high-fructose 
corn syrup for three weeks experienced notable weight 
gain, with similar outcomes observed with sucrose [86, 
87]. These early studies used only mixtures containing 
fructose and ignored whether fructose alone had a cor-
responding effect. In later experiments, researchers real-
ized that fructose did not appear to have a direct effect 
on weight [88–90]. In a recent test of sugary beverages 
involving 131 participants, those who consumed glucose 
and high-fructose corn syrup gained significantly more 
weight, whereas no significant difference was observed 
in weight among those who consumed only fructose [91]. 

These findings indicate that fructose did not cause weight 
gain under equal caloric intake [92] and may indirectly 
increase body weight by increasing energy intake [93]. In 
animal studies, long-term fructose intake induced lep-
tin resistance, which, in turn, promoted energy intake 
and led to obesity [71, 94]. It has also been claimed that 
fructose intake reduces leptin concentrations but does 
not have a significant effect on weight [91]. In addition, 
fructose may also promote the survival of intestinal cells 
and increase the length of intestinal villi, which in part 
enhances nutrient absorption and contributes to obesity 
[95]. Interestingly, fructose mediates a survival switch 
in organisms that aids in storing energy when resources 
are lacking (similar to the state of animals preparing for 
hibernation) [93]. But in the present resource-rich world, 
this protective mechanism has harmed organisms. Thus, 
the obesity caused by fructose may not be a direct effect, 
but rather an indirect promotion of the energy intake of 
the body through other pathways.

Fructose impacts lipid metabolism and MAFLD
MAFLD, a chronic liver disease closely related to meta-
bolic disorders, has become a major public health chal-
lenge, the risk of which can be significantly increased 
by high-fructose intake [78, 96, 97].

Enhanced de novo lipogenesis (DNL) is a major cause 
of MAFLD [98]. Fructose promotes DNL through sev-
eral mechanisms. Fructose is metabolized in the liver to 
the DNL substrates dihydroxyacetone, phosphate, and 
glyceraldehyde. In the presence of α-phosphoglycerol 
dehydrogenase, dihydroxyacetone phosphate produces 
glycerol phosphate. The reduced glycerophosphate pro-
duces 1,2-diacylglycerol (DAG) through various enzy-
matic reactions.

In a process catalyzed by acyltransferases, DAG inter-
acts with acyl-coenzyme A to form triacylglycerol (TAG), 
whose levels are associated with DNL [99, 100]. In con-
trast, TAG is involved in steatosis via binding to lipid 
droplets or in the formation of very low-density lipopro-
tein conjugates secreted from the liver into circulation. 
Glyceraldehyde is a fructose derivative phosphorylated 
to 3-phosphoglyceraldehyde by triphosphate kinases and 
enters the glycolytic process [19]. Following glycolysis, 
3-phosphoglyceraldehyde is metabolized to pyruvate, 
which is then oxidized and decarboxylated by the pyru-
vate dehydrogenase complex to form acetyl-coenzyme A 
(acetyl-CoA). Under energy-deficient conditions, acetyl-
CoA enters the tricarboxylic acid cycle (TCA cycle) and 
is metabolized to release energy. Under energetic condi-
tions, acetyl-CoA acts as a substrate and participates in 
DNL. Acetyl-CoA can also be carboxylated to form mal-
onyl-CoA, which inhibits the transfer of fatty acids from 
carnitine palmitoyl transferase (CPT1A) to mitochondria 
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for oxidation, increasing the fatty acid stocks available for 
TAG production [101].

In addition, fructose intake increases DNL levels 
by activating key transcription factors [102]. Sterol 

regulatory element-binding protein 1c (SREBP1c) is a 
regulator of adipose synthase, whose activity increases 
upon fructose intake. Dihydroxyacetone phosphate is a 
fructose metabolite that activates the mTORC1 pathway 

Fig. 2 Fructose metabolism in metabolic diseases. Fructose is metabolized in the liver to form 1,2-diacylglycerol (DAG) and triacylglycerol (TAG), 
which ultimately contribute to de novo lipogenesis (DNL), as does acetyl-coenzyme A (Acetyl-CoA). Fructose intake also activates a key transcription 
factor, sterol regulatory element binding protein 1c (SREBP1c), which increases DNL levels. Dysregulation of lipid metabolism in hepatocytes 
because of high fructose intake ultimately causes metabolic dysfunction-associated fatty liver disease (MAFLD). High intake of fructose also causes 
hyperinsulinemia and reduces insulin sensitivity. Indirectly, fructose stimulates the secretion of glucagon-like peptide-1 (GLP-1) from L-cells, 
leading to increased insulin secretion. Fructose activates sweet taste receptors (TRs) and the protein kinase B/forkhead box protein O1 (Akt/FoxO1) 
pathway on β-cells, stimulating insulin secretion. In addition, fructose causes liver and kidney cells to accumulate more uric acid (UA), leading 
to hyperuricemia. Fructose can also contribute to hypertension by affecting the renal renin–angiotensin–aldosterone system (RAS), as well as insulin 
resistance caused by elevated UA
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and promotes SREBP1c activation [103]. However, 
SREBP1c is regulated at the transcriptional and post-
translational levels by nutrients and hormones [19, 45]. 
In summary, fructose promotes DNL and is an impor-
tant factor in MAFLD [17, 104, 105]. A high-fructose 
diet increases the rate of fasting DNL from 2 to 9% [106]. 
In abdominally obese men on a habitual diet for over 12 
weeks, 75 g/day fructose intake significantly increased 
DNL in the fasting state and 4 to 8  h following a meal 
[107, 108]. Similarly, nine days of isocaloric fructose 
restriction as part of a normal diet resulted in a signifi-
cant decrease in DNL in 37 of 40 children with obesity 
[109].

Fructose contributes to hyperinsulinemia and insulin 
resistance
Insulin regulates blood glucose levels, which are secreted 
by pancreatic beta cells [110]. When insulin is over-
produced or not removed promptly, it may manifest as 
hyperinsulinemia [111–115]. Insulin resistance is defined 
as the inability of a given amount of insulin to promote 
normal glucose uptake and utilization and can also be 
understood as reduced sensitivity and responsiveness to 
insulin action [116, 117]. Studies have shown a strong 
link between hyperinsulinemia and insulin resistance, 
a precursor to the development of diabetes mellitus 
[118–120].

Insulin resistance co-occurs with hyperinsulinemia 
because of defective insulin action [119, 121]. Fructose 
intake can trigger hyperinsulinemia and insulin resist-
ance [80, 122–124]. Indeed, high fructose intake reduces 
insulin sensitivity and glucose tolerance in rats [125, 
126]. Fructose also directly activates sweet taste recep-
tors on beta cells, promoting glucose-stimulated insu-
lin secretion in humans and mice [81]. The authors also 
found that this mechanism only occurs in the presence 
of glucose, suggesting a synergistic interaction between 
fructose and glucose [81, 127]. However, fructose cannot 
directly promote insulin secretion because of the absence 
of GLUT5 in beta cells, and fructose intake stimulates 
glucagon-like peptide-1 (GLP-1) secretion via GLUT5-
containing L-cells in the gut, thereby increasing insu-
lin secretion, an effect more pronounced in individuals 
with obesity [80, 128, 129]. Furthermore, Li et al. found 
that fructose activates the protein kinase B/forkhead box 
protein O1 (Akt/FoxO1) pathway in beta cells, which 
mediates the action of leptin on beta cells and promotes 
insulin secretion [83, 130–132]. High fructose intake can 
reduce the expression of insulin receptors, insulin recep-
tor substrate-1, protein kinase B (Akt), and glucose trans-
porter 4 (GLUT4), directly inducing insulin resistance 
[133, 134]. Fructose intake also decreases mRNA expres-
sion of adiponectin, adiponectin receptor R1 (AdipoR1), 

and AMP-activated protein kinase (AMPK)-α [134, 135] 
and reduces adiponectin, which correlates with insulin 
sensitivity [82, 136, 137]. Evidently, fructose intake has 
persistent adverse effects in individuals with hyperinsu-
linemia [123].

Fructose causes hyperuricemia and hypertension
Uric acid (UA) is the end product of purine metabolism, 
not further degraded as the body lacks the enzyme uric 
acid oxidase [138–141]. Under normal conditions, UA 
acts as an antioxidant that provides several benefits [142–
144]. However, an abnormal increase in UA can lead to 
hyperuricemia, negatively affecting human health [145–
148]. Examples include fat accumulation and steatosis 
[149, 150]. Fructose intake is associated with elevated 
fasting UA levels [85, 151–153] because of the unique 
metabolic processes of fructose. After ingestion, fructose 
is rapidly extracted from the liver and phosphorylated 
to fructose 1-phosphate by KHK. This reaction is rapid, 
not controlled by negative feedback regulation, and con-
sumes a large amount of adenosine triphosphate (ATP) in 
a short period [154]. ATP exhaustion is accompanied by 
a large production of adenosine monophosphate (AMP) 
[155, 156]. The large amount of AMP produced is cata-
lyzed by adenosine deaminase, yielding hypoxanthine. 
Hypoxanthine is eventually hydrolyzed to UA by two oxi-
dations of xanthine oxidase, which increases UA levels 
in the body. Fructose intake reduces water loss by stim-
ulating pressin secretion, reducing urine volume [157]. 
Moreover, large amounts of UA produced by fructose 
metabolism are not readily excreted through the urine, 
elevating UA levels. Furthermore, fructose-induced 
insulin resistance increases UA levels by decreasing UA 
excretion and upregulating inflammation [158, 159].

Hypertension is an extremely complex disease with 
unclear predisposing factors [84, 160–162]. Although 
hypertension is a multifactorial disease, fructose intake 
may be an important factor in regulating hypertension 
[3, 163–166]. Previous findings indicated that fructose 
intake increased blood pressure compared to glucose 
intake, along with oxygen consumption and respira-
tory quotient [79, 167, 168]. One study showed that four 
weeks of continuous fructose feeding increased the mean 
arterial blood pressure in rats [169]. Similarly, another 
study reported that rats developed hypertension after 
three weeks of a fructose diet [170]. Furthermore, the 
offspring of rats exposed to a 60% high-fructose diet 
during pregnancy and lactation showed an increased 
risk of hypertension [171]. How does fructose increase 
blood pressure? Interestingly, fructose has been shown 
to regulate blood pressure through UA [3, 163, 172, 
173]. Fructose intake can increase UA levels, which may 
cause endothelial dysfunction by contributing to insulin 
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resistance, which increases the risk of hypertension [174, 
175]. UA can also stimulate the renal renin–angiotensin–
aldosterone system, inducing the proliferation of vascu-
lar smooth cells and endothelial dysfunction [176]. For 
every 1  mg/dL increase in serum UA levels, the preva-
lence of hypertension increases by 13% [177]. Pharmaco-
logical intervention studies have shown that febuxostat, 
a xanthine oxidase inhibitor, prevents fructose-induced 
hypertension by reducing the UA levels [178, 179]. Fur-
thermore, fructose increases blood pressure through sev-
eral other pathways, such as sodium handling, activation 
of the renal sympathetic nervous system, and synergy 
with salt [72, 180–182].

Role of fructose in systemic chronic inflammation
Increased fructose intake is associated with several 
inflammatory diseases [183–185]. Fructose is metabo-
lized and absorbed in various body parts, triggering an 
inflammatory response, including gut inflammation, 
liver inflammation, and neuroinflammation (Table 3 and 
Fig. 3) [186–189].

Excessive fructose intake leads to intestinal damage 
and inflammation
The gut, the body’s largest barrier to the external environ-
ment, is important in protecting the organism from harm 
and the primary site of fructose absorption [196]. Excess 
fructose intake can cause intestinal barrier damage and 
endotoxemia [197–200]. Damage to the intestinal barrier 
increases the exposure to various metabolites, triggering 
an inflammatory response [201]. Excess fructose intake 
has also been shown to cause nitration of intestinal tight 
junction and adherent junction proteins, which can 
lead to an increased leaky gut [202, 203]. A large influx 
of antigens and other macromolecules into the barrier 
causes local or systemic inflammation [204, 205].

In addition, dysregulation of the gut microbiota pro-
motes gut barrier damage and inflammatory responses 
[206]. The gut microbiota is the “second genome” and 
plays a significant role in the body’s metabolism and 
immunity [190]. Tan et al. reported elevated levels of Bac-
teroides, Akkermansia, Lactobacillus, and Ruminococcus 
in the intestines of rats after fructose feeding, which may 
be associated with inflammation [190]. Similar studies 
have shown that a fructose diet increases the abundance 
of Bacteroides, Bifidobacterium, and Marvinbryantia [20, 
198]. In contrast, one study showed that mice fed a high-
fructose diet had a lower proportion of Bacteroidetes and 
an increased proportion of Proteobacteria [88]. Despite 
the differences between the results of previous studies, 
alterations in the gut microbiota do influence intestinal 
inflammation and damage to the intestinal barrier.

Metabolites of the gut microbiota, such as lipopolysac-
charides (LPS) and short-chain fatty acids (SCFAs), are 
important signaling mediators [207]. Dysbiosis of the 
gut microbiota promotes the release of LPS (Parabac-
teroides is the main source of LPS), which in turn acti-
vates the Toll-like receptor 4 (TLR4) and exacerbates 
intestinal inflammation by inducing the release of pro-
inflammatory cytokines [208–210]. At the same time, 
because of the altered intestinal permeability, LPS cir-
culates through the portal vein to the liver and induces 
secretion of the inflammatory factor tumor necrosis fac-
tor-alpha (TNF-α) by activating TLR4 on macrophages 
[40, 211, 212]. SCFAs are important signaling molecules 
for metabolic and immune regulation [207, 213, 214]. 
Acetate, an SCFA, induces retinoic acid production in 
dendritic cells, which further promotes the intestinal 
IgA response and protects the gut from inflammatory 
damage [215–217]. Similarly, n-butyrate, another SCFA, 
induces intestinal macrophages to reduce the secre-
tion of pro-inflammatory mediators such as nitric oxide 
(NO), interleukin-6 (IL-6), and IL-12 by inhibiting his-
tone deacetylases [218, 219].

SCFAs also affect other immune cells in the gut. For 
example, Sun et  al. demonstrated that SCFAs activate 
Th1 cell STAT3 and mTOR and upregulate transcrip-
tion factor B lymphocyte-induced maturation protein 
1 (Blimp-1), which can induce the production of IL-10 
[220]. Notably, SCFAs can induce the differentiation of 
intestinal regulatory T cells, which maintain intestinal 
homeostasis [221–224]. Overall, SCFAs have a positive 
effect on gut homeostasis and immunity; however, fruc-
tose intake appears to reduce SCFAs in the gut [192]. 
And indirectly, fructose intake affects gut stability and 
induces inflammation.

Excessive fructose intake induces inflammation, resulting 
in liver injury
Excessive fructose intake leads to MAFLD and contrib-
utes to metabolic dysfunction-associated steatohepatitis 
(MASH), which may progress to liver fibrosis, cirrhosis, 
or even liver cancer [191, 225]. Recently, several stud-
ies have revealed fructose-induced inflammation in the 
liver [66, 226–229]; however, the induction mechanism 
is complex. Hepatocytes are particularly vulnerable to 
ER stress. A chronic fructose diet affects lipid metabo-
lism and the production of very low-density lipopro-
teins, which leads to ER stress and the unfolded protein 
response (UPR). ER stress induces inflammation, oxida-
tive stress, and apoptosis [230–232]. Oxidative stress 
induced by fructose can induce inflammation via the 
accumulation of oxygen reactive species (ROS) as it can 
activate some inflammatory pathways, including nuclear 
factor kappa B (NF-κB) and C-Jun amino terminal kinase 
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(JNK) [233, 234]. A high-fructose diet can inhibit the ER 
stress-induced production of fibroblast growth factor 
21 (FGF21), reducing oxidative stress [235]. In addition 
to cellular stress, UA is an important inflammatory trig-
ger [236]. UA in the liver contributes to oxidative stress 
and inflammation by inhibiting nuclear factor erythroid 
2-related factor (Nrf2) and the production of thioredoxin, 
leading to the activation of the NOD-like receptor family 
pyrin domain containing 3 (NLRP3) inflammasome [237, 
238]. Furthermore, a more in-depth study showed that 
fructose intake reduced microRNA-200a (miR-200a), 
targeting Kelch-like ECH-associated protein 1 (Keap1) 
and inhibiting the Nrf2 antioxidant pathway, thereby 

triggering the thioredoxin-interacting protein (TXNIP)-
activated NLRP3 inflammasome, ultimately inducing 
liver inflammation [239]. The liver also contains various 
macrophages, including Kupffer cells (KC) and other 
recruited monocytes or macrophages, which typically 
exhibit a pro-inflammatory phenotype [240–242]. It has 
also been reported that a fructose diet can activate TLR4 
on KC, which elevates ROS, induces inflammation, and 
induces hepatocyte necrosis by increasing the expression 
of TNF-α and IL-6 [243–245]. This process may involve 
the fructose-induced increase in fatty acids, such as acyl-
carnitine and palmitate [245–248].

Fig. 3 Fructose promotes systemic chronic inflammation. High fructose intake leads to a leaky gut, which in turn induces an inflammatory 
response. Abnormal gut microbiology reduces the secretion of short-chain fatty acids (SCFA) and promotes the release of lipopolysaccharides 
(LPS), which further activates the Toll-like receptor 4 (TLR4), thereby mediating various inflammatory effects. In the liver, fructose induces oxidative 
stress and endoplasmic reticulum (ER) stress in hepatocytes, ultimately triggering inflammation, in a variety of ways, including by promoting uric 
acid (UA) accumulation, while fructose also activates secretion of inflammatory factors by hepatic macrophages. In addition, fructose intake results 
in elevated levels of UA and advanced glycation end products (AGEs) in mouse hippocampi, which in turn induces hippocampal inflammation 
via the TLR4/NF-κB pathway. Fructose also activates resident microglia and secretes inflammatory factors by causing oxidative stress in the brain. 
At the same time, SCFA relieves the inflammatory response in the brain. Fructose in the kidney ultimately mediates inflammation through elevated 
microRNA-377 (miR-377) and reduced nitric oxide (NO) and ATP levels while recruiting monocytes or macrophages by inducing monocyte 
chemotactic protein 1(MCP-1)
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Fructose triggers neuroinflammatory responses in key 
brain regions
Fructose-induced inflammation has been widely reported 
in various tissues, including nervous tissue. Fructose-
induced neuroinflammation has attracted attention 
[193, 249–251]. Cells in the brain can directly metabo-
lize fructose; GLUT5 expression has been detected in 
the hippocampal microglia [252, 253]. The hippocam-
pus, the memory center of the brain, is vital for learning 
and memory. Recent studies have found that excessive 
fructose intake damages hippocampal function [254, 
255]. Indeed, excessive fructose intake blunts hippocam-
pal plasticity and reduces hippocampal weight, which 
reflects functional changes in brain cells [256–260]. 
Fructose intake causes an increase in CLUT5 in the hip-
pocampus of mice and an increase in UA levels; UA can 
induce hippocampal inflammation via the TLR4/NF-κB 
pathway [261, 262]. Additionally, accumulation of toxic 
compounds and advanced glycation end products (AGEs) 
because of fructose intake has been linked to inflam-
mation [12, 263–265]. Mastrocola et  al. reported that 
in mice fed a 60% fructose diet for 12 weeks, carboxy-
methyl lysine, an AGE that accumulates in hippocam-
pal neurons, is induced and activates NF-κB signaling 
[266]. Fructose-induced hippocampal inflammation is 
associated with oxidative stress in the brain, which acti-
vates the resident microglia and secretes inflammatory 
factors [267–270]. Cigliano et  al. found an increase in 
lipid peroxidation and nitro-tyrosine in the hippocam-
pus of rats after 2 weeks of fructose feeding, suggesting 
the presence of oxidative stress damage. The author also 
detected an increase in TNF-α levels, with a positive cor-
relation with oxidative stress [270]. Indirect mechanisms 
have also been reported in the hippocampus. Li et  al. 
found that high fructose-induced intestinal dysregulation 
induces hippocampal neuroinflammation in mice, which 
can be alleviated by SCFA supplementation [192]. What 
is surprising is that excessive maternal fructose intake 
can damage the hippocampus of the offspring, an effect 
linked to reduced expression of the brain-derived neuro-
trophic factor (BDNF) gene [271].

In addition to the hippocampus, fructose-induced 
inflammation has also been observed in other brain parts. 
The hypothalamus, a component of the mesencephalon, 
is the center for regulating visceral and endocrine activ-
ity, where astrocytes play an important role. Inflamma-
tory responses in this region cause various metabolic 
disorders [272–275].

Li et al. revealed that fructose intake induced hypotha-
lamic astrocytosis and inflammation by activating the 
TLR4/NF-κB pathway, resulting in neurological damage 
in the hypothalamus [276]. Similarly, fructose-induced 
inflammatory responses have been observed in the 

frontal cortex. As the frontal cortex is the latest area of 
the brain to mature, its development is susceptible to die-
tary influences [277–280]. Indeed, a fructose diet for two 
weeks has been shown to negatively affect the nuclear 
factor (erythroid derived 2)-like 2 (Nrf2) pathway in the 
frontal cortex of rats, impairing the brain’s antioxidant 
defense system and causing oxidative stress and synaptic 
dysfunction in the frontal cortex [281].

Inflammatory effects of fructose in other body parts
Fructose induces inflammation in various tissues and 
organs [206]. The kidney is primarily responsible for 
filtering impurities and metabolic waste from blood. 
Various studies have demonstrated a strong correlation 
among fructose intake, kidney damage, and inflammation 
[178, 194, 282–284]. Wang et al. showed that a fructose 
diet increased microRNA-377 (miR-377) expression in 
the kidney and miR-377-induced p38 mitogen-activated 
protein kinase phosphorylation and TXNIP expression, 
which in turn activated the NLRP3 inflammasome, ulti-
mately leading to inflammation [285]. Another study 
showed that fructose induced the synthesis of monocyte 
chemotactic protein 1 (MCP-1), recruitment of mono-
cytes or macrophages, and oxidative stress in proximal 
tubular cells; this effect depends on KHK [178, 286]. Fur-
thermore, fructose-induced decreases in renal endothe-
lial NO and ATP levels upregulates the inflammatory 
molecule intercellular adhesion molecule-1 (ICAM-1) 
expression [287].

Similarly, a comparable mechanism has been reported 
in adipocytes. Excessive fructose intake induces the 
expression of MCP-1 and ICAM-1 in adipocytes, lead-
ing to an increase in macrophage infiltration, further 
contributing to inflammation [287–289]. Furthermore, 
fructose increases leptin levels, inducing inflammation 
in adipocytes by releasing ROS [94, 290, 291]. Addi-
tionally, a fructose diet increases visceral adipose tissue 
mass, NF-κB accumulation, and elevated IL-β in rats 
[195]. A fructose-rich diet can also affect pancreatic islet 
cells, leading to hyperinsulinemia and insulin resistance. 
Moreover, fructose induces an inflammatory response in 
the pancreatic islet cells, and its intake increases the size 
and number of pancreatic islets; fructose-induced UA 
stimulates inflammatory mediators and oxidative stress 
in pancreatic islet cells [89, 292, 293].

Co‑mechanisms of fructose in metabolic diseases 
or inflammation
Previous sections have detailed fructose’s role in vari-
ous metabolic diseases; the corresponding studies are 
summarized in Table  2. Although a direct causal rela-
tionship between fructose and obesity remains to be con-
firmed, it has been shown to play an important role in the 
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development of lipid metabolic disorders, MAFLD, and 
metabolic syndromes (including hyperinsulinemia, insu-
lin resistance, hyperuricemia, and hypertension) (Fig. 2) 
[17, 91, 294, 295].

Hyperuricemia is a key contributor to various meta-
bolic diseases. Fructose metabolism induces the produc-
tion of uric acid, which directly causes gout, exacerbates 
insulin resistance, and participates as an inflammatory 
factor in the occurrence of MAFLD and hypertension 
[149, 179, 236].

Inflammation is an important mechanism via which 
fructose exposure leads to metabolic diseases. Excessive 
fructose can induce inflammatory responses in organs, 
such as the gut, liver, brain, and kidneys (Table 3). Acti-
vation of the TLR4/NF-κB pathway is a common mech-
anism of inflammatory responses. In the gut, fructose 
promotes intestinal flora dysregulation, increases LPS 
production, activates the TLR4/NF-κB pathway, and trig-
gers intestinal inflammation [208, 210]. In the liver, fac-
tors such as disordered fructose metabolism, elevated 
uric acid, and fatty acid accumulation can activate TLR4 
in KC, which in turn activates the NF-κB pathway and 
releases pro-inflammatory cytokines [244]. Similarly, 
in brain regions such as the hippocampus, the fructose 
metabolite UA can induce neuroinflammation through 
the TLR4/NF-κB pathway [261].

In conclusion, fructose plays a complex role in various 
metabolic diseases, with inflammation being an impor-
tant contributing pathogenic mechanism. A deeper 
understanding of fructose metabolism and the inflam-
matory responses it triggers could help develop more 
effective strategies to prevent and treat related metabolic 
diseases. Further studies remain warranted to elucidate 
the mechanisms underlying fructose action in different 
organs and tissues and develop targeted interventions.

Complex relationship between fructose and cancer
The link between fructose and tumor has also attracted 
extensive attention in recent years. Long-term high fruc-
tose consumption is implicated in a range of cancers, and 
its role varies depending on the type of cancers [296–
298]. This section collects epidemiological evidence on 
the relationship between fructose and tumors and dis-
cusses the role of fructose in tumor development.

Epidemiological studies on high‑fructose diets and cancer 
risk
Excessive fructose intake is linked to various metabolic 
disorders, as confirmed by epidemiological studies [299–
301]. The relationship between fructose and cancer has 
been a research focus. A previous investigation included 
approximately 1.2 million participants and over 3000 
pancreatic cancer cases to investigate the relationship 

between fructose, carbohydrates, glycemic index, and 
pancreatic cancer risk [302]. The authors revealed for 
the first time the links between fructose intake and pan-
creatic cancer risk [302]. Another study investigated the 
relationship between fructose from diet and colorec-
tal cancer and reported a higher incidence of colorectal 
cancer among those consuming fructose at higher levels 
[303]. Likewise, a 12-year epidemiological study involv-
ing a cohort of Canadian women reported that a high 
intake of sugar-sweetened beverages was associated with 
a significantly elevated risk of endometrial and ovarian 
cancer [304]. Although the authors did not specifically 
identify fructose, most sugary drinks contain fructose as 
an ingredient. Fructose also appears to be associated with 
poor patient prognosis. For example, a study analyzed 
the relationship between the intake of different types of 
carbohydrates and breast cancer-specific mortality in 
patients diagnosed with breast cancer [305]. The data 
from 8,932 breast cancer patients followed for more than 
a decade showed a highly significant positive association 
between higher fructose intake and the risk of breast can-
cer-specific mortality [305].

Nevertheless, not all studies have reported a posi-
tive association between fructose and cancer risk. For 
instance, in a survey of 3,184 adults aged 26–84 years, no 
significant correlation was found between fructose intake 
and the incidence of obesity-related cancers, nor an asso-
ciation with the risk of any site-specific cancer [306]. Fol-
lowing the same trend, a meta-analysis pooled multiple 
prospective cohort studies and found that while excessive 
total sugar and fructose intake were associated with all-
cause and cardiovascular disease mortality, no associa-
tion was found with cancer mortality [307].

These conflicting results highlight the degree of com-
plexity in the fructose-cancer relationship. Fructose sig-
nificantly influences people’s diets, and its effects may 
vary based on age, geography, or dietary habits. [303, 304, 
306]. Conversely, fructose may involve multiple mecha-
nisms in its effects on cancer in the body.

Role of fructose in tumors
Fructose plays complex and diverse roles in tumors 
(Table  4 and Fig.  4). Tumor metabolism favors aerobic 
glycolysis, a process through which ample energy is sup-
plied to the tumor to support the rapid proliferation of 
tumor cells.

Several intermediates produced during glycoly-
sis can act as biomolecule synthesis precursors for the 
rapid expansion and metastasis of tumor cells. Tumor 
metabolism is highly plastic, enabling the utilization of 
available carbon sources to adapt to nutrient-stressed 
environments [157, 308, 309]. Abnormalities in glyco-
lytic metabolism may disturb glucose levels in the tumor 
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microenvironment. Fructose is a potential alternative 
carbon source that tumor cells use to maintain metabo-
lism. After simple metabolism, fructose metabolites can 
directly enter glycolysis and bypass the key rate-limiting 
step of glycolytic phosphofructokinase to satisfy the 
demand for energy and biomolecule synthesis substrates 
in tumor cells and facilitate tumorigenesis and develop-
ment. Under specific conditions, fructose can be phos-
phorylated to fructose 6-phosphate by hexokinase and 
directly enter glycolysis [16, 310]. Similar to glucose, 
fructose affects the survival, growth, and proliferation of 
tumor cells [311, 312].

The indirect tumor‑promoting effect of fructose
Excessive fructose intake is associated with the devel-
opment of gastrointestinal cancers and drives tumor 
growth and metastasis in mice with colorectal cancer 
[21, 22, 320–322]. Dietary fructose positively affects the 
survival and nutrient absorption of small intestinal cells 
in mice. Feeding mice with high-fructose syrup for four 
weeks increased the length of the small intestinal villi by 
15–40%, increased the relative surface area of the intes-
tine, improved nutrient absorption, and significantly 
increased body weight. The growth of mouse small intes-
tinal villi is attributed to the extraction and metabolism 
of fructose by intestinal epithelial cells, which is rapidly 
converted to fructose 1-phosphate by KHK. In mice, 
fructose 1-phosphate was found to inhibit pyruvate 

kinase M2 activity—which protects intestinal epithelial 
cells—and promoted small intestinal epithelial cell sur-
vival, which ultimately increases intestinal tumor load 
[95]. A high-fructose diet upregulates heme oxygenase-1 
(HO-1) expression, which makes mouse melanoma 
immune checkpoint inhibitor treatment resistant, and 
the use of HO-1 small-molecule inhibitors is effective in 
alleviating resistance [313].

In addition, fructose supplementation increases the 
amount of nutrients in the blood, which supports tumor 
development. According to a recently published study 
[314]. Because tumor cells lack the necessary enzymes 
to directly metabolize fructose, they are therefore less 
likely to use fructose for nutrition. The liver metabolizes 
most excess fructose. In co-culture studies, hepatocytes 
were found to have transformed fructose carbon into 
nutrients, which promoted the growth of cancer cells. 
The most noticeable alteration was observed in lysophos-
phatidylcholines (LPCs), in which cancer cells ingested 
and utilized phosphatidylcholine, the primary phos-
pholipid found in cell membranes. Additionally, high-
fructose corn syrup feeding in animal studies increases 
the number of LPC species in the blood of mice. These 
results imply that fructose indirectly stimulates tumor 
growth by increasing the levels of nutrients such as LPC 
in the blood.

Moreover, fructose may indirectly promote tumor 
growth by affecting the polarization of relevant immune 

Table 4 Complex role of fructose in tumor development

SSP the serine synthesis pathway, DNL de novo lipogenesis, HO-1 heme oxygenase-1, LPCs lysophosphatidylcholines, AML acute myeloid leukemia, GLUT5 glucose 
transporter 5, AMPK AMP-activated protein kinase, KHK-A ketohexokinase-A, mTORC1 mTOR Complex 1

Studies Role in tumors Specific Mechanism

Jeong S et al. [16] Directly Promotion High fructose enhances SSP, increasing α-ketoglutarate production, which supports leukemia cell 
proliferation

Goncalves MD et al. [21] Directly Promotion Fructose promotes glycolysis and DNL, increasing fatty acid synthesis for tumor cell growth

Bu P et al. [22] Directly Promotion Upregulated aldolase B enhances fructose metabolism, promoting liver metastasis of colorectal cancer

Taylor S R et al. [95] Indirectly Promotion Fructose improves intestinal cell survival and increases the length of intestinal villi. The increase 
in the length of intestinal villi enlarged the surface area of the mouse intestines, which increased 
the rate of nutrient absorption and thus promoted tumor growth

Kuehm LM et al. [313] Indirectly Promotion Melanoma tumors in mice on the high-fructose diet were resistant to immunotherapy and showed 
increased expression of the cytoprotective enzyme HO-1

Fowle-Grider R [314] Indirectly Promotion fructose supplementation increases circulating nutrients such as LPCs, which can enhance tumor 
growth through a cell non-autonomous mechanism

Yan H et al. [315] Indirectly Promotion Fructose inhibits M1 macrophage polarization, reducing anti-tumor activity by altering calcium ion 
signaling

Chen WL et al. [316] Directly Promotion AML cells are prone to fructose utilization with an upregulated fructose transporter GLUT5, which 
compensates for glucose deficiency

Fang J H et al. [298] Directly Promotion Fructose activates AMPK, enhancing tumor angiogenesis and growth in liver cancer

Kang Y L et al. [317] Directly Promotion Polyol pathway increases endogenous fructose, activating KHK-A and inducing epithelial-mesenchy-
mal transition, promoting cancer metastasis

Zhang Y et al. [318] Inhibition Fructose activates mTORC1 in adipocytes, inducing leptin, which enhances  CD8+ T cell anti-tumor 
activity

Dewdney B et al. [319] Inhibition Fructose promotes apoptosis and inhibits proliferation of hepatoma cells
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cells. Fructose also promotes cancer cell growth by affect-
ing the polarization of tumor-associated macrophages 
(TAMs) [315]. The interaction between hexokinase 2 and 
inositol-1,4,5-trisphosphate receptor 3 was improved by 
fructose treatment. This, in turn, affects intracellular cal-
cium ion flow and signaling and finally inhibits the polar-
ization of M1-type macrophages, which are known to 
have anti-tumor capabilities, thereby indirectly promot-
ing the development of cancer.

The direct tumor‑promoting effect of fructose
Some tumor cells upregulate the transcription of the 
GLUT5-encoding gene SLC2A5 to increase fructose uti-
lization. Acute myeloid leukemia (AML) is metabolically 

characterized by SLC2A5-mediated high fructose uti-
lization, which correlates with patient prognosis. The 
use of the small-molecule drug 2,5-anhydro-D-mannitol 
to block fructose transmembrane transport in a mouse 
AML model resulted in a significant improvement in 
leukemia symptoms and prolonged the survival of mice. 
The use of fructose transmembrane transport blockers 
in AML cells cultured in vitro were found to have signifi-
cantly inhibited malignant proliferation and infiltration 
of cancer cells [316]. Glioma cell lines show high levels 
of GLUT5 expression, and the upregulation of GLUT5 
expression in the glioma tissues of patients is usually 
associated with poor prognosis. Under glucose-poor cul-
ture conditions, the survival and proliferation of glioma 

Fig. 4 The dual role of fructose in cancer. The relationship between fructose and cancer is complex. Fructose promotes the growth of small 
intestinal villi, enhancing their absorption capacity. Fructose is rapidly converted to fructose 1-phosphate by ketohexokinase (KHK), and upregulates 
the expression of glucose transporter 5 (GLUT5). In addition, the metabolism of fructose through the liver leads to a large increase in circulating 
nutrients such as lysophosphatidylcholines (LPCs). These processes indirectly provide appropriate substrates for central carbon metabolism 
during tumor proliferation, and fructose also inhibits the polarization of tumor-associated macrophages, further promoting tumor growth. Because 
of the special metabolic process of fructose, fructose enhances tumor metabolism through glycolysis, the serine synthesis pathway, polyol pathway 
and so on. fructose also enhances the function of mitochondria through the AMP-activated protein kinase (AMPK) after absorbed by tumor cells, 
and enhances fatty acid synthesis by up-regulating the expression of glucose transporter 5 (GLUT5). These processes will directly promote tumor 
growth. On the contrary, fructose can induce adipocytes to secrete leptin, which can act on  CD8+ T cells and enhance the anti-tumor activity 
of  CD8+ T cells
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cells (in vitro cultures) were found to be promoted by 
upregulating GLUT5 expression [323]. The glioma cell 
line LN229 was used to study subcutaneous tumor for-
mation in mice fed 15% fructose water. The results 
showed that mice administered fructose water had larger 
tumor volumes and smaller foci of tumor necrosis. How-
ever, the knockdown of GLUT5 in LN229 cells was fol-
lowed by the inoculation of mice with tumors, and mice 
in the fructose-fed group did not show any of these con-
ditions [323]. The authors of the study reported that the 
analysis of clinical samples revealed that the expression 
of the fructose transporter proteins GLUT5 and GLUT9 
was upregulated in patients with prostate cancer, and 
that their serum fructose levels were higher than those 
in normal subjects. In another study, fructose treatment 
of in  vitro cultured prostate cancer cells PC3 revealed 
that fructose promoted the proliferation and invasion of 
prostate cancer cells. Based on the transcriptome analysis 
of the PC3 cell line, fructose activates the proliferation-
related pathway of prostate cancer cells and up-regulates 
the expression of transforming growth factor-β, wingless-
type MMTV integration site family-4, and other genes; 
the authors concluded that fructose-fed prostate can-
cer cell xenograft tumor model mice promotes prostate 
tumor growth and proliferation [324]. In addition, fruc-
tose accelerates lung cancer cell growth in vivo by upreg-
ulating GLUT5 protein expression and inhibiting AMPK, 
which activates mTORC1 activity and promotes fatty acid 
synthesis and palmitoleic acid production [325].

KHK, a key enzyme in fructose metabolism, is involved 
in fructose utilization by glioma cells and promotes 
tumor progression. Analysis of clinical samples revealed 
that high KHK expression was associated with poor 
prognosis. Silencing KHK in glioma cells significantly 
inhibited their proliferation and migration. Glioma cells 
cultured in fructose medium for four weeks show upreg-
ulated KHK gene expression, increased protein stability, 
and upregulated KHK expression, which accelerated the 
malignant progression of tumors [326].

In primary hepatocellular carcinoma, the downregula-
tion of aldolase B expression correlates with increased 
tumor aggressiveness and is usually associated with poor 
prognosis. Stable expression of aldolase B in primary 
hepatocellular carcinoma promotes the expression of 
DNA demethylase Ten-Eleven Translocation 1, which 
reduces the migratory ability of hepatocellular carci-
noma cells in vitro and their metastatic potential in vivo 
[327]. In contrast, in colorectal cancer liver metastasis, 
aldolase B expression is upregulated and fructose metab-
olism is enhanced, allowing colorectal cancer cells to rap-
idly adapt to the high-fructose environment of the liver. 
Enhanced fructose metabolism increases gluconeogene-
sis, glycolysis, and the pentose phosphate pathway, which 

provides the corresponding substrates for central carbon 
metabolism during tumor proliferation and promotes the 
growth of metastatic liver tumors from colorectal cancer. 
Targeting aldolase B or its upstream regulator GATA6 
may be effective, and reducing fructose intake is impor-
tant for controlling liver metastasis [22].

In a study by Goncalves et al. an intestinal tumorigen-
esis model using adenomatous polyposis coli mutant 
mice  (APC−/− mice) that were administered by gavage 
high-fructose syrup water equivalent to the daily dose 
of one can of soda consumed by a human. Eight weeks 
later,  APC−/− mice did not show a significant increase in 
body weight, but they had an increased tumor load. This 
is most likely because daily intake of high-fructose syrup 
creates a high-fructose environment in the intestinal 
lumen of mice. Excessive fructose is metabolized through 
the consumption of a large amount of ATP, and low lev-
els of ATP activate phosphofructokinase, which increases 
glucose metabolism flux and directs fatty acid synthesis. 
Fatty acids are important for tumor growth and are bio-
molecular substrates used by tumor cells to synthesize 
cytosolic or signaling molecules. The authors of the study 
concluded that fructose promotes intestinal tumorigen-
esis in mice by promoting glycolysis and DNL [21].

Serine is an essential nutrient specific to tumor cells, 
and the serine synthesis pathway (SSP) is important for 
tumor metabolism. In SSP, 3-phosphoglycerol derived 
from glycolysis is converted to serine by various enzymes 
to provide the metabolic precursors for one-carbon 
metabolism [328]. Meanwhile, α-ketoglutarate produced 
during SSP enters the TCA cycle, providing substrates 
for nucleotide synthesis and to maintain redox balance 
among tumor cells [328–332]. High fructose levels can 
drive SSP in AML cells and exacerbate tumor burden. 
Acute myeloid leukemia cells are more SSP-dependent 
in high-fructose environments. These cells mediate 
their proliferation in the presence of glucose deficiency 
by upregulating SSP flux and producing α-ketoglutarate 
from glutamine. Targeting the rate-limiting enzyme 
phosphoglycerol dehydrogenase in SSP in a high-fruc-
tose environment significantly reduced tumor load and 
slowed leukemia progression in mice [16]. Moreover, 
fructose promotes mitochondrial respiration by activat-
ing AMPK, which increases the proliferation and migra-
tion capacity of tumor endothelial cells and promotes 
tumor angiogenesis, growth, and metastasis in hepato-
cellular carcinoma xenografts and Myc/sgp53-induced 
hepatocellular carcinoma mouse models [298]. An 
SLC2A5 inhibitor was hsown to have effectively inhib-
ited fructose-induced tumor angiogenesis and suppresses 
tumor growth in mice [298].

The polyol pathway facilitates the production of 
endogenous fructose. Glucose is reduced to sorbitol by 
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NADPH and aldose reductase. Sorbitol is oxidized by 
 NAD+ and catalyzed by sorbitol dehydrogenase to pro-
duce endogenous fructose and NADH [333]. Endogenous 
fructose production coupled with KHK, which is com-
monly highly expressed in tumors, bypasses the rate-
limiting step in glycolysis and rapidly meets the energy 
and substrate requirements of tumor cell growth, thereby 
promoting tumor cell growth. Schwab et  al. reported a 
direct correlation between the polyol pathway activity 
and tumor development [334]. Aldo–keto reductase fam-
ily 1 member B1 (AKR1B1) encodes a specific member 
of the Aldo–keto reductase superfamily that catalyzes 
the reduction of glucose to sorbitol and has an important 
role in the polyol pathway [335]. AKR1BA is associated 
with epithelial mesenchymal transition in lung cancer 
patient samples. Inhibition of epithelial-to-mesenchymal 
transition was found to occur after in  vitro knockdown 
of AKR1B1 in mesenchymal-like cancer cells [334]. There 
is a link between the polyol pathway and gastric cancer 
progression. In gastric cancer cell lines, hyperglycemia 
induces endogenous fructose formation by increasing 
the flux of the polyol pathway, which in turn activates the 
KHK-A signaling pathway and inhibits CDH1 expression, 
thus inducing epithelial mesenchymal transition and pro-
moting gastric cancer metastasis [317].

When taken together, fructose induces metabolic 
stress in tumor cells, leading to metabolic reprogram-
ming. Fructose promotes tumor development mainly by 
upregulating the expression of the fructose transporter, 
GLUT5, and metabolism-related enzymes to meet the 
energy and substrate requirements of tumors. The meta-
bolic reprogramming of tumor cells increases fructose 
metabolism, glycolysis, DNL, and polyol pathway fluxes 
through multiple pathways, providing synthetic precur-
sors for tumor development, regulating functional gene 
expression, and promoting tumor progression [336, 337]. 
Thus, the fructose transporter protein GLUT5 or the key 
enzymes of fructose metabolism, KHK and aldolase B, 
are potential targets for anticancer treatment.

The tumor‑suppressing effect of fructose
Although the mainstream view among researchers is that 
fructose promotes cancer, some epidemiological stud-
ies have shown that fructose is protective against oral 
and lung cancers in men, and against lung and ovarian 
cancers in women [318, 321, 338]. Recently, Zou et  al. 
published their latest research on fructose and tumors 
[318]. In contrast to the generally held view, the authors 
reported that that fructose inhibited tumor growth and 
induced leptin secretion from adipocytes by activating 
mTORC1 in white adipose tissue cells. Adipocyte-derived 
leptin acts on  CD8+ T cells to enhance the anti-tumor 
activity of  CD8+ T cells to control transplanted lung 

tumors. Transcriptome analysis of  CD8+ T cells revealed 
that tumor-infiltrating  CD8+ T cells in high-fructose-
fed mice were predominantly early stage  CD8+ T cells, 
whereas tumor-infiltrating  CD8+ T cells in fructose-free 
control mice were predominantly exhausted. Therefore, 
fructose treatment can reduce the number of exhausted 
 CD8+ T cells, downregulate the overall exhaustion rate 
of  CD8+ T cells, and increase the proliferation rate and 
IFN-γ production of  CD8+ T cells, thereby achieving 
anti-tumor effects (Fig. 4) [318]. Currently, it is not clear 
how fructose and leptin inhibit  CD8+ T cell exhaustion. 
One possible mechanism is that fructose and leptin reor-
ganize T cell metabolism and maintain T cell stemness. 
Moreover, the in-depth mechanism of the fructose-leptin 
axis in the regulation of the tumor immune microenvi-
ronment and its application in tumor immunotherapy 
warrant further study. In addition to fighting tumors by 
regulating the immune microenvironment, fructose was 
found to significantly inhibit the proliferation of cultured 
hepatoma cells Huh7 and promote cell apoptosis [319], 
indicating that fructose may have a direct anti-tumor 
function in some tumors.

Given the positive role of fructose in  CD8+ T cell-
mediated antitumor immunity, the use of fructose as a 
nutritional supplement or in combination of fructose 
supplementation with adoptive T cell therapy may be a 
promising avenue for cancer treatment. However, further 
clinical evidence is still required to determine whether 
this effect occurs in humans. In addition to affecting adi-
pocyte metabolism, the direct role of fructose in regu-
lating T-cell metabolism and function has not yet been 
identified. When considering the opposing effects of 
fructose on tumors, fructose may exert different regula-
tory effects on different tumors. Therefore, the complex 
regulatory mechanisms of fructose in specific tumors and 
the tumor immune microenvironment require further 
investigation.

Therapeutic modulation of fructose metabolism
In modern society, human consumption of fructose is 
increasing, and the adverse effects of fructose on humans 
are becoming increasingly clear. Today, regulating the 
metabolism of fructose has become a key area in the 
investigation of metabolic diseases and inflammation, 
and is a highly promising field for cancer treatment.

Intervention of fructose metabolism 
through the GLUT5‑KHK axis
GLUT5 expression is linked with numerous metabolic 
syndromes and tumors. GLUT5 inhibition lowers the 
total fructose in the body, which may have beneficial 
implications in slowing metabolic disorders, reduc-
ing inflammation, and even interfering with tumor 



Page 18 of 29Li et al. Molecular Biomedicine            (2025) 6:43 

development [339, 340]. Only a few GLUT5 inhibitors are 
currently available; one study yielded a small molecule 
inhibitor, N-[4-(methylsulfonyl)−2-nitrophenyl]−1,3-
benzodioxol-5-amine (MSNBA), which blocks fructose 
uptake by specifically binding to the fructose site of 
GLUT5 [341]. Identifying it may aid in studying fructose 
and its related health issues.

KHK is a crucial enzyme in the metabolism of fructose 
and the first to act on it. KHK catalyzes the conversion of 
fructose to fructose 1-phosphate, and hence is a very vital 
target for controlling the metabolism of fructose. KHK 
inhibition markedly decreases hepatic fat deposition, 
enhances glucose tolerance, and reverses MAFLD [342–
344]. Recently, the synthesis of the inhibitors of KHK has 
been accomplished; one such inhibitor, PF-06835919, has 
drawn much interest [345]. In a phase 2 randomized clin-
ical trial, 300 mg of PF-06835919 reduced the whole liver 
fat mass in MAFLD patients and inflammatory markers. 
This offers a novel therapeutic approach for managing 
metabolic disorders caused by fructose and inflamma-
tory reactions [346]. Other efficient KHK inhibitors have 
also been reported; however, clinical studies remain 
warranted to test these drugs [347]. KHK expression in 
several tumor cells is abnormally high, and fructose can 
drive tumor growth and metastasis through the activity 
of KHK [297, 310, 348]. This suggests that targeting KHK 
may be a potential cancer treatment strategy.

Intervention of fructose metabolism through modulation 
of gut microbes
Fructose is directly linked to gut flora dysbiosis. Fructose 
feeding has been shown to modify the gut flora composi-
tion to induce an inflammatory response and metabolic 
abnormalities; regulating the gut microbiota to correct 
fructose metabolism may counteract fructose-induced 
illness [349–351]. Broad-spectrum antibiotics can sup-
press the hippocampal neuro-inflammation in fructose-
fed mice by regulating gut microbiota; however, the 
effectiveness of antibiotics needs to be verified through 
more definitive studies, considering their safe use in 
humans [192]. Certain natural antioxidants isolated 
from plants and animals have therapeutic properties. For 
instance, the water extract of Lycium ruthenicum Mur-
ray ameliorates neuroinflammation and cognitive deficits 
induced by a high-fructose diet by modifying the gut-
liver-brain axis. Furthermore, it can alter the composition 
of the intestinal microbiota, increasing the abundance 
of beneficial bacteria [352]. Anthocyanins from Lycium 
ruthenicum Murray can effectively reduce the ecological 
dysbiosis of the intestinal microbiota and preserve the 
integrity of the intestinal barrier, lowering neuroinflam-
mation caused by a high-fructose diet in rats [353].

Individuals seem to respond more readily to the thera-
peutic advantages of these bioactive compounds than 
to antibiotics. These substances exhibit significant bio-
logical activities, particularly antioxidant activities, and 
have numerous health benefits, in addition to their role 
in treating fructose-induced disorders. Furthermore, 
most of these compounds are safe and nontoxic; there-
fore, developing therapeutic drugs based on these bio-
logically active substances is promising. Current research 
on reversing and preventing the side effects of fructose is 
still limited because of unclear mechanisms and the com-
plexity of its effects, particularly in targeted therapy.

Conclusion and future perspectives
Fructose, the sweetest hexose in nature, is a popular 
additive in processed foods and beverages, the metabo-
lism of which plays a key role in the response of organ-
isms to extreme environmental conditions (such as food, 
water, and oxygen shortages). Fructose is metabolized 
differently from glucose, leading to its rapid absorption in 
the liver. However, high consumption of fructose is fre-
quently linked to obesity and several metabolic disorders, 
particularly in nations experiencing greater economic 
development and greater access to processed foods [7]. 
The relationship between fructose and obesity remains 
debatable: some studies suggest that fructose directly 
causes obesity, whereas others indicate that fructose 
does not appear to have a direct impact on obesity [86, 
92]. The intricacy of fructose metabolism in the body is 
reflected in this side, and further research is necessary 
to determine whether fructose induces obesity directly. 
Also, the triggers of metabolic diseases are extremely 
complex and involve various biological processes, such 
as dysregulation of adipose synthesis, activation of 
specific cellular receptors, and aberrant expression of 
related pathways (Fig.  2). Although several studies have 
revealed that fructose can induce a wide range of meta-
bolic diseases, including MAFLD, hyperinsulinemia, 
hyperuricemia, and hypertension, the underlying mecha-
nisms remain obscure and require further investigations. 
Because of different experimental conditions and testing 
standards, conflicting views exist among researchers [26, 
354–357]; therefore, when investigating the connection 
between metabolic diseases and fructose consumption, 
the association must be confirmed from various aspects.

Moreover, inflammation is a detrimental effect of fruc-
tose, with substantial evidence indicating that excessive 
fructose intake drives inflammatory effects via various 
mechanisms (Fig.  3). In the intestine, fructose damages 
the intestinal barrier and causes dysbiosis of the intesti-
nal bacterial flora, directly or indirectly, inducing inflam-
matory responses [201, 206]. When fructose enters the 
liver, it induces ER and oxidative stress in liver cells, 
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activating relevant inflammatory pathways [232]. Mac-
rophages in the liver are negatively affected by fructose. 
Indeed, excessive fructose intake induces an inflamma-
tory response in the brain, affecting the hippocampus, 
hypothalamus, and parts of the cerebral cortex. Addition-
ally, fructose induces a systemic inflammatory response, 
and its harmful effects cannot be ignored. Therefore, 
future research should focus on the latent targets of these 
induction mechanisms to identify relevant therapeutic 
approaches.

Fructose increases tumor risk (Table  4). Tumor cells 
exhibit abnormally high glycolytic metabolic activity and 
rapidly consume glucose [309]. Fructose is the second 
most abundant blood sugar in the body, and a high-qual-
ity alternative carbon source for tumor cells to support 
survival and growth when glucose is scarce [310]. Fruc-
tose provides energy for tumor cells and biomolecular 
precursors for tumor cell proliferation by increasing the 
flux of glycolysis, the PPP, and the polyol pathway. Even if 
tumor cells do not directly metabolize fructose, they still 
produce large amounts of circulating nutrients through 
liver cells to promote tumor growth. In turn, fructose 
affects anti-tumor-related immune cells to promote 
tumor development.

However, a recent study has confirmed that fruc-
tose promotes cancer by demonstrating that fructose 
enhances the anti-tumor response of  CD8+ T cells by 
promoting leptin secretion from adipocytes (Fig. 4) [318]. 
Currently, it appears that the effect of fructose on tumor 
cells is a “double-edged sword.” Research on the role of 
fructose should be based on the specific tumor micro-
environment involved in fructose metabolism, tumor 
metabolism, and other complex and precise regulatory 
mechanisms.

Multilevel targeted fructose metabolism or targeted 
fructose metabolism in combination with current chem-
otherapeutic and immunosuppressive drugs may provide 
novel cancer treatments. Current research on the role of 
fructose in tumors tends to focus on metabolic changes 
in tumor cells in a high-fructose environment, whereas 
research on the influence of fructose on immune cells in 
the tumor microenvironment is scarce. Future research 
should explore the metabolic and behavioral changes 
in immune cells in the tumor microenvironment in a 
high-fructose environment. Several studies investigat-
ing the effects of fructose on the immune cells indicate 
that fructose induces metabolic reprogramming of mul-
tiple immune cells and increases immune cell inflamma-
tion. Whether future cell therapies can specifically target 
immune cells to deliver fructose and enhance the anti-
tumor activity of immune cells remains to be determined.

Preliminary studies on intervention strategies for fruc-
tose-induced diseases have been conducted. GLUT5 is 

the primary fructose transporter. Although targeting it 
has therapeutic potential, GLUT5 has several physiologi-
cal roles; therefore, side effects associated with blocking 
its expression must be considered. The effectiveness of 
PF-06835919, a small-molecule inhibitor of KHK, has 
been demonstrated in clinical trials, the results of which 
confirmed the therapeutic utility in targeting KHK [358]. 
However, KHK with aberrantly high-level expression 
in cancer is KHK-A and not KHK-C, indicating that the 
development of KHK inhibitors must address the prob-
lem of selectivity to mitigate side effects [310]. In regu-
lating gut microbiota, the exploration and application 
of biologically active substances have attracted interest. 
These substances might offer numerous undiscovered 
advantages for humans, with alleviating fructose-induced 
diseases being just one of many effects. Therefore, this 
class of substances has great potential for future drug 
development. In addition, substances that modulate 
the gut microbiota (e.g., probiotics and prebiotics) may 
have similar effects and should, therefore, be explored 
[11]. Interventions targeting the gut microbiome may 
need to consider differences among various populations. 
[349]. Overall, intervention via fructose metabolism 
requires targeting multiple pathways and individualized 
approaches. However, more simply, reducing fructose 
intake may be the most straightforward strategy.
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