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Abstract

Fructose, a prevalent hexose, has become a widely used food additive, with its usage rising significantly

because of socio-economic advancements and shifts in human dietary habits. Excessive fructose intake has been
implicated in obesity, cardiovascular disease, metabolic syndromes, inflammation, and cancer, among other dis-
orders. This review discusses the absorption, distribution, and metabolism of fructose and the links between fruc-
tose metabolism and major metabolic pathways. The role of fructose in metabolic diseases, including metabolic
dysfunction-associated fatty liver disease, hyperinsulinemia, and hyperuricemia, is also highlighted. Furthermore,
the role of fructose in the development of chronic inflammation, including gut inflammation, liver inflammation,
and neuroinflammation, is discussed. Lastly, in the context of cancer development, this review summarizes the dual
role of fructose in tumors, both pro- and anti-tumor effects. Future studies on the role of fructose in cancer should
focus on the complexity of physiological and pathological conditions, such as the specific tumor microenviron-
ment and metabolic status. Fructose has been shown to induce metabolic reprogramming of multiple immune cells
and increase pro-inflammatory immune responses; therefore, inhibiting or promoting its metabolism may regulate
immune responses. And targeting fructose metabolism may be a promising approach to treating metabolic diseases,
inflammation, and cancer.
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Introduction

Humans have a natural preference for sweet foods, which
induce strong sensory pleasure and can increase the
chances of survival of individuals in extreme environments,
leading to a stronger evolutionary advantage [1]. Fructose
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and be a valuable nutrient [5, 6]. However, extensive
research has highlighted the hazards of fructose to
human health. Indeed, high fructose intake can lead to
obesity, metabolic disorders, and cardiovascular and cer-
ebrovascular diseases [3, 7—11], and has been linked to
inflammation, as excessive intake induces the secretion of
various pro-inflammatory cytokines [12—14]. Also fruc-
tose is inextricably associated with cancer occurrence
and development [7, 15, 16].

The increasing prevalence of metabolic disorders in
modern society and their association with excessive
fructose intake emphasize the importance of fructose
in metabolic dysregulation [17-19]. Inflammatory dis-
eases often coincide with metabolic disorders, illustrat-
ing the systemic effects of fructose on human health [12,
20]. Additionally, the emerging link between fructose
and cancer biology, both beneficial and detrimental, has
made fructose a hot research topic in oncological stud-
ies [21, 22]. Therefore, herein, we reviewed the recent
research on fructose metabolism and its contribution to
metabolic diseases and inflammatory responses, focusing
on the association between fructose intake and cancer.

First, this review outlines the absorption, transporta-
tion, and metabolic pathways of fructose, highlighting
its differences from glucose metabolism. Subsequently,
it analyzes the mechanism underlying the role of fruc-
tose in metabolic disorders, such as obesity and meta-
bolic dysfunction-associated fatty liver disease (MAFLD;
also known as nonalcoholic fatty liver disease, NAFLD).

Table 1 Metabolic differences between fructose and glucose
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This review also explores how fructose triggers sys-
temic inflammation by disrupting the intestinal barrier
and inducing endoplasmic reticulum (ER) and oxidative
stress. This review provides insights into the dual role of
fructose in cancer in promoting tumor cell proliferation
and metabolic reprogramming and potentially potentiat-
ing immune anti-tumor responses under specific condi-
tions. A summary of the current preventative strategies
for fructose-related health risks and key directions for
future research are finally proposed to provide a theo-
retical basis for the prevention and treatment of fructose-
related diseases.

Fructose and fructose metabolism
Fructose, an isomer of glucose and the most common
type of ketohexose, is found in high concentrations in
honey, fruits, and vegetables. It combines with glucose
in equal quantities to form sucrose, a major cyclic disac-
charide in plants. In industrial food production, fructose
is essential owing to its high sweetness, ease of storage,
and low cost, hence, it is added to several beverages and
manufactured foods as sugar in sucrose or high-fructose
syrup to increase food palatability [23]. With the contin-
uous increase in pre-made foods and drinks, the global
consumption of fructose has significantly increased by an
estimated 1,000% over the past 50 years [24].

The absorption and metabolism of fructose differ from
those of glucose (Table 1). Glucose relies on transporter
proteins such as Na*- and glucose-linked transporter 1
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Chemical Structure

OH
HO.
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HOH,C

HO
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by GLUT2 and possibly GLUT8

Initial Phosphorylation
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Acetyl-CoA Acetyl Coenzyme A



Li et al. Molecular Biomedicine (2025) 6:43

(SGLT1) for absorption active transport, whereas fruc-
tose primarily relies on glucose transporter 5 (GLUTS5),
which facilitates its absorption via passive diffusion [25].
The key rate-limiting enzymes involved in the metabo-
lism of glucose and fructose also differ. This allows
fructose to bypass some key rate-limiting steps and
directly enter the metabolic pathways. The absorption
and metabolism of glucose are strictly regulated, which
makes glucose a stable source of energy, while the unreg-
ulated metabolic characteristics of fructose make it more
likely to cause harm. The following sections provide an
overview of fructose absorption, transport mechanisms,
and metabolic pathways in different tissues.

Fructose absorption and transport

Typically, fructose concentration in human peripheral
blood plasma is 0.04 mM. Following oral administra-
tion of large amounts of fructose (0.5 g/kg), serum fruc-
tose levels surge 50—100-fold [26—28]. Despite this initial
spike, the body reaches fasting levels within 2 h [29-31]
as fructose metabolism differs from that of glucose in
that the site of fructose metabolism is centralized in the
intestine and liver [32, 33]. Fructose was first believed
to be metabolized primarily in the liver; however, fruc-
tose enters the intestine first and is passively transported
across the cell membrane from the intestinal lumen into
intestinal epithelial cells via GLUT5 (also known as hex-
ose transporter receptor, SLC2A5) localized at the brush
border of intestinal epithelial cells, highlighting the intes-
tinal role in fructose metabolism. GLUT5, a fructose-
specific transporter with a greater affinity for fructose
than glucose, is important for the intestinal absorption
of dietary fructose. GLUT5-deficient mice have approxi-
mately 90% lower serum fructose levels and 75% lower
levels in the jejunum than their wild-type counterparts
[34]. In hepatocytes, as GLUTS5 is poorly expressed in the
liver, it may not be the primary transporter of fructose;
rather, GLUT2 may be [35, 36]. Additionally, GLUTS has
an affinity for fructose that may contribute to fructose
transport in hepatocytes [37, 38].

Metabolism of fructose in specific organs or tissues

Fructose entering intestinal epithelial cells is phospho-
rylated by ketohexokinase (KHK) and converted into
glucose, lactate, glycerate, and other organic acids [19].
Fructose-derived metabolites enter the liver via the por-
tal vein [39]. If ingested at relatively low doses and rates
of intake, fructose is readily cleared by the intestines [40].
However, on exceeding the intestinal absorption capac-
ity, fructose reaches the liver, where it is metabolized [32,
41]. Reportedly, 90% of normal dietary fructose is pro-
cessed primarily in the intestine [32, 42, 43]. However,
if excess fructose is consumed, it will be transferred to
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the liver for metabolism [39, 44, 45]. Particularly, excess
fructose is excreted from the intestinal epithelium via
GLUT?2 and enters the portal vein, reaching the liver
[46]. In hepatocytes, fructose is first phosphorylated to
fructose 1-phosphate by KHK, and this reaction is rapid
and irreversible. The high affinity of KHK for fructose
and the fact that KHK is not regulated by its end prod-
ucts or denaturation allows fructose to enter the liver for
rapid extraction and metabolism, with negligible escape
into circulation. Subsequently, fructose 1-phosphate is
cleaved by aldolase B into dihydroxyacetone phosphate
and glyceraldehyde (Fig. 1).

Shared similarities exist between the metabolisms
of fructose in the intestine and liver; however, the abil-
ity of intestinal epithelium to metabolize fructose is very
limited. Only GLUTS5 transports fructose in the small
intestine compared to the liver; the ability of GLUT5
to transport fructose is limited despite its increase in
expression upon fructose intake [46, 47]. However, other
proteins that transport fructose are expressed in the
small intestine at much lower levels than GLUTS5, yet are
not regulated by fructose [37, 48]. Conversely, in the liver,
the expression of proteins and enzymes associated with
the transport and metabolism of fructose is high. In con-
trast, the small intestine is more inclined to rapidly trans-
locate fructose than to metabolize it, and the expression
of its associated proteins and enzymes is inducible. Con-
sidering the harmful effects of excess fructose, restrict-
ing fructose metabolism in the small intestine may be a
potential protection strategy for intestinal cells [49, 50].
Therefore, the small intestine is the site of fructose trans-
port and the initial site of metabolism, whereas the liver
is the primary site of fructose metabolism. This strategy
of different division of labor can be attributed to evolu-
tionary selection.

In addition to the small intestine and liver, the remain-
ing organs can also metabolize fructose. Indeed, previ-
ous studies have reported that the kidney can metabolize
fructose [51, 52]. In healthy kidneys, the proximal tubule
is the primary site of fructose metabolism, which takes
up urinary fructose via GLUT5 and metabolizes it in the
cytoplasm [53, 54]. Moreover, Na*- and glucose-linked
transporter 5 (SGLT5), expressed only in the kidney, is
also an essential transporter protein for fructose reab-
sorption [55-57]. Notably, the kidney produces endog-
enous fructose, which characterizes the metabolism of
this fructose as an important risk factor for kidney injury
[54, 58, 59]. Along with the liver, intestine, and kidney,
which metabolize most of fructose, adipose tissues and
muscles can also metabolize the remaining fructose [60—
62]. Adipocytes and muscles take up fructose through
GLUTS5; however, they metabolize fructose primarily
with hexokinase [63, 64]. As fructose is metabolized in
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Fig. 1 Fructose metabolism. Fructose first enters the intestine and is passively transported from the intestinal lumen across the cell membrane

to the intestinal epithelial cells by glucose transporter 5 (GLUTS). Excess fructose reaches the liver through the portal vein for further metabolism.
After entering hepatocytes, glucose transporter protein 2/8 (GLUT2/8) facilitates the transport of fructose, which is rapidly phosphorylated by KHK
to fructose 1-phosphate and further metabolized to glucose, lactate, glycerate, and other organic acids

various tissues or organs, excessive fructose intake can be
harmful.

Fructose in relationship to central carbon metabolism

Fructose is mostly phosphorylated by fructokinase to
generate fructose-1-phosphate, unlike glucose, which
enters glycolysis via phosphorylation by hexokinase
to form glucose-6-phosphate (Table 1). Consequently,
fructose-derived glyceraldehyde and dihydroxyacetone

phosphate bypass glucokinase and phosphofructokinase,
the key rate-limiting enzymes, and enter the glycolysis/
gluconeogenic carbon pool. Glyceraldehyde is catalyzed
by glyceraldehyde kinase to form 3-phosphoglyceralde-
hyde, which enters the glycolytic pathway. In contrast,
glyceraldehyde can form dihydroxyacetone phosphate
catalyzed by alcohol dehydrogenase, glycerol kinase, and
glycerol phosphate dehydrogenase. Dihydroxyacetone
phosphate is then converted to 3-phosphoglyceraldehyde
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by phosphoglycan isomerase and enters the glycolytic
pathway.

The metabolic pathways are complex and overlap.
Fructose is closely linked to glycolysis and impacts other
metabolic pathways. For example, fructose-derived dihy-
droxyacetone phosphate or fructose-6-phosphate can
enter the pentose phosphate pathway (PPP) through
hexose phosphate isomerase [65]. Lodge et al. observed
fructose labeled with C13 in PPP, specifically ribose-
5-phosphate [66]. While ribose-5-phosphate and its
derivatives can be used to synthesize DNA, RNA, and
other important biomolecules, this shows the important
role of fructose in the PPP.

Furthermore, fructose can be converted to glucose
through gluconeogenesis, which occurs frequently in
the kidneys [54, 67], maintaining glucose homeostasis.
In contrast, glucose can be converted to fructose via the
polyol pathway [68, 69]. This highlights the close rela-
tionship between fructose and glucose.

The complicated biochemical processes of fructose
metabolism include intestinal absorption, liver trans-
port, and integration into the central metabolic pathways
[70]. Consuming fructose more than the body can digest
induces metabolic disturbances. The liver is an essential
organ for this process. Understanding these metabolic
pathways and their health effects is essential, especially
considering the increasing global fructose consumption.

Role of Fructose in metabolic diseases

Several studies have linked consuming large amounts of
fructose to the development of obesity and metabolism-
related diseases, such as abnormal lipid metabolism,
MAFLD, and gout [71-77]. In this section, the review
summarizes several metabolic diseases associated with
fructose and briefly describe their causal mechanisms
(Table 2 and Fig. 2).

Fructose consumption promotes obesity

The prevalence of obesity has been steadily increasing,
with the same trend seen for the consumption of fructose,
potentially linking fructose and obesity [2]. In a study,
participants who consumed soda with high-fructose
corn syrup for three weeks experienced notable weight
gain, with similar outcomes observed with sucrose [86,
87]. These early studies used only mixtures containing
fructose and ignored whether fructose alone had a cor-
responding effect. In later experiments, researchers real-
ized that fructose did not appear to have a direct effect
on weight [88-90]. In a recent test of sugary beverages
involving 131 participants, those who consumed glucose
and high-fructose corn syrup gained significantly more
weight, whereas no significant difference was observed
in weight among those who consumed only fructose [91].
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These findings indicate that fructose did not cause weight
gain under equal caloric intake [92] and may indirectly
increase body weight by increasing energy intake [93]. In
animal studies, long-term fructose intake induced lep-
tin resistance, which, in turn, promoted energy intake
and led to obesity [71, 94]. It has also been claimed that
fructose intake reduces leptin concentrations but does
not have a significant effect on weight [91]. In addition,
fructose may also promote the survival of intestinal cells
and increase the length of intestinal villi, which in part
enhances nutrient absorption and contributes to obesity
[95]. Interestingly, fructose mediates a survival switch
in organisms that aids in storing energy when resources
are lacking (similar to the state of animals preparing for
hibernation) [93]. But in the present resource-rich world,
this protective mechanism has harmed organisms. Thus,
the obesity caused by fructose may not be a direct effect,
but rather an indirect promotion of the energy intake of
the body through other pathways.

Fructose impacts lipid metabolism and MAFLD

MAFLD, a chronic liver disease closely related to meta-
bolic disorders, has become a major public health chal-
lenge, the risk of which can be significantly increased
by high-fructose intake [78, 96, 97].

Enhanced de novo lipogenesis (DNL) is a major cause
of MAFLD [98]. Fructose promotes DNL through sev-
eral mechanisms. Fructose is metabolized in the liver to
the DNL substrates dihydroxyacetone, phosphate, and
glyceraldehyde. In the presence of a-phosphoglycerol
dehydrogenase, dihydroxyacetone phosphate produces
glycerol phosphate. The reduced glycerophosphate pro-
duces 1,2-diacylglycerol (DAG) through various enzy-
matic reactions.

In a process catalyzed by acyltransferases, DAG inter-
acts with acyl-coenzyme A to form triacylglycerol (TAG),
whose levels are associated with DNL [99, 100]. In con-
trast, TAG is involved in steatosis via binding to lipid
droplets or in the formation of very low-density lipopro-
tein conjugates secreted from the liver into circulation.
Glyceraldehyde is a fructose derivative phosphorylated
to 3-phosphoglyceraldehyde by triphosphate kinases and
enters the glycolytic process [19]. Following glycolysis,
3-phosphoglyceraldehyde is metabolized to pyruvate,
which is then oxidized and decarboxylated by the pyru-
vate dehydrogenase complex to form acetyl-coenzyme A
(acetyl-CoA). Under energy-deficient conditions, acetyl-
CoA enters the tricarboxylic acid cycle (TCA cycle) and
is metabolized to release energy. Under energetic condi-
tions, acetyl-CoA acts as a substrate and participates in
DNL. Acetyl-CoA can also be carboxylated to form mal-
onyl-CoA, which inhibits the transfer of fatty acids from
carnitine palmitoyl transferase (CPT1A) to mitochondria
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Fig. 2 Fructose metabolism in metabolic diseases. Fructose is metabolized in the liver to form 1,2-diacylglycerol (DAG) and triacylglycerol (TAG),
which ultimately contribute to de novo lipogenesis (DNL), as does acetyl-coenzyme A (Acetyl-CoA). Fructose intake also activates a key transcription
factor, sterol regulatory element binding protein 1c (SREBP1¢), which increases DNL levels. Dysregulation of lipid metabolism in hepatocytes
because of high fructose intake ultimately causes metabolic dysfunction-associated fatty liver disease (MAFLD). High intake of fructose also causes
hyperinsulinemia and reduces insulin sensitivity. Indirectly, fructose stimulates the secretion of glucagon-like peptide-1 (GLP-1) from L-cells,

leading to increased insulin secretion. Fructose activates sweet taste receptors (TRs) and the protein kinase B/forkhead box protein O1 (Akt/FoxO1)
pathway on B-cells, stimulating insulin secretion. In addition, fructose causes liver and kidney cells to accumulate more uric acid (UA), leading

to hyperuricemia. Fructose can also contribute to hypertension by affecting the renal renin-angiotensin—-aldosterone system (RAS), as well as insulin

resistance caused by elevated UA

for oxidation, increasing the fatty acid stocks available for

TAG production [101].

In addition, fructose intake increases DNL levels
by activating key transcription factors [102].

regulatory element-binding protein 1c (SREBPlc) is a

regulator of adipose synthase, whose activity increases

Sterol

upon fructose intake. Dihydroxyacetone phosphate is a
fructose metabolite that activates the mTORC1 pathway
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and promotes SREBPlc activation [103]. However,
SREBPIc is regulated at the transcriptional and post-
translational levels by nutrients and hormones [19, 45].
In summary, fructose promotes DNL and is an impor-
tant factor in MAFLD [17, 104, 105]. A high-fructose
diet increases the rate of fasting DNL from 2 to 9% [106].
In abdominally obese men on a habitual diet for over 12
weeks, 75 g/day fructose intake significantly increased
DNL in the fasting state and 4 to 8 h following a meal
[107, 108]. Similarly, nine days of isocaloric fructose
restriction as part of a normal diet resulted in a signifi-
cant decrease in DNL in 37 of 40 children with obesity
[109].

Fructose contributes to hyperinsulinemia and insulin
resistance

Insulin regulates blood glucose levels, which are secreted
by pancreatic beta cells [110]. When insulin is over-
produced or not removed promptly, it may manifest as
hyperinsulinemia [111-115]. Insulin resistance is defined
as the inability of a given amount of insulin to promote
normal glucose uptake and utilization and can also be
understood as reduced sensitivity and responsiveness to
insulin action [116, 117]. Studies have shown a strong
link between hyperinsulinemia and insulin resistance,
a precursor to the development of diabetes mellitus
[118-120].

Insulin resistance co-occurs with hyperinsulinemia
because of defective insulin action [119, 121]. Fructose
intake can trigger hyperinsulinemia and insulin resist-
ance [80, 122—-124]. Indeed, high fructose intake reduces
insulin sensitivity and glucose tolerance in rats [125,
126]. Fructose also directly activates sweet taste recep-
tors on beta cells, promoting glucose-stimulated insu-
lin secretion in humans and mice [81]. The authors also
found that this mechanism only occurs in the presence
of glucose, suggesting a synergistic interaction between
fructose and glucose [81, 127]. However, fructose cannot
directly promote insulin secretion because of the absence
of GLUTS5 in beta cells, and fructose intake stimulates
glucagon-like peptide-1 (GLP-1) secretion via GLUT5-
containing L-cells in the gut, thereby increasing insu-
lin secretion, an effect more pronounced in individuals
with obesity [80, 128, 129]. Furthermore, Li et al. found
that fructose activates the protein kinase B/forkhead box
protein O1 (Akt/FoxO1l) pathway in beta cells, which
mediates the action of leptin on beta cells and promotes
insulin secretion [83, 130—132]. High fructose intake can
reduce the expression of insulin receptors, insulin recep-
tor substrate-1, protein kinase B (Akt), and glucose trans-
porter 4 (GLUT4), directly inducing insulin resistance
[133, 134]. Fructose intake also decreases mRNA expres-
sion of adiponectin, adiponectin receptor R1 (AdipoR1),
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and AMP-activated protein kinase (AMPK)-a [134, 135]
and reduces adiponectin, which correlates with insulin
sensitivity [82, 136, 137]. Evidently, fructose intake has
persistent adverse effects in individuals with hyperinsu-
linemia [123].

Fructose causes hyperuricemia and hypertension
Uric acid (UA) is the end product of purine metabolism,
not further degraded as the body lacks the enzyme uric
acid oxidase [138-141]. Under normal conditions, UA
acts as an antioxidant that provides several benefits [142—
144]. However, an abnormal increase in UA can lead to
hyperuricemia, negatively affecting human health [145—
148]. Examples include fat accumulation and steatosis
[149, 150]. Fructose intake is associated with elevated
fasting UA levels [85, 151-153] because of the unique
metabolic processes of fructose. After ingestion, fructose
is rapidly extracted from the liver and phosphorylated
to fructose 1-phosphate by KHK. This reaction is rapid,
not controlled by negative feedback regulation, and con-
sumes a large amount of adenosine triphosphate (ATP) in
a short period [154]. ATP exhaustion is accompanied by
a large production of adenosine monophosphate (AMP)
[155, 156]. The large amount of AMP produced is cata-
lyzed by adenosine deaminase, yielding hypoxanthine.
Hypoxanthine is eventually hydrolyzed to UA by two oxi-
dations of xanthine oxidase, which increases UA levels
in the body. Fructose intake reduces water loss by stim-
ulating pressin secretion, reducing urine volume [157].
Moreover, large amounts of UA produced by fructose
metabolism are not readily excreted through the urine,
elevating UA levels. Furthermore, fructose-induced
insulin resistance increases UA levels by decreasing UA
excretion and upregulating inflammation [158, 159].
Hypertension is an extremely complex disease with
unclear predisposing factors [84, 160-162]. Although
hypertension is a multifactorial disease, fructose intake
may be an important factor in regulating hypertension
[3, 163-166]. Previous findings indicated that fructose
intake increased blood pressure compared to glucose
intake, along with oxygen consumption and respira-
tory quotient [79, 167, 168]. One study showed that four
weeks of continuous fructose feeding increased the mean
arterial blood pressure in rats [169]. Similarly, another
study reported that rats developed hypertension after
three weeks of a fructose diet [170]. Furthermore, the
offspring of rats exposed to a 60% high-fructose diet
during pregnancy and lactation showed an increased
risk of hypertension [171]. How does fructose increase
blood pressure? Interestingly, fructose has been shown
to regulate blood pressure through UA [3, 163, 172,
173]. Fructose intake can increase UA levels, which may
cause endothelial dysfunction by contributing to insulin
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resistance, which increases the risk of hypertension [174,
175]. UA can also stimulate the renal renin—angiotensin—
aldosterone system, inducing the proliferation of vascu-
lar smooth cells and endothelial dysfunction [176]. For
every 1 mg/dL increase in serum UA levels, the preva-
lence of hypertension increases by 13% [177]. Pharmaco-
logical intervention studies have shown that febuxostat,
a xanthine oxidase inhibitor, prevents fructose-induced
hypertension by reducing the UA levels [178, 179]. Fur-
thermore, fructose increases blood pressure through sev-
eral other pathways, such as sodium handling, activation
of the renal sympathetic nervous system, and synergy
with salt [72, 180-182].

Role of fructose in systemic chronic inflammation
Increased fructose intake is associated with several
inflammatory diseases [183-185]. Fructose is metabo-
lized and absorbed in various body parts, triggering an
inflammatory response, including gut inflammation,
liver inflammation, and neuroinflammation (Table 3 and
Fig. 3) [186—189].

Excessive fructose intake leads to intestinal damage

and inflammation

The gut, the body’s largest barrier to the external environ-
ment, is important in protecting the organism from harm
and the primary site of fructose absorption [196]. Excess
fructose intake can cause intestinal barrier damage and
endotoxemia [197-200]. Damage to the intestinal barrier
increases the exposure to various metabolites, triggering
an inflammatory response [201]. Excess fructose intake
has also been shown to cause nitration of intestinal tight
junction and adherent junction proteins, which can
lead to an increased leaky gut [202, 203]. A large influx
of antigens and other macromolecules into the barrier
causes local or systemic inflammation [204, 205].

In addition, dysregulation of the gut microbiota pro-
motes gut barrier damage and inflammatory responses
[206]. The gut microbiota is the “second genome” and
plays a significant role in the body’s metabolism and
immunity [190]. Tan et al. reported elevated levels of Bac-
teroides, Akkermansia, Lactobacillus, and Ruminococcus
in the intestines of rats after fructose feeding, which may
be associated with inflammation [190]. Similar studies
have shown that a fructose diet increases the abundance
of Bacteroides, Bifidobacterium, and Marvinbryantia [20,
198]. In contrast, one study showed that mice fed a high-
fructose diet had a lower proportion of Bacteroidetes and
an increased proportion of Proteobacteria [88]. Despite
the differences between the results of previous studies,
alterations in the gut microbiota do influence intestinal
inflammation and damage to the intestinal barrier.
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Metabolites of the gut microbiota, such as lipopolysac-
charides (LPS) and short-chain fatty acids (SCFAs), are
important signaling mediators [207]. Dysbiosis of the
gut microbiota promotes the release of LPS (Parabac-
teroides is the main source of LPS), which in turn acti-
vates the Toll-like receptor 4 (TLR4) and exacerbates
intestinal inflammation by inducing the release of pro-
inflammatory cytokines [208—210]. At the same time,
because of the altered intestinal permeability, LPS cir-
culates through the portal vein to the liver and induces
secretion of the inflammatory factor tumor necrosis fac-
tor-alpha (TNF-a) by activating TLR4 on macrophages
[40, 211, 212]. SCFAs are important signaling molecules
for metabolic and immune regulation [207, 213, 214].
Acetate, an SCFA, induces retinoic acid production in
dendritic cells, which further promotes the intestinal
IgA response and protects the gut from inflammatory
damage [215-217]. Similarly, n-butyrate, another SCFA,
induces intestinal macrophages to reduce the secre-
tion of pro-inflammatory mediators such as nitric oxide
(NO), interleukin-6 (IL-6), and IL-12 by inhibiting his-
tone deacetylases [218, 219].

SCFAs also affect other immune cells in the gut. For
example, Sun et al. demonstrated that SCFAs activate
Thl cell STAT3 and mTOR and upregulate transcrip-
tion factor B lymphocyte-induced maturation protein
1 (Blimp-1), which can induce the production of IL-10
[220]. Notably, SCFAs can induce the differentiation of
intestinal regulatory T cells, which maintain intestinal
homeostasis [221-224]. Overall, SCFAs have a positive
effect on gut homeostasis and immunity; however, fruc-
tose intake appears to reduce SCFAs in the gut [192].
And indirectly, fructose intake affects gut stability and
induces inflammation.

Excessive fructose intake induces inflammation, resulting
in liver injury

Excessive fructose intake leads to MAFLD and contrib-
utes to metabolic dysfunction-associated steatohepatitis
(MASH), which may progress to liver fibrosis, cirrhosis,
or even liver cancer [191, 225]. Recently, several stud-
ies have revealed fructose-induced inflammation in the
liver [66, 226—229]; however, the induction mechanism
is complex. Hepatocytes are particularly vulnerable to
ER stress. A chronic fructose diet affects lipid metabo-
lism and the production of very low-density lipopro-
teins, which leads to ER stress and the unfolded protein
response (UPR). ER stress induces inflammation, oxida-
tive stress, and apoptosis [230-232]. Oxidative stress
induced by fructose can induce inflammation via the
accumulation of oxygen reactive species (ROS) as it can
activate some inflammatory pathways, including nuclear
factor kappa B (NF-kB) and C-Jun amino terminal kinase
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Fig. 3 Fructose promotes systemic chronic inflammation. High fructose intake leads to a leaky gut, which in turn induces an inflammatory
response. Abnormal gut microbiology reduces the secretion of short-chain fatty acids (SCFA) and promotes the release of lipopolysaccharides

(LPS), which further activates the Toll-like receptor 4 (TLR4), thereby mediating various inflammatory effects. In the liver, fructose induces oxidative
stress and endoplasmic reticulum (ER) stress in hepatocytes, ultimately triggering inflammation, in a variety of ways, including by promoting uric
acid (UA) accumulation, while fructose also activates secretion of inflammatory factors by hepatic macrophages. In addition, fructose intake results

in elevated levels of UA and advanced glycation end products (AGEs) in mouse hippocampi, which in turn induces hippocampal inflammation

via the TLR4/NF-kB pathway. Fructose also activates resident microglia and secretes inflammatory factors by causing oxidative stress in the brain.
At the same time, SCFA relieves the inflammatory response in the brain. Fructose in the kidney ultimately mediates inflammation through elevated
microRNA-377 (miR-377) and reduced nitric oxide (NO) and ATP levels while recruiting monocytes or macrophages by inducing monocyte

chemotactic protein 1(MCP-1)

(JNK) [233, 234]. A high-fructose diet can inhibit the ER
stress-induced production of fibroblast growth factor

1 (FGF21), reducing oxidative stress [235]. In addition
to cellular stress, UA is an important inflammatory trig-
ger [236]. UA in the liver contributes to oxidative stress
and inflammation by inhibiting nuclear factor erythroid
2-related factor (Nrf2) and the production of thioredoxin,
leading to the activation of the NOD-like receptor family
pyrin domain containing 3 (NLRP3) inflammasome [237,
238]. Furthermore, a more in-depth study showed that
fructose intake reduced microRNA-200a (miR-200a),
targeting Kelch-like ECH-associated protein 1 (Keapl)
and inhibiting the Nrf2 antioxidant pathway, thereby

triggering the thioredoxin-interacting protein (TXNIP)-
activated NLRP3 inflammasome, ultimately inducing
liver inflammation [239]. The liver also contains various
macrophages, including Kupffer cells (KC) and other
recruited monocytes or macrophages, which typically
exhibit a pro-inflammatory phenotype [240-242]. It has
also been reported that a fructose diet can activate TLR4
on KC, which elevates ROS, induces inflammation, and
induces hepatocyte necrosis by increasing the expression
of TNF-a and IL-6 [243-245]. This process may involve
the fructose-induced increase in fatty acids, such as acyl-
carnitine and palmitate [245-248].
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Fructose triggers neuroinflammatory responses in key
brain regions

Fructose-induced inflammation has been widely reported
in various tissues, including nervous tissue. Fructose-
induced neuroinflammation has attracted attention
[193, 249-251]. Cells in the brain can directly metabo-
lize fructose; GLUT5 expression has been detected in
the hippocampal microglia [252, 253]. The hippocam-
pus, the memory center of the brain, is vital for learning
and memory. Recent studies have found that excessive
fructose intake damages hippocampal function [254,
255]. Indeed, excessive fructose intake blunts hippocam-
pal plasticity and reduces hippocampal weight, which
reflects functional changes in brain cells [256-260].
Fructose intake causes an increase in CLUT5 in the hip-
pocampus of mice and an increase in UA levels; UA can
induce hippocampal inflammation via the TLR4/NF-«kB
pathway [261, 262]. Additionally, accumulation of toxic
compounds and advanced glycation end products (AGEs)
because of fructose intake has been linked to inflam-
mation [12, 263-265]. Mastrocola et al. reported that
in mice fed a 60% fructose diet for 12 weeks, carboxy-
methyl lysine, an AGE that accumulates in hippocam-
pal neurons, is induced and activates NF-kB signaling
[266]. Fructose-induced hippocampal inflammation is
associated with oxidative stress in the brain, which acti-
vates the resident microglia and secretes inflammatory
factors [267-270]. Cigliano et al. found an increase in
lipid peroxidation and nitro-tyrosine in the hippocam-
pus of rats after 2 weeks of fructose feeding, suggesting
the presence of oxidative stress damage. The author also
detected an increase in TNF-a levels, with a positive cor-
relation with oxidative stress [270]. Indirect mechanisms
have also been reported in the hippocampus. Li et al.
found that high fructose-induced intestinal dysregulation
induces hippocampal neuroinflammation in mice, which
can be alleviated by SCFA supplementation [192]. What
is surprising is that excessive maternal fructose intake
can damage the hippocampus of the offspring, an effect
linked to reduced expression of the brain-derived neuro-
trophic factor (BDNF) gene [271].

In addition to the hippocampus, fructose-induced
inflammation has also been observed in other brain parts.
The hypothalamus, a component of the mesencephalon,
is the center for regulating visceral and endocrine activ-
ity, where astrocytes play an important role. Inflamma-
tory responses in this region cause various metabolic
disorders [272-275].

Li et al. revealed that fructose intake induced hypotha-
lamic astrocytosis and inflammation by activating the
TLR4/NF-kB pathway, resulting in neurological damage
in the hypothalamus [276]. Similarly, fructose-induced
inflammatory responses have been observed in the
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frontal cortex. As the frontal cortex is the latest area of
the brain to mature, its development is susceptible to die-
tary influences [277-280]. Indeed, a fructose diet for two
weeks has been shown to negatively affect the nuclear
factor (erythroid derived 2)-like 2 (Nrf2) pathway in the
frontal cortex of rats, impairing the brain’s antioxidant
defense system and causing oxidative stress and synaptic
dysfunction in the frontal cortex [281].

Inflammatory effects of fructose in other body parts
Fructose induces inflammation in various tissues and
organs [206]. The kidney is primarily responsible for
filtering impurities and metabolic waste from blood.
Various studies have demonstrated a strong correlation
among fructose intake, kidney damage, and inflammation
[178, 194, 282-284]. Wang et al. showed that a fructose
diet increased microRNA-377 (miR-377) expression in
the kidney and miR-377-induced p38 mitogen-activated
protein kinase phosphorylation and TXNIP expression,
which in turn activated the NLRP3 inflammasome, ulti-
mately leading to inflammation [285]. Another study
showed that fructose induced the synthesis of monocyte
chemotactic protein 1 (MCP-1), recruitment of mono-
cytes or macrophages, and oxidative stress in proximal
tubular cells; this effect depends on KHK [178, 286]. Fur-
thermore, fructose-induced decreases in renal endothe-
lial NO and ATP levels upregulates the inflammatory
molecule intercellular adhesion molecule-1 (ICAM-1)
expression [287].

Similarly, a comparable mechanism has been reported
in adipocytes. Excessive fructose intake induces the
expression of MCP-1 and ICAM-1 in adipocytes, lead-
ing to an increase in macrophage infiltration, further
contributing to inflammation [287-289]. Furthermore,
fructose increases leptin levels, inducing inflammation
in adipocytes by releasing ROS [94, 290, 291]. Addi-
tionally, a fructose diet increases visceral adipose tissue
mass, NF-kB accumulation, and elevated IL-p in rats
[195]. A fructose-rich diet can also affect pancreatic islet
cells, leading to hyperinsulinemia and insulin resistance.
Moreover, fructose induces an inflammatory response in
the pancreatic islet cells, and its intake increases the size
and number of pancreatic islets; fructose-induced UA
stimulates inflammatory mediators and oxidative stress
in pancreatic islet cells [89, 292, 293].

Co-mechanisms of fructose in metabolic diseases
or inflammation

Previous sections have detailed fructose’s role in vari-
ous metabolic diseases; the corresponding studies are
summarized in Table 2. Although a direct causal rela-
tionship between fructose and obesity remains to be con-
firmed, it has been shown to play an important role in the
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development of lipid metabolic disorders, MAFLD, and
metabolic syndromes (including hyperinsulinemia, insu-
lin resistance, hyperuricemia, and hypertension) (Fig. 2)
[17, 91, 294, 295].

Hyperuricemia is a key contributor to various meta-
bolic diseases. Fructose metabolism induces the produc-
tion of uric acid, which directly causes gout, exacerbates
insulin resistance, and participates as an inflammatory
factor in the occurrence of MAFLD and hypertension
[149, 179, 236].

Inflammation is an important mechanism via which
fructose exposure leads to metabolic diseases. Excessive
fructose can induce inflammatory responses in organs,
such as the gut, liver, brain, and kidneys (Table 3). Acti-
vation of the TLR4/NF-kB pathway is a common mech-
anism of inflammatory responses. In the gut, fructose
promotes intestinal flora dysregulation, increases LPS
production, activates the TLR4/NF-kB pathway, and trig-
gers intestinal inflammation [208, 210]. In the liver, fac-
tors such as disordered fructose metabolism, elevated
uric acid, and fatty acid accumulation can activate TLR4
in KC, which in turn activates the NF-kB pathway and
releases pro-inflammatory cytokines [244]. Similarly,
in brain regions such as the hippocampus, the fructose
metabolite UA can induce neuroinflammation through
the TLR4/NF-«B pathway [261].

In conclusion, fructose plays a complex role in various
metabolic diseases, with inflammation being an impor-
tant contributing pathogenic mechanism. A deeper
understanding of fructose metabolism and the inflam-
matory responses it triggers could help develop more
effective strategies to prevent and treat related metabolic
diseases. Further studies remain warranted to elucidate
the mechanisms underlying fructose action in different
organs and tissues and develop targeted interventions.

Complex relationship between fructose and cancer
The link between fructose and tumor has also attracted
extensive attention in recent years. Long-term high fruc-
tose consumption is implicated in a range of cancers, and
its role varies depending on the type of cancers [296—
298]. This section collects epidemiological evidence on
the relationship between fructose and tumors and dis-
cusses the role of fructose in tumor development.

Epidemiological studies on high-fructose diets and cancer

risk

Excessive fructose intake is linked to various metabolic
disorders, as confirmed by epidemiological studies [299—
301]. The relationship between fructose and cancer has
been a research focus. A previous investigation included
approximately 1.2 million participants and over 3000
pancreatic cancer cases to investigate the relationship
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between fructose, carbohydrates, glycemic index, and
pancreatic cancer risk [302]. The authors revealed for
the first time the links between fructose intake and pan-
creatic cancer risk [302]. Another study investigated the
relationship between fructose from diet and colorec-
tal cancer and reported a higher incidence of colorectal
cancer among those consuming fructose at higher levels
[303]. Likewise, a 12-year epidemiological study involv-
ing a cohort of Canadian women reported that a high
intake of sugar-sweetened beverages was associated with
a significantly elevated risk of endometrial and ovarian
cancer [304]. Although the authors did not specifically
identify fructose, most sugary drinks contain fructose as
an ingredient. Fructose also appears to be associated with
poor patient prognosis. For example, a study analyzed
the relationship between the intake of different types of
carbohydrates and breast cancer-specific mortality in
patients diagnosed with breast cancer [305]. The data
from 8,932 breast cancer patients followed for more than
a decade showed a highly significant positive association
between higher fructose intake and the risk of breast can-
cer-specific mortality [305].

Nevertheless, not all studies have reported a posi-
tive association between fructose and cancer risk. For
instance, in a survey of 3,184 adults aged 26—84 years, no
significant correlation was found between fructose intake
and the incidence of obesity-related cancers, nor an asso-
ciation with the risk of any site-specific cancer [306]. Fol-
lowing the same trend, a meta-analysis pooled multiple
prospective cohort studies and found that while excessive
total sugar and fructose intake were associated with all-
cause and cardiovascular disease mortality, no associa-
tion was found with cancer mortality [307].

These conflicting results highlight the degree of com-
plexity in the fructose-cancer relationship. Fructose sig-
nificantly influences people’s diets, and its effects may
vary based on age, geography, or dietary habits. [303, 304,
306]. Conversely, fructose may involve multiple mecha-
nisms in its effects on cancer in the body.

Role of fructose in tumors

Fructose plays complex and diverse roles in tumors
(Table 4 and Fig. 4). Tumor metabolism favors aerobic
glycolysis, a process through which ample energy is sup-
plied to the tumor to support the rapid proliferation of
tumor cells.

Several intermediates produced during glycoly-
sis can act as biomolecule synthesis precursors for the
rapid expansion and metastasis of tumor cells. Tumor
metabolism is highly plastic, enabling the utilization of
available carbon sources to adapt to nutrient-stressed
environments [157, 308, 309]. Abnormalities in glyco-
lytic metabolism may disturb glucose levels in the tumor
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Table 4 Complex role of fructose in tumor development
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Studies Role in tumors Specific Mechanism

Jeong Setal. [16] Directly Promotion

proliferation
Goncalves MD et al. [21]
BuPetal [22]
Taylor SR et al. [95]

Directly Promotion
Directly Promotion
Indirectly Promotion

High fructose enhances SSP, increasing a-ketoglutarate production, which supports leukemia cell

Fructose promotes glycolysis and DNL, increasing fatty acid synthesis for tumor cell growth
Upregulated aldolase B enhances fructose metabolism, promoting liver metastasis of colorectal cancer
Fructose improves intestinal cell survival and increases the length of intestinal villi. The increase

in the length of intestinal villi enlarged the surface area of the mouse intestines, which increased
the rate of nutrient absorption and thus promoted tumor growth

Kuehm LM et al. [313] Indirectly Promotion

Melanoma tumors in mice on the high-fructose diet were resistant to immunotherapy and showed

increased expression of the cytoprotective enzyme HO-1

Fowle-Grider R [314] Indirectly Promotion

fructose supplementation increases circulating nutrients such as LPCs, which can enhance tumor

growth through a cell non-autonomous mechanism

Yan Hetal. [315] Indirectly Promotion
signaling

ChenWLetal. [316] Directly Promotion

Fructose inhibits M1 macrophage polarization, reducing anti-tumor activity by altering calcium ion

AML cells are prone to fructose utilization with an upregulated fructose transporter GLUT5, which

compensates for glucose deficiency

Fang JH et al. [298]
KangYLetal [317]

Directly Promotion
Directly Promotion

Fructose activates AMPK, enhancing tumor angiogenesis and growth in liver cancer
Polyol pathway increases endogenous fructose, activating KHK-A and inducing epithelial-mesenchy-

mal transition, promoting cancer metastasis

ZhangY etal.[318] Inhibition
activity

Dewdney B etal.[319] Inhibition

Fructose activates mTORC1 in adipocytes, inducing leptin, which enhances CD8* T cell anti-tumor

Fructose promotes apoptosis and inhibits proliferation of hepatoma cells

SSP the serine synthesis pathway, DNL de novo lipogenesis, HO-1 heme oxygenase-1, LPCs lysophosphatidylcholines, AML acute myeloid leukemia, GLUT5 glucose
transporter 5, AMPK AMP-activated protein kinase, KHK-A ketohexokinase-A, mTORCT mTOR Complex 1

microenvironment. Fructose is a potential alternative
carbon source that tumor cells use to maintain metabo-
lism. After simple metabolism, fructose metabolites can
directly enter glycolysis and bypass the key rate-limiting
step of glycolytic phosphofructokinase to satisfy the
demand for energy and biomolecule synthesis substrates
in tumor cells and facilitate tumorigenesis and develop-
ment. Under specific conditions, fructose can be phos-
phorylated to fructose 6-phosphate by hexokinase and
directly enter glycolysis [16, 310]. Similar to glucose,
fructose affects the survival, growth, and proliferation of
tumor cells [311, 312].

The indirect tumor-promoting effect of fructose

Excessive fructose intake is associated with the devel-
opment of gastrointestinal cancers and drives tumor
growth and metastasis in mice with colorectal cancer
[21, 22, 320-322]. Dietary fructose positively affects the
survival and nutrient absorption of small intestinal cells
in mice. Feeding mice with high-fructose syrup for four
weeks increased the length of the small intestinal villi by
15-40%, increased the relative surface area of the intes-
tine, improved nutrient absorption, and significantly
increased body weight. The growth of mouse small intes-
tinal villi is attributed to the extraction and metabolism
of fructose by intestinal epithelial cells, which is rapidly
converted to fructose 1-phosphate by KHK. In mice,
fructose 1-phosphate was found to inhibit pyruvate

kinase M2 activity—which protects intestinal epithelial
cells—and promoted small intestinal epithelial cell sur-
vival, which ultimately increases intestinal tumor load
[95]. A high-fructose diet upregulates heme oxygenase-1
(HO-1) expression, which makes mouse melanoma
immune checkpoint inhibitor treatment resistant, and
the use of HO-1 small-molecule inhibitors is effective in
alleviating resistance [313].

In addition, fructose supplementation increases the
amount of nutrients in the blood, which supports tumor
development. According to a recently published study
[314]. Because tumor cells lack the necessary enzymes
to directly metabolize fructose, they are therefore less
likely to use fructose for nutrition. The liver metabolizes
most excess fructose. In co-culture studies, hepatocytes
were found to have transformed fructose carbon into
nutrients, which promoted the growth of cancer cells.
The most noticeable alteration was observed in lysophos-
phatidylcholines (LPCs), in which cancer cells ingested
and utilized phosphatidylcholine, the primary phos-
pholipid found in cell membranes. Additionally, high-
fructose corn syrup feeding in animal studies increases
the number of LPC species in the blood of mice. These
results imply that fructose indirectly stimulates tumor
growth by increasing the levels of nutrients such as LPC
in the blood.

Moreover, fructose may indirectly promote tumor
growth by affecting the polarization of relevant immune
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during tumor proliferation, and fructose also inhibits the polarization of tumor-associated macrophages, further promoting tumor growth. Because
of the special metabolic process of fructose, fructose enhances tumor metabolism through glycolysis, the serine synthesis pathway, polyol pathway
and so on. fructose also enhances the function of mitochondria through the AMP-activated protein kinase (AMPK) after absorbed by tumor cells,
and enhances fatty acid synthesis by up-regulating the expression of glucose transporter 5 (GLUT5). These processes will directly promote tumor
growth. On the contrary, fructose can induce adipocytes to secrete leptin, which can act on CD8" T cells and enhance the anti-tumor activity

of CD8* T cells

cells. Fructose also promotes cancer cell growth by affect-
ing the polarization of tumor-associated macrophages
(TAMs) [315]. The interaction between hexokinase 2 and
inositol-1,4,5-trisphosphate receptor 3 was improved by
fructose treatment. This, in turn, affects intracellular cal-
cium ion flow and signaling and finally inhibits the polar-
ization of M1-type macrophages, which are known to
have anti-tumor capabilities, thereby indirectly promot-
ing the development of cancer.

The direct tumor-promoting effect of fructose

Some tumor cells upregulate the transcription of the
GLUT5-encoding gene SLC2A5 to increase fructose uti-
lization. Acute myeloid leukemia (AML) is metabolically

characterized by SLC2A5-mediated high fructose uti-
lization, which correlates with patient prognosis. The
use of the small-molecule drug 2,5-anhydro-D-mannitol
to block fructose transmembrane transport in a mouse
AML model resulted in a significant improvement in
leukemia symptoms and prolonged the survival of mice.
The use of fructose transmembrane transport blockers
in AML cells cultured in vitro were found to have signifi-
cantly inhibited malignant proliferation and infiltration
of cancer cells [316]. Glioma cell lines show high levels
of GLUT5 expression, and the upregulation of GLUT5
expression in the glioma tissues of patients is usually
associated with poor prognosis. Under glucose-poor cul-
ture conditions, the survival and proliferation of glioma
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cells (in vitro cultures) were found to be promoted by
upregulating GLUT5 expression [323]. The glioma cell
line LN229 was used to study subcutaneous tumor for-
mation in mice fed 15% fructose water. The results
showed that mice administered fructose water had larger
tumor volumes and smaller foci of tumor necrosis. How-
ever, the knockdown of GLUT5 in LN229 cells was fol-
lowed by the inoculation of mice with tumors, and mice
in the fructose-fed group did not show any of these con-
ditions [323]. The authors of the study reported that the
analysis of clinical samples revealed that the expression
of the fructose transporter proteins GLUT5 and GLUT9
was upregulated in patients with prostate cancer, and
that their serum fructose levels were higher than those
in normal subjects. In another study, fructose treatment
of in vitro cultured prostate cancer cells PC3 revealed
that fructose promoted the proliferation and invasion of
prostate cancer cells. Based on the transcriptome analysis
of the PC3 cell line, fructose activates the proliferation-
related pathway of prostate cancer cells and up-regulates
the expression of transforming growth factor-f3, wingless-
type MMTYV integration site family-4, and other genes;
the authors concluded that fructose-fed prostate can-
cer cell xenograft tumor model mice promotes prostate
tumor growth and proliferation [324]. In addition, fruc-
tose accelerates lung cancer cell growth in vivo by upreg-
ulating GLUTS5 protein expression and inhibiting AMPK,
which activates mTORC]1 activity and promotes fatty acid
synthesis and palmitoleic acid production [325].

KHK, a key enzyme in fructose metabolism, is involved
in fructose utilization by glioma cells and promotes
tumor progression. Analysis of clinical samples revealed
that high KHK expression was associated with poor
prognosis. Silencing KHK in glioma cells significantly
inhibited their proliferation and migration. Glioma cells
cultured in fructose medium for four weeks show upreg-
ulated KHK gene expression, increased protein stability,
and upregulated KHK expression, which accelerated the
malignant progression of tumors [326].

In primary hepatocellular carcinoma, the downregula-
tion of aldolase B expression correlates with increased
tumor aggressiveness and is usually associated with poor
prognosis. Stable expression of aldolase B in primary
hepatocellular carcinoma promotes the expression of
DNA demethylase Ten-Eleven Translocation 1, which
reduces the migratory ability of hepatocellular carci-
noma cells in vitro and their metastatic potential in vivo
[327]. In contrast, in colorectal cancer liver metastasis,
aldolase B expression is upregulated and fructose metab-
olism is enhanced, allowing colorectal cancer cells to rap-
idly adapt to the high-fructose environment of the liver.
Enhanced fructose metabolism increases gluconeogene-
sis, glycolysis, and the pentose phosphate pathway, which
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provides the corresponding substrates for central carbon
metabolism during tumor proliferation and promotes the
growth of metastatic liver tumors from colorectal cancer.
Targeting aldolase B or its upstream regulator GATA6
may be effective, and reducing fructose intake is impor-
tant for controlling liver metastasis [22].

In a study by Goncalves et al. an intestinal tumorigen-
esis model using adenomatous polyposis coli mutant
mice (APC~/~ mice) that were administered by gavage
high-fructose syrup water equivalent to the daily dose
of one can of soda consumed by a human. Eight weeks
later, APC™'~ mice did not show a significant increase in
body weight, but they had an increased tumor load. This
is most likely because daily intake of high-fructose syrup
creates a high-fructose environment in the intestinal
lumen of mice. Excessive fructose is metabolized through
the consumption of a large amount of ATP, and low lev-
els of ATP activate phosphofructokinase, which increases
glucose metabolism flux and directs fatty acid synthesis.
Fatty acids are important for tumor growth and are bio-
molecular substrates used by tumor cells to synthesize
cytosolic or signaling molecules. The authors of the study
concluded that fructose promotes intestinal tumorigen-
esis in mice by promoting glycolysis and DNL [21].

Serine is an essential nutrient specific to tumor cells,
and the serine synthesis pathway (SSP) is important for
tumor metabolism. In SSP, 3-phosphoglycerol derived
from glycolysis is converted to serine by various enzymes
to provide the metabolic precursors for one-carbon
metabolism [328]. Meanwhile, a-ketoglutarate produced
during SSP enters the TCA cycle, providing substrates
for nucleotide synthesis and to maintain redox balance
among tumor cells [328-332]. High fructose levels can
drive SSP in AML cells and exacerbate tumor burden.
Acute myeloid leukemia cells are more SSP-dependent
in high-fructose environments. These cells mediate
their proliferation in the presence of glucose deficiency
by upregulating SSP flux and producing o-ketoglutarate
from glutamine. Targeting the rate-limiting enzyme
phosphoglycerol dehydrogenase in SSP in a high-fruc-
tose environment significantly reduced tumor load and
slowed leukemia progression in mice [16]. Moreover,
fructose promotes mitochondrial respiration by activat-
ing AMPK, which increases the proliferation and migra-
tion capacity of tumor endothelial cells and promotes
tumor angiogenesis, growth, and metastasis in hepato-
cellular carcinoma xenografts and Myc/sgp53-induced
hepatocellular carcinoma mouse models [298]. An
SLC2A5 inhibitor was hsown to have effectively inhib-
ited fructose-induced tumor angiogenesis and suppresses
tumor growth in mice [298].

The polyol pathway facilitates the production of
endogenous fructose. Glucose is reduced to sorbitol by



Li et al. Molecular Biomedicine (2025) 6:43

NADPH and aldose reductase. Sorbitol is oxidized by
NAD™ and catalyzed by sorbitol dehydrogenase to pro-
duce endogenous fructose and NADH [333]. Endogenous
fructose production coupled with KHK, which is com-
monly highly expressed in tumors, bypasses the rate-
limiting step in glycolysis and rapidly meets the energy
and substrate requirements of tumor cell growth, thereby
promoting tumor cell growth. Schwab et al. reported a
direct correlation between the polyol pathway activity
and tumor development [334]. Aldo—keto reductase fam-
ily 1 member B1 (AKR1B1) encodes a specific member
of the Aldo—keto reductase superfamily that catalyzes
the reduction of glucose to sorbitol and has an important
role in the polyol pathway [335]. AKR1BA is associated
with epithelial mesenchymal transition in lung cancer
patient samples. Inhibition of epithelial-to-mesenchymal
transition was found to occur after in vitro knockdown
of AKR1B1 in mesenchymal-like cancer cells [334]. There
is a link between the polyol pathway and gastric cancer
progression. In gastric cancer cell lines, hyperglycemia
induces endogenous fructose formation by increasing
the flux of the polyol pathway, which in turn activates the
KHK-A signaling pathway and inhibits CDH1 expression,
thus inducing epithelial mesenchymal transition and pro-
moting gastric cancer metastasis [317].

When taken together, fructose induces metabolic
stress in tumor cells, leading to metabolic reprogram-
ming. Fructose promotes tumor development mainly by
upregulating the expression of the fructose transporter,
GLUTS5, and metabolism-related enzymes to meet the
energy and substrate requirements of tumors. The meta-
bolic reprogramming of tumor cells increases fructose
metabolism, glycolysis, DNL, and polyol pathway fluxes
through multiple pathways, providing synthetic precur-
sors for tumor development, regulating functional gene
expression, and promoting tumor progression [336, 337].
Thus, the fructose transporter protein GLUT5 or the key
enzymes of fructose metabolism, KHK and aldolase B,
are potential targets for anticancer treatment.

The tumor-suppressing effect of fructose

Although the mainstream view among researchers is that
fructose promotes cancer, some epidemiological stud-
ies have shown that fructose is protective against oral
and lung cancers in men, and against lung and ovarian
cancers in women [318, 321, 338]. Recently, Zou et al.
published their latest research on fructose and tumors
[318]. In contrast to the generally held view, the authors
reported that that fructose inhibited tumor growth and
induced leptin secretion from adipocytes by activating
mTORCI1 in white adipose tissue cells. Adipocyte-derived
leptin acts on CD8* T cells to enhance the anti-tumor
activity of CD8" T cells to control transplanted lung
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tumors. Transcriptome analysis of CD8" T cells revealed
that tumor-infiltrating CD8% T cells in high-fructose-
fed mice were predominantly early stage CD8" T cells,
whereas tumor-infiltrating CD8" T cells in fructose-free
control mice were predominantly exhausted. Therefore,
fructose treatment can reduce the number of exhausted
CD8* T cells, downregulate the overall exhaustion rate
of CD8" T cells, and increase the proliferation rate and
IFN-y production of CD8* T cells, thereby achieving
anti-tumor effects (Fig. 4) [318]. Currently, it is not clear
how fructose and leptin inhibit CD8% T cell exhaustion.
One possible mechanism is that fructose and leptin reor-
ganize T cell metabolism and maintain T cell stemness.
Moreover, the in-depth mechanism of the fructose-leptin
axis in the regulation of the tumor immune microenvi-
ronment and its application in tumor immunotherapy
warrant further study. In addition to fighting tumors by
regulating the immune microenvironment, fructose was
found to significantly inhibit the proliferation of cultured
hepatoma cells Huh7 and promote cell apoptosis [319],
indicating that fructose may have a direct anti-tumor
function in some tumors.

Given the positive role of fructose in CD8' T cell-
mediated antitumor immunity, the use of fructose as a
nutritional supplement or in combination of fructose
supplementation with adoptive T cell therapy may be a
promising avenue for cancer treatment. However, further
clinical evidence is still required to determine whether
this effect occurs in humans. In addition to affecting adi-
pocyte metabolism, the direct role of fructose in regu-
lating T-cell metabolism and function has not yet been
identified. When considering the opposing effects of
fructose on tumors, fructose may exert different regula-
tory effects on different tumors. Therefore, the complex
regulatory mechanisms of fructose in specific tumors and
the tumor immune microenvironment require further
investigation.

Therapeutic modulation of fructose metabolism

In modern society, human consumption of fructose is
increasing, and the adverse effects of fructose on humans
are becoming increasingly clear. Today, regulating the
metabolism of fructose has become a key area in the
investigation of metabolic diseases and inflammation,
and is a highly promising field for cancer treatment.

Intervention of fructose metabolism

through the GLUT5-KHK axis

GLUTS5 expression is linked with numerous metabolic
syndromes and tumors. GLUT5 inhibition lowers the
total fructose in the body, which may have beneficial
implications in slowing metabolic disorders, reduc-
ing inflammation, and even interfering with tumor
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development [339, 340]. Only a few GLUTS5 inhibitors are
currently available; one study yielded a small molecule
inhibitor, N-[4-(methylsulfonyl)—2-nitrophenyl]-1,3-
benzodioxol-5-amine (MSNBA), which blocks fructose
uptake by specifically binding to the fructose site of
GLUTS5 [341]. Identifying it may aid in studying fructose
and its related health issues.

KHK is a crucial enzyme in the metabolism of fructose
and the first to act on it. KHK catalyzes the conversion of
fructose to fructose 1-phosphate, and hence is a very vital
target for controlling the metabolism of fructose. KHK
inhibition markedly decreases hepatic fat deposition,
enhances glucose tolerance, and reverses MAFLD [342—
344]. Recently, the synthesis of the inhibitors of KHK has
been accomplished; one such inhibitor, PF-06835919, has
drawn much interest [345]. In a phase 2 randomized clin-
ical trial, 300 mg of PF-06835919 reduced the whole liver
fat mass in MAFLD patients and inflammatory markers.
This offers a novel therapeutic approach for managing
metabolic disorders caused by fructose and inflamma-
tory reactions [346]. Other efficient KHK inhibitors have
also been reported; however, clinical studies remain
warranted to test these drugs [347]. KHK expression in
several tumor cells is abnormally high, and fructose can
drive tumor growth and metastasis through the activity
of KHK [297, 310, 348]. This suggests that targeting KHK
may be a potential cancer treatment strategy.

Intervention of fructose metabolism through modulation
of gut microbes

Fructose is directly linked to gut flora dysbiosis. Fructose
feeding has been shown to modify the gut flora composi-
tion to induce an inflammatory response and metabolic
abnormalities; regulating the gut microbiota to correct
fructose metabolism may counteract fructose-induced
illness [349-351]. Broad-spectrum antibiotics can sup-
press the hippocampal neuro-inflammation in fructose-
fed mice by regulating gut microbiota; however, the
effectiveness of antibiotics needs to be verified through
more definitive studies, considering their safe use in
humans [192]. Certain natural antioxidants isolated
from plants and animals have therapeutic properties. For
instance, the water extract of Lycium ruthenicum Mur-
ray ameliorates neuroinflammation and cognitive deficits
induced by a high-fructose diet by modifying the gut-
liver-brain axis. Furthermore, it can alter the composition
of the intestinal microbiota, increasing the abundance
of beneficial bacteria [352]. Anthocyanins from Lycium
ruthenicum Murray can effectively reduce the ecological
dysbiosis of the intestinal microbiota and preserve the
integrity of the intestinal barrier, lowering neuroinflam-
mation caused by a high-fructose diet in rats [353].
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Individuals seem to respond more readily to the thera-
peutic advantages of these bioactive compounds than
to antibiotics. These substances exhibit significant bio-
logical activities, particularly antioxidant activities, and
have numerous health benefits, in addition to their role
in treating fructose-induced disorders. Furthermore,
most of these compounds are safe and nontoxic; there-
fore, developing therapeutic drugs based on these bio-
logically active substances is promising. Current research
on reversing and preventing the side effects of fructose is
still limited because of unclear mechanisms and the com-
plexity of its effects, particularly in targeted therapy.

Conclusion and future perspectives
Fructose, the sweetest hexose in nature, is a popular
additive in processed foods and beverages, the metabo-
lism of which plays a key role in the response of organ-
isms to extreme environmental conditions (such as food,
water, and oxygen shortages). Fructose is metabolized
differently from glucose, leading to its rapid absorption in
the liver. However, high consumption of fructose is fre-
quently linked to obesity and several metabolic disorders,
particularly in nations experiencing greater economic
development and greater access to processed foods [7].
The relationship between fructose and obesity remains
debatable: some studies suggest that fructose directly
causes obesity, whereas others indicate that fructose
does not appear to have a direct impact on obesity [86,
92]. The intricacy of fructose metabolism in the body is
reflected in this side, and further research is necessary
to determine whether fructose induces obesity directly.
Also, the triggers of metabolic diseases are extremely
complex and involve various biological processes, such
as dysregulation of adipose synthesis, activation of
specific cellular receptors, and aberrant expression of
related pathways (Fig. 2). Although several studies have
revealed that fructose can induce a wide range of meta-
bolic diseases, including MAFLD, hyperinsulinemia,
hyperuricemia, and hypertension, the underlying mecha-
nisms remain obscure and require further investigations.
Because of different experimental conditions and testing
standards, conflicting views exist among researchers [26,
354-357]; therefore, when investigating the connection
between metabolic diseases and fructose consumption,
the association must be confirmed from various aspects.
Moreover, inflammation is a detrimental effect of fruc-
tose, with substantial evidence indicating that excessive
fructose intake drives inflammatory effects via various
mechanisms (Fig. 3). In the intestine, fructose damages
the intestinal barrier and causes dysbiosis of the intesti-
nal bacterial flora, directly or indirectly, inducing inflam-
matory responses [201, 206]. When fructose enters the
liver, it induces ER and oxidative stress in liver cells,
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activating relevant inflammatory pathways [232]. Mac-
rophages in the liver are negatively affected by fructose.
Indeed, excessive fructose intake induces an inflamma-
tory response in the brain, affecting the hippocampus,
hypothalamus, and parts of the cerebral cortex. Addition-
ally, fructose induces a systemic inflammatory response,
and its harmful effects cannot be ignored. Therefore,
future research should focus on the latent targets of these
induction mechanisms to identify relevant therapeutic
approaches.

Fructose increases tumor risk (Table 4). Tumor cells
exhibit abnormally high glycolytic metabolic activity and
rapidly consume glucose [309]. Fructose is the second
most abundant blood sugar in the body, and a high-qual-
ity alternative carbon source for tumor cells to support
survival and growth when glucose is scarce [310]. Fruc-
tose provides energy for tumor cells and biomolecular
precursors for tumor cell proliferation by increasing the
flux of glycolysis, the PPP, and the polyol pathway. Even if
tumor cells do not directly metabolize fructose, they still
produce large amounts of circulating nutrients through
liver cells to promote tumor growth. In turn, fructose
affects anti-tumor-related immune cells to promote
tumor development.

However, a recent study has confirmed that fruc-
tose promotes cancer by demonstrating that fructose
enhances the anti-tumor response of CD8" T cells by
promoting leptin secretion from adipocytes (Fig. 4) [318].
Currently, it appears that the effect of fructose on tumor
cells is a “double-edged sword” Research on the role of
fructose should be based on the specific tumor micro-
environment involved in fructose metabolism, tumor
metabolism, and other complex and precise regulatory
mechanisms.

Multilevel targeted fructose metabolism or targeted
fructose metabolism in combination with current chem-
otherapeutic and immunosuppressive drugs may provide
novel cancer treatments. Current research on the role of
fructose in tumors tends to focus on metabolic changes
in tumor cells in a high-fructose environment, whereas
research on the influence of fructose on immune cells in
the tumor microenvironment is scarce. Future research
should explore the metabolic and behavioral changes
in immune cells in the tumor microenvironment in a
high-fructose environment. Several studies investigat-
ing the effects of fructose on the immune cells indicate
that fructose induces metabolic reprogramming of mul-
tiple immune cells and increases immune cell inflamma-
tion. Whether future cell therapies can specifically target
immune cells to deliver fructose and enhance the anti-
tumor activity of immune cells remains to be determined.

Preliminary studies on intervention strategies for fruc-
tose-induced diseases have been conducted. GLUTS5 is
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the primary fructose transporter. Although targeting it
has therapeutic potential, GLUT5 has several physiologi-
cal roles; therefore, side effects associated with blocking
its expression must be considered. The effectiveness of
PF-06835919, a small-molecule inhibitor of KHK, has
been demonstrated in clinical trials, the results of which
confirmed the therapeutic utility in targeting KHK [358].
However, KHK with aberrantly high-level expression
in cancer is KHK-A and not KHK-C, indicating that the
development of KHK inhibitors must address the prob-
lem of selectivity to mitigate side effects [310]. In regu-
lating gut microbiota, the exploration and application
of biologically active substances have attracted interest.
These substances might offer numerous undiscovered
advantages for humans, with alleviating fructose-induced
diseases being just one of many effects. Therefore, this
class of substances has great potential for future drug
development. In addition, substances that modulate
the gut microbiota (e.g., probiotics and prebiotics) may
have similar effects and should, therefore, be explored
[11]. Interventions targeting the gut microbiome may
need to consider differences among various populations.
[349]. Overall, intervention via fructose metabolism
requires targeting multiple pathways and individualized
approaches. However, more simply, reducing fructose
intake may be the most straightforward strategy.
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