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Case-based reasoning using electronic
health records efficiently identifies eligible
patients for clinical trials

Riccardo Miotto1, Chunhua Weng1,2

ABSTRACT
....................................................................................................................................................

Objective To develop a cost-effective, case-based reasoning framework for clinical research eligibility screening by only
reusing the electronic health records (EHRs) of minimal enrolled participants to represent the target patient for each trial
under consideration.
Materials and Methods The EHR data—specifically diagnosis, medications, laboratory results, and clinical notes—of
known clinical trial participants were aggregated to profile the “target patient” for a trial, which was used to discover
new eligible patients for that trial. The EHR data of unseen patients were matched to this “target patient” to determine
their relevance to the trial; the higher the relevance, the more likely the patient was eligible. Relevance scores were a
weighted linear combination of cosine similarities computed over individual EHR data types. For evaluation, we identified
262 participants of 13 diversified clinical trials conducted at Columbia University as our gold standard. We ran a 2-fold
cross validation with half of the participants used for training and the other half used for testing along with other 30 000
patients selected at random from our clinical database. We performed binary classification and ranking experiments.
Results The overall area under the ROC curve for classification was 0.95, enabling the highlight of eligible patients with
good precision. Ranking showed satisfactory results especially at the top of the recommended list, with each trial having
at least one eligible patient in the top five positions.
Conclusions This relevance-based method can potentially be used to identify eligible patients for clinical trials by pro-
cessing patient EHR data alone without parsing free-text eligibility criteria, and shows promise of efficient “case-based
reasoning” modeled only on minimal trial participants.
....................................................................................................................................................
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1. OBJECTIVE
Secondary use of electronic health records (EHRs) has shown
great promise for accelerating clinical research.1,2 Among vari-
ous biomedical applications—for example, drug discovery,
disease modeling, and personalized medicine3–6—EHRs have
also been proved to be useful for efficiently identifying eligible
patients for clinical trials to reduce potential delays due to re-
cruitment difficulties.7–9 To accomplish this goal, most existing
strategies generally derive a computable representation of
clinical trial eligibility criteria and apply it to EHR data to allow
clinical investigators to search for eligible patients.9–12

However, free-text eligibility criteria are difficult to parse due to
their varied and complicated semantic structures (e.g., pres-
ence of negated sentence, absence of explicit separation be-
tween inclusion and exclusion criteria) and cannot be easily
aligned with heterogeneous EHR representations.13,14

An alternative is to computationally model a small sample of
trial participants.15 In this case, the information of existing trial
participants is used to derive a general representation for a “tar-
get patient,” which is then used to discover new eligible pa-
tients. The ideal “target patient” of a clinical trial summarizes all
the patterns in the participant EHRs that can effectively discrimi-
nate unseen patients between eligible and ineligible. The primary
expected advantage of this solution is that it uses only EHR data
without eligibility criteria. One recent implementation of this idea
applies an automatic classifier to determine if a patient is eligible
for the trial or not.16 That method requires, in addition to the list
of participants, a list of ineligible patients to train the classifiers.
However, finding these ineligible patients can be as difficult and
laborious as finding eligible patients.

This article presents a novel method that improves upon the
state of the art without requiring the identification of ineligible
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patients. This novel method generates a representation of the
“target patient” by processing only the EHR data of a minimal
sample of enrolled clinical trial participants. It requires no other
additional information or manual work. The clinical trial eligibil-
ity of any unseen patient can then be determined according to
his or her relevance to the corresponding “target patient.” The
original contribution of this work is 4-fold: we (1) present a
novel methodology to derive an EHR-based “target patient”
representation only from trial participants, (2) embed this rep-
resentation in a ranking framework where groups of patients
can be ranked by their similarity to the “target patient”, (3)
show that the method is effective in finding eligible patients
from a set of unseen individuals, and (4) show that eligible pa-
tients are likely to be near the top of the recommended ranked
list of candidates, thus greatly reducing the time needed for
clinical trial investigators to find potential participants.

2. BACKGROUND AND SIGNIFICANCE
Randomized controlled trials generate high-quality medical evi-
dence for disease treatment and therapeutic development but
still face recruitment problems, which delay 90% of such tri-
als.8,17 Various methods have been proposed to facilitate elec-
tronic screening of patients for clinical trials. Most strategies
transform free-text clinical trial eligibility criteria specifications
into computable forms that can be efficiently reused for classi-
fication, clustering, and retrieval.18–23 These representations
have been used to facilitate recruitment in two major ways. On
one hand, several works focused on providing intuitive search
engines to help research volunteers search for trials on-
line.24–27 On the other hand, computable eligibility criteria were
matched to EHR data to discover eligible patients in a clinical
database.10 The core functionality of this approach is the align-
ment between eligibility criteria and patient data to evaluate
whether a given patient is eligible for the trial.7,28–31 Although
EHR data have proven useful for clinical trial recruitment,32,33

none of these approaches is completely successful, partly
because of the differences in semantic representations for key
eligibility concepts between EHRs and eligibility criteria. For ex-
ample, a patient of “Type 2 diabetes mellitus” can be identified
using different information in the EHRs, such as objective lab
values of A1c (i.e., glycated hemoglobin) greater than 7.0,
presence of the “250.00” ICD-9 code, “Type 2 diabetes melli-
tus” mentioned in the free-text clinical notes, and so on.
Differently, clinical trial eligibility criteria usually simply mention
“with Type 2 diabetes mellitus” or “have DMII” in their text.
Thus, it is nontrivial to match this high-level concept with the
highly specific, diversified EHR data representations partially
coded by various terminologies.

To overcome these difficulties, our proposed method relies
exclusively on the EHR data for known participants and unseen
patients by applying the “case-based reasoning” (CBR) para-
digm. The purpose of CBR is to use previous knowledge and
experiences to solve a new problem.34 In this case, the “new
problem” refers to discovering patients eligible for a trial,
whereas the “previous knowledge” can be seen as the set of
enrolled clinical trial participants. Although CBR is both a

recognized and well-established method for health sciences,35

to the best of our knowledge, only a single recent study ex-
plored and evaluated the application of CBR to improve recruit-
ment. In this study, Köpcke et al.16 compared several
classification models (i.e., random forests, support vector ma-
chine, logistic regression) to determine if patients were eligible
for a trial. All models were trained using both trial participants
and a set of ineligible patients from the same patient database.
As previously mentioned, in contrast to this related work, we pro-
pose to use only the trial participants for training, consequently
not requiring any additional ground truth (i.e., the ineligible pa-
tients), which might be costly and time-consuming to collect.

3. MATERIAL AND METHODS
Figure 1 shows the conceptual framework for the proposed eli-
gibility screening method. Initially, a set of (e.g., 3–5) eligible
patients or clinical trial participants is manually identified. Then
their EHRs are aggregated to derive the “target patient,” a
computable model summarizing the clinical trial. This model is
then applied to any unseen patient of a clinical data warehouse
to check his or her eligibility status. For each patient, the model
returns a relevance score; the higher the value, the more likely
the patient is eligible for the trial. Preidentified groups of pa-
tients (or the entire database as well) can then be ranked ac-
cording to their relevance score. This ranked list is provided to
the investigator for manually review; because the score of a
relevant patient is supposed to be high, the investigator can
quickly identify potentially eligible patients by reviewing only a
small number of high-scoring patients at the top of the list.

3.1. Framework Implementation
This framework allows flexible customization at each step, es-
pecially in terms of how to (1) process and summarize patient
EHR data, (2) represent the clinical trial participants, and (3)
discover potential eligible patients. We describe below one pos-
sible implementation to show the feasibility of the framework
and, in particular, of using only minimal trial participants to dis-
cover new potentially eligible patients. Therefore, we favored
simple designs to ensure a focused and correct evaluation for
this explorative study. We will briefly review potential alterna-
tive strategies in the discussion section.

3.1.1. EHR Data Processing
The procedure to extract and aggregate EHR data aims to arrive
at a generic patient representation that can be applied to any
EHR regardless of specific hospital information systems.
Therefore, we used four generally available EHR data types:
medication orders, diagnosis, laboratory results, and free-text
clinical notes. Other common variables (e.g., gender, age, loca-
tion) were not included because they were straightforward to
use to determine patient eligibility and hence did not need the
same representation and reasoning that the other four data
types would require. All data were extracted from Columbia
University clinical data warehouse, which relies on reconcilia-
tion methods to ensure the completeness of the medical con-
cept list.36,37 At this aim, all codes for labs, diagnosis, and
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medications are organized and normalized by a concept-ori-
ented reference terminology named Medical Entities Dictionary
(MED).38–40 For example, MED maps all medication concepts
to the latest version of RxNorm41 and normalizes their pill for-
mulation for aggregated analysis. Consequently, researchers
are able to perform high-level medical concept retrieval without
being concerned about the underlying heterogeneity in source
data representations.

The handling of data differed by data type. For medications
and diagnosis, we just counted the presence of each
MED-based normalized code in the patient EHRs. For each lab-
oratory result, if a test was recorded with categorical results
(e.g., “positive” or “negative,” “high” or “low,” or a free-text
summary), we simply noted that the test was performed with-
out normalizing heterogeneous result expressions. If the test
had numerical values, to avoid processing data represented in
different numerical scales, for each patient we retained the av-
erage of these values only if all of them were recorded using
the same unit measures; if they were not, we just retained the
fact that the test was performed.

Free-text clinical notes required more sophisticated
processing, including named entity recognition, semantically
similar concepts aggregation, negation detection, redundancy
handling, and topic modeling. First, text processing tech-
niques20 were used to extract relevant tags from each note,
where the tag relevance was determined by the grammatical
role of the words, limited presence of stop words, and match-
ing with the Unified Medical Language System (UMLS)

lexicon.42 We retained only tags belonging to UMLS semantic
types considered relevant for clinical notes (e.g., diseases and
syndromes, finding, body parts, medications).43 All tags were
normalized using the UMLS concept unique identifiers in order
to aggregate synonyms and semantically similar tags under the
same concept to reduce the sparseness of the representa-
tion.20 A tag that appeared as negated in the note was consid-
ered not relevant and discarded.43 To do this, we applied
NegEx, a regular expression algorithm that implements several
phrases indicating negation, filters out sentences containing
phrases that falsely appear to be negation phrases, and limits
the scope of the negation phrases.44 For each patient, we then
analyzed similarities in the representation of temporally
consecutive notes to remove duplicated information (e.g., notes
recorded twice by mistake).45 Preliminary experimental results,
not reported here for brevity, showed that this raw representation
was not effective in capturing patterns in the trial participants.
For this reason, we added a semantic level by modeling notes us-
ing topic modeling,46 an unsupervised inference process that
captures patterns of word co-occurrences within documents to
define topics and represent a document as a multinomial over
these topics. Topic modeling has been widely applied to general-
ize clinical notes and improve automatic processing of patients
data (e.g., see47–49). We used latent Dirichlet allocation50 as our
implementation of topic modeling; each note was eventually sum-
marized as a multinomial of topic probabilities.

Each patient was then represented by four vectors, one per
data type (see the left side of Figure 2). In particular, the

Figure 1: Overview of the “case-based reasoning” framework to discover eligible patients for a clinical trial through the
“target patient,” a representation of the trial derived from the EHR data of a minimal sample of participants.
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medication and diagnosis code vectors summarized how often
each relevant code occurred in the patient EHRs, the lab vector
combined averaged test result values and test frequency, and
the note vector reported the average topic representation
across all the patient notes.

3.1.2. EHR-based Representation of the “Target Patient”
The EHR representations of the available trial participants were
analyzed and aggregated to derive a profile of the “target pa-
tient.” We applied a simple training model based on finding
common concepts in each data type (e.g., diagnosis occur-
rences, highly probable topics, performed lab tests) and aver-
aging the corresponding values. This choice was motivated by
the small number of participants available for some of the trials
(e.g., 3–4 patients), to which more sophisticated statistical
models could not be applied.

Figure 2 illustrates the process and its major steps. Data of
each participant were extracted and parsed as described in the
previous section; participants with no data remaining after this
step were considered outliers and removed. For each data type,
we retained only the concepts frequently shared by the partici-
pants and then averaged their occurrences over all participants.
To estimate the threshold to consider a concept as being fre-
quent, we initialized an algorithm with a frequency value of 80%
(i.e., a concept had to appear in at least 80% of the trial partici-
pants to be retained) and decreased this value until at least 10
concepts for each data type were retained. If this minimum
count could not be achieved due to sparse patient data, we just
retained all the concepts of each patient for that data type.
Consequently, every trial’s “target patient” was represented
by four vectors—medications, diagnosis, notes, and lab—
highlighting the aggregated common patterns among that trial’s

participants (see right side of Figure 2). This representation of
the trial’s “target patient” follows the same data structure of a
real patient (thus facilitating comparisons) and combines all rele-
vant characteristics from the trial’s actual participants.

3.1.3. Patient Eligibility Classification
For a given trial, the EHR data of a new unseen patient is
matched to the “target patient” to obtain a relevance score in-
dicating the patient eligible likelihood. The higher the relevance
score, the more likely is the patient eligible. We implemented
“relevance” as a pairwise similarity relationship between the
patient and the “target patient.” In particular, relevance scores
were obtained by (1) computing pairwise cosine similarity
within each data type separately and (2) aggregating these
scores using a weighted linear combination. The final score
ranged between 0 and 1, with 1 meaning “perfect similarity”
(and thus high relevance). Weights were defined automatically
during training for each trial by seeking the combination of co-
efficients that maximized the pairwise similarity among all the
participants. We used cosine similarity because it processes
only the entries shared by the compared data,51 allowing the
similarity scores to be based only on the concepts associated
with the “target patient.”

Patients can then be classified as “eligible” or “ineligible”
by using a pre-set relevance threshold value so that only pa-
tients with a relevance score greater than this threshold would
be considered eligible. A group of patients can also be listed in
descending order of relevance score for manual review.

3.2. Evaluation Design
By exploiting previously established collaborations with in-
house clinical investigators, we were able to obtain the EHR

Figure 2: Overview of the process to derive the clinical trial’s “target patient” by modeling the EHR data of minimal enrolled
participants.
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data for 262 unique participants enrolled in 13 clinical trials
conducted at Columbia University to use as our gold standard.
These studies were our convenient sample of diversified clini-
cal trials with gold standard (i.e., known participants). These
trials represented different diseases, including Type 2 diabetes
mellitus, HIV, and multiple myeloma (see Table 1 for the details
of each trial). The number of participants per trial ranged from
4 to 128; each participant was enrolled in only one trial. We
also obtained the EHRs for 30 000 patients with sufficient
data—in particular, at least laboratory results, diagnosis, and
clinical notes—randomly selected from the Columbia
University’s clinical data warehouse52 for evaluation. The data
warehouse contains longitudinal records for about 4.5 million
patients. This random set of patients was chosen to generalize
the evaluation on a larger scale and to simulate a real-world
use case scenario where the eligible patients are mixed with
other unseen patients. As we demonstrated in a prior study
about which measure matters for evaluating electronic

screening methods,9 in order to help clinical investigators meet
the recruitment goal, the practical need is to identify an adequate
number of eligible patients with minimal manual effort in least
time. Exclusion of all ineligible patients is often unnecessary to
meet this goal. For example, if a clinical data warehouse con-
tains 4.6 million patients, including more than 120 000 diabetic
patients, while a study aims at recruiting 50 diabetics, it would
be unnecessary for the clinical investigator to exclude more than
3.4 million patients who have no diabetes. It would be totally
fine to focus the search energy to identify 50 true diabetics and
then move on. Following this design principle, the scope of this
evaluation is to identify truly eligible patients in the dataset rather
than identifying all possible ineligible patients.

All trial participants and patients were preprocessed accord-
ing to the method described in the previous sections. Topic
model was estimated using a random subset of 10 000 pa-
tients and applied to all 30 262 patients in the dataset. We esti-
mated the number of topics through perplexity analysis over

Table 1: Brief description of the 13 clinical trials used to evaluate the feasibility of relevance-based
eligibility screening using only EHR data. The trial abbreviation will be used since now on to name the
trials along the article

Trial Title Start Date End Date No. of
Participants

A Avoiding Cardiovascular Events through Combination Therapy in
Patients Living with Systolic Hypertension

January 2003 May 2005 12

B Atherothrombosis Intervention in Metabolic Syndrome with
Lowhdl/High Triglyceride and Impact on Global Health Outcomes

May 2006 November 2012 6

C Diabetes Reduction Assessment with Ramipril and Rosiglitazone
Medication

June 2001 December 2006 26

D Exenatide Study of Cardiovascular Event Lowering Trial July 2011 July 2016 4

E Growth Hormone and Rosiglitazone for Visceral Adiposity in HIV June 2004 April 2009 6

F Liraglutide Effect and Action in Diabetes: Evaluation of
Cardiovascular Outcome Results

February 2011 February 2016 6

G Action to Control Cardiovascular Risk in Diabetes September 1999 December 2012 128

H Sitagliptin Cardiovascular Outcome Study December 2008 December 2014 32

I A Safety and Efficacy Study of Carfilzomib and Pomalidomide with
Dexamethasone in Patients with Relapsed or Refractory Multiple
Myeloma

November 2011 October 2015 4

J Lenalidomide and Dexamethasone With/Without Stem Cell
Transplant in Patients with Multiple Myeloma

November 2012 February 2015 4

K 2� 2 Factorial Design Study to Evaluate the Effects of Lantus vs.
Standard Care and Omega-3 Fatty Acids vs. Placebo

May 2005 November 2012 6

L A 26-week Randomized, Double-blind, Parallel Group Study to
Compare the Efficacy, Safety, and Tolerability of Rosiglitazone
(2 mg b.i.d. and 4 mg b.i.d.) vs. Placebo in Combination with
Glyburide and Metformin in Patients with Type 2 Diabetes Mellitus

January 1999 December 2006 14

M Targeting Inflammation Using Salsalate for Type 2 Diabetes October 2006 December 2010 14
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5000 different random patients. Perplexity is a measurement of
how well a probability model predicts a sample and is algebrai-
cally equivalent to the inverse of the geometric mean per-word
likelihood50; lower perplexity scores indicate better generaliza-
tion performance. We found that 100 topics achieved the best
generalization; therefore, each note was summarized by a
100-topic vector.

For each trial, we conducted a 2-fold cross validation exper-
iment, where, in each fold, half of the participants were used
for deriving the “target patient” and the other half was used for
testing. Each participant was used as test patient for the corre-
sponding trial exactly once. According to the trial under pro-
cessing, for each patient we considered only the data occurring
in a time period ranging from the first event recorded up to one
year after the beginning of trial recruitment (to simulate poten-
tial delays in recruitment and to discard data that would not be
available in a real scenario). In all the experiments, the test set
with half of the participants for each trial was merged with all
the other patients in the ground truth set (unless those used for
training) as well as with the 30 000 random patients. For each
fold and each trial, relevance scores were then computed be-
tween the estimated “target patient” and every patient in the
test set. On these data, we performed classification and rank-
ing experiments, details and results of which are reported in
the following section.

3.2.1. Classification Evaluation
For each trial, we classified a test patient as eligible if his or
her relevance score with the “target patient” of that trial ex-
ceeded a threshold value, not eligible otherwise. We ranged

the relevance threshold from 0 to 1 and, for each value, evalu-
ated the classification performances of all trial folds. We re-
ported the area under the receiver operating characteristic
curve (AUC-ROC), which is a common metric to evaluate binary
classifier performances. The ROC curve is a plot of true positive
rate versus false positive rate found over the set of predictions.
AUC is computed by integrating the ROC curve and it is upper
bounded by 1; random guessing would result in an AUC of
0.5.51 We compared the proposed approach based on a
weighted combination of the cosine similarities of each data
type (i.e., “w-comb”), with alternative strategies computing rel-
evance using one data type at a time. In this case, we included
approaches using only medications (i.e., “only-med”), only
diagnosis (i.e., “only-diag”), only note topic-based representa-
tions (i.e., “only-note”), and only lab results (i.e., “only-lab”).

3.2.2. Ranking Evaluation
We ranked the patients in the fold test sets of each trial accord-
ing to their relevance with the corresponding “target patient”
and evaluated their position in the ranking list. In addition to
the strategies described in the previous section, we evaluated
two additional baseline strategies: “lower-bound,” which ran-
domly ranks the test collection and represent the worst results
achievable; and “upper-bound,” which refers to the best re-
sults possible (i.e., the eligible patients are all at the top of the
ranking list).

We reported different measures averaged through all the
experiments: precision-at-k (Pk), mean average precision
(MAP), and mean reciprocal rank (MRR).51 All these metrics
give more weight to the top of the list, since it is usually the
most relevant part for the users of a search engine. Pk is the
precision when the top-k patients are retrieved, that is, the
fraction true positives in the top-k of the ranking. We used
k¼ 5 and k¼ 10. MAP averages the precision at each point in
the ranking list where a patient is correctly retrieved and is a
measure of the quality of the entire ranking list. MRR averages
the inverse of the rank of the first relevant patient for each list
and is a measure of the level of the ranking list at which the in-
formation need of the investigator is first fulfilled.

4. RESULTS
Figure 3 shows the average classification results of the 2-fold
cross validation experiment when ranging the relevance
threshold values from 0 to 1. As it can be seen, w-comb ob-
tained the best results; in fact, the different data types ap-
peared to be strongly complementary with each other, leading
to the improvement achieved by combining them in one single
score. There was no difference in the results with a threshold
value between 0.1 and 0.5 (all obtaining an AUC >0.9). Thus,
presetting a threshold value in this range potentially leads to
the identification of eligible patients with good precision. The
best overall AUC was 0.952 and was obtained using a rele-
vance threshold of 0.3. Table 2 reports the AUC values for each
clinical trial and each fold in this last case.

The threshold relevance value was set to 0.3, whereby all
the patients in the test set obtaining a relevance score with the

Figure 3: Classification results in terms of the area un-
der the ROC curve averaged over both the evaluation
folds. A patient was considered eligible if its relevance
score with the corresponding “target patient” was
over a threshold (ranged between 0 and 1), ineligible
otherwise.
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“target patient”> 0.3 were considered eligible. The mean area
under the ROC curve over all the trials and folds was 0.952.

Table 3 shows the ranking experiment results averaged
over the two evaluation folds. As in Figure 3, w-comb obtained
the best results; in particular, the approach worked better at
the top of the ranking list than toward the bottom of the list be-
cause MRR is greater than MAP. The MRR values highlighted
that every trial (in average) was likely to rank at least one
relevant patient in the first 2 positions. In addition, 57% of the
relevant patients were ranked in the top 5 positions of the cor-
responding ranking list, while about 70% of them were ranked
in the first 10 positions. To corroborate this statement, Figure 4
shows P5 measures obtained by each trial in the two folds. As
can be seen, for every trial and every fold, w-comb ranked at
least one relevant patient within the top 5 positions (i.e.,
P5� 0.2). Trial C, for example, obtained P5 values for the
2-fold experiments of 0.8 and 0.6, respectively, out of an upper
bound of 1 (i.e., all the top 5 patients could be eligible). This
means that w-comb ranked 4 eligible patients in top 5 posi-
tions during the first-fold experiment and 3 during the second-
fold experiment.

5. DISCUSSION
The proposed method represents a novel combinatory reuse of
clinical and research data, that is, the clinical data in EHRs,
and research data from clinical trial management systems,

specifically the information about trial participants, to improve
clinical trial recruitment and screening. In particular, the results
demonstrate the feasibility of using the EHR data of clinical trial
participants to recommend potentially eligible patients to that

Table 2: Classification results obtained by
w-comb for each clinical trial in the 2-fold
experiments

W-Comb, Relevance Threshold¼ 0.3

Area under the ROC curve

Clinical Trial Fold 1 Fold 2 Average

A 0.976 0.876 0.926

B 0.977 0.973 0.975

C 0.983 0.913 0.948

D 0.993 0.970 0.981

E 0.997 0.833 0.915

F 0.997 0.996 0.996

G 0.899 0.919 0.909

H 0.945 0.946 0.946

I 0.999 0.999 0.999

J 0.999 0.997 0.998

K 0.814 0.902 0.858

L 0.993 0.988 0.991

M 0.903 0.961 0.932

Table 3: Ranking results in terms of preci-
sion-at-{5, 10} (P5, P10), MAP, and MRR
averaged over the two evaluation folds

Algorithm P5 P10 MAP MRR

Baseline lower-bound 0.008 0.004 0.001 0.005

upper-bound 0.718 0.477 1.000 1.000

Data Type
Relevance

only-med 0.077 0.046 0.096 0.137

only-diag 0.031 0.055 0.135 0.187

only-note 0.069 0.106 0.186 0.267

only-lab 0.185 0.132 0.281 0.374

Linear Weighted
Combination of
Data Type
Relevance

w-comb 0.415 0.324 0.558 0.717

Patients in each test set were ranked by their relevance score with
the corresponding trial representation; the higher the relevance, the
higher the rank.

Figure 4: Precision-at-5 (P5) obtained by w-comb for
every fold and every clinical trial. We derived each tri-
al’s “target patient” from the corresponding training
participants, ranked the test patients by their rele-
vance with the trial, and measured how many eligible
patients were within the top five positions. Results for
upper-bound are included for comparison as well; in
this case, there is no distinction between folds
because results were identical.
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trial without processing its free-text eligibility criteria or requir-
ing identifying controls for designing classifiers. Classification
and ranking results were consistent among multiple trials of
different medical conditions and the approach was sufficiently
robust to adapt to different contextual details, such as the num-
ber of training participants, the medical condition investigated
in the trial, and the duration of the trial. In particular, satisfac-
tory results were achieved regardless of the number of partici-
pants used for training. The above merits potentially make the
approach usable early in a trial, when only a small number of
participants (e.g., 2–3) have been enrolled, potentially leading
to a significant increase in the patient screening pool.

5.1. Potential Applicative Scenarios
In a real-world scenario, this CBR approach can be exploited in
three different ways. First, it can be used as a self-standing
tool, which constantly monitors a clinical data warehouse and
alerts investigators when a new potentially eligible patient is
identified (i.e., when the relevance score of the patient with the
trial is greater than a certain threshold, e.g., 0.3).11 To this
end, the classification experiment showed that the proposed
approach is able to highlight eligible patients from a pool of un-
seen candidates with a good precision. Second, an investigator
can use it to rank all the patients in a data warehouse (or a rel-
evant subset of them). Ranking results showed indeed that the
approach is likely to place some eligible patients in the top five
positions, thus potentially reducing the effort required for the
investigator to manually review. The CBR framework can also
integrate strategies matching EHR data and eligibility criteria
toward more effective systems. In fact, combining these two
different but complementary approaches might overcome their
individual limitations and consequently improve the state of the
art of clinical trial eligibility screening methods. Third, depend-
ing on the data types included in the EHR patient representa-
tion, this case-base reasoning framework might allow for a
high degree of interoperability. In fact, in the case of multiple
institutions using compatible coding systems as well as patient
feature conventions, the inferred “target patient” might be
shared among these institutions to allow investigators search-
ing for potential eligible patients across different clinical data
warehouses. This would considerably increase the pool of eligi-
ble patients.

5.2. Limitations and Future Works
This study has several limitations, which leave room for future
methodology enhancement. As an early step in this research
direction, we simplified the problem scenario by assuming that
each clinical trial includes only one group of patients and hence
that only one target patient is needed. For clinical trials that in-
volve multiple cohorts, we can simply repeat the same process
and build a target patient model for each group. Thus, the pro-
posed methodology is expected to generalize to more complex
clinical trial designs when needed.

The main goal of the exploratory study was to test the feasi-
bility of applying CBR using only minimal clinical trial partici-
pants to find other eligible patients. For this reason,

implementation choices were simple in order to avoid introduc-
ing biases and complexities in the evaluation. However, future
studies are required to test if more sophisticated techniques
could lead to even better results. For example, in terms of pa-
tient EHR representation, a model of laboratory results account-
ing for the temporal trends of the values (rather than just the
mean) is likely to benefit the identification of eligible patients.
Similarly, modeling diagnosis and medications using a well-
chosen probability distribution (e.g., Gaussian, Dirichlet) might
help to handle the incompleteness problem of EHR data,53 thus
improving overall performances. The derivation of the “target
patient” representation can benefit from more sophisticated
techniques as well. In particular, all statistical models that can
be trained by only estimating the distributions of participants
associated with each trial (e.g., mixture models, hidden Markov
models) as opposed to optimize a discriminant function in the
training data (e.g., support vector machines) might be a suit-
able solution in this context to obtain better and more robust
predictions.54 Moreover, this study relied on a simple concept-
based reasoning provided by UMLS and MED; we expect that
supporting EHR processing with additional medical ontologies
might further improve the precision and recall of eligible patient
search.

Future work will most likely address these points. In partic-
ular, we plan to use ontologies and focus on exploring more so-
phisticated statistical models to improve the EHR-based “target
patient” representation. Besides benefitting clinical research,
we believe that this direction might promote research in the
machine learning community as well, since most of the models
presented in the literature work well only with large training
datasets (as opposed to this context where only a few partici-
pants might be available). Finally, we plan to extend the evalu-
ation by adding trials covering different diseases to the
experimental set, in order to develop an even more reliable and
effective prototype.

6. CONCLUSIONS
This article demonstrated the potential usefulness of an appli-
cation of “case-based reasoning” (CBR) to expedite electronic
patient screening for clinical trials. In particular, given a trial
and a set of trial participants, the proposed approach modeled
the EHR data of the participants to derive a general representa-
tion of the “target patient” that can be used to discover and
rank new potentially eligible patients from a clinical data ware-
house. Evaluation results on classification and ranking tasks
demonstrated the feasibility of this method by showing satis-
factory benefits.
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