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Abstract: Gut microbiota plays an important role in the health and performance of the host. Charac-
terizations of gut microbiota, core microbiomes, and microbial networks in different chicken breeds
are expected to provide clues for pathogen exclusion, improving performance or feed efficiency.
Here, we characterized the gut microbiota of “finishing” chickens (at the end of production life)
of indigenous Indian Nicobari, Ghagus, and Aseel breeds, originating from the Nicobari island,
coastal India, and the Indian mainland, respectively, as well as a global commercial broiler line,
VenCobb 400, using 16S rDNA amplicon sequencing. We found that diversity, as well as richness of
microbiota, was higher in indigenous breeds than in the broiler line. Beta diversity analysis indicated
the highest overlap between Ghagus and Nicobari breeds and a very low overlap between the broiler
line and all indigenous breeds. Linear discriminant analysis effect size (LEfSe) revealed 82 breed- or
line-specific phylotype operational taxonomic unit (OTU) level biomarkers. We confirm the presence
of breed specific and across-breed core microbiomes. Additionally, we show the existence of breed
specific complex microbial networks in all groups. This study provides the first (and comprehensive)
insight into the gut microbiota of three indigenous breeds and one commercial broiler line of chick-
ens reared without antimicrobials, and underscores the need to study microbial diversity in other
indigenous breeds.

Keywords: amplicon sequencing; chickens; gut microbiome; Ghagus; Nicobari; Aseel; broiler

1. Introduction

Chickens are a cornerstone of animal agriculture worldwide, with a flock population
exceeding 40 billion birds/year [1]. Poultry represents one of the most efficient form of
animal protein with highly efficient feed conversion. Moreover, global human population
growth, urbanization, and income levels are contributing to the huge increase in demand for
protein and, therefore, livestock and poultry. Sustainable poultry meat and egg production
is important to provide safe and quality protein sources in human nutrition. Feed efficiency
and faster growth are crucial goals in the highly competitive poultry production system.
Maintaining a healthy gut is an important prerequisite to attain these goals.

The gastrointestinal (GI) tracts of chickens are densely populated, with diverse and
complex microbiota (bacteria, fungi, archaea, protozoa, and virus—dominated by bac-
teria) that play a vital role in the digestion and absorption of nutrients, host immune
system development, pathogen exclusion, and endocrine activity; thus, maintaining nor-
mal physiological homeostasis and influencing gut development, nutrient supply, and host
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metabolism and detoxification [2]. Understanding diversity and community structure of
the gut microbiome is important for devising strategies to improve chicken gut microbiome.
Several studies have indicated that the gut microbial composition in chickens is strongly
influenced by the host [3–6]. Further, host immune pathways in gut tissues may influence
microbiome structure. It has been shown that chicken lines selected for differences in
immune response contribute to adaptive changes in gut microbiota [7]. Similarly, some
studies have indicated a strong correlation between the gut microbiome and feed efficiency
in chickens [8,9]. In studies with cattle, it has been shown that a heritable set of core
gut microbiome influence dairy cow productivity [10]. It has been suggested that high-
throughput sequencing tools have huge potential to be used for assessing the microbiome
structure in the guts of chickens, in a comprehensive manner, which, in turn, may further
develop strategies to improve growth, feed efficiency, survivability, or lower pathogen
shedding via the development of host specific probiotics [11].

Native chicken breeds are gaining popularity across India due to their unique char-
acteristics, such as desirable flavor of meat and eggs and ability to thrive in a low input
system and hot humid climate. Further, there is a growing demand in cities for eggs and
meat of native chickens, as compared to the exotic ones, due to the perceived better flavor
and taste. Many producers are rearing indigenous chicken breeds under intensive systems
to meet increasing demand.

Some of the indigenous chicken breeds of India including Aseel, Nicobari, and Ghagus,
have been shown to have better egg, meat traits, and resistance to infectious diseases, with
better immune parameters, but lower feed conversion efficiency, as compared to commer-
cial broiler chickens [12]. Analysis to define gut microbiome of native Indian breeds, such
as Assamese chicken [13], Aseel, and Kadaknath has recently been reported [6]. However,
the study on Aseel and Kadaknath was carried out when chickens were supplemented
with antibiotic growth promoters. Antibiotics are known to modulate gut microbiota
significantly and, hence, information on the true composition of gut microbiota without
influence of antibiotics of these breeds remains to be studied.

In the present study, we use amplicon sequencing targeting hypervariable (V3-V4)
region of 16S rRNA genes to compare gut microbiota of finishing chickens (at end of
production life) of three indigenous Indian breeds originating in diverse geographical
regions (Aseel, Ghagus, and Nicobari) and a commercial broiler (Vencobb 400) reared
under commercial set-up, but without any antibiotics. The Nicobari breed is an indigenous
and endemic breed of chickens of the Nicobar Islands, an internationally acknowledged
biodiverse hot spot off the Indian mainland (it was detached from the Asian main lands
some 100 million years ago). The breed produces the highest number of eggs among
all indigenous chicken breeds of India [14] and is believed to have the high disease-
resistance [15]. Aseel is an important and one of the most popular indigenous chicken
breeds of the Indian mainland, well known for its meat quality, with desirable taste and
flavor, as well as the ability to thrive under adverse, climatic, and nutritional conditions [16].
Ghagus is another important native chicken breed of the coastal region of Southern India,
known for its meat quality, with desirable taste and flavor, disease resistance [15], ability to
perform under hot and humid climates, and under the low plane of nutrition.

Our hypothesis is that gut microflora would vary significantly between chicken breeds
and lines, offering clues for development of breed/line specific probiotics or feed additives
for improving performance, feed efficiency, health or pathogen exclusion—or for targeted
genetic improvement—by selective breeding for the desirable type of gut microbiome.

2. Materials and Methods
2.1. Chicken Breeds and Experimental Design

In the present study, four chicken breeds or lines were chosen for comparison, which
included three indigenous Indian breeds (Nicobari, Aseel, and Ghagus) and one global
commercial broiler line (Vencobb 400). The chickens of the indigenous breeds utilized
in the present study were reared at the farm of Indian Council of Agricultural Research
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(ICAR)—Directorate of Poultry Research (DPR) under intensive system. These breeds were
originally collected from their respective breeding tracts (Nicobari from Andaman and
Nicobar Island, Ghagus from Kolar district of Karnataka State, and Aseel from Andhra
Pradesh) approximately six years ago. The birds of native breeds utilized in this study
were hatched in the institute (DPR) hatchery (300 birds/breed) through random breeding
of 60 sires and 240 dams from each breed. The first 16 weeks after hatch, the chickens
were housed breedwise, separately, on conventional floor pens (600 ft2), on fresh and clean
paddy husks. There was free access for chickens to antibiotic and coccidiostat free feed
and water. Brooding was done with the help of incandescent bulb, up to 21 days. From
17 to 35 weeks, each chicken was reared in an individual cage (2 ft2) with arrangements
for individual feeder and nipple drinkers. All chickens of native breeds were allowed ad
libitum feeding maize and soya bean-based balanced diets, as per institute (ICAR-DPR)
developed feeding standards for intensive production with no antimicrobials. All of the
native chickens were offered a chick diet (179.4 g/kg crude protein (CP) and 2880 Kcal
metabolizable energy (ME)/kg) from hatch to 8 weeks of age, a grower diet (177.7 g/kg CP
and 2810 Kcal ME/kg) from 9 to 16 Weeks of age, followed by a breeder diet (140 g/kg CP
and 2870 Kcal ME/kg). Detailed compositions of the diets are presented in Table S1. All
birds were vaccinated against viral diseases, such as Marek’s disease, Newcastle disease,
infectious bursal disease, and fowl pox, as per the recommended schedule.

VenCobb400 line (Venkateswara Hatchery and Breeding Farm Private Limited, Hy-
derabad) was used for comparison as representatives of the global commercial broiler line.
Newly hatched Vencobb 400 chicks were acquired from a local hatchery (Venkateswara
Hatchery, Hyderabad, India) and reared on clean battery brooder cages with five birds/pen
measuring 6 ft2, with the arrangement for feeder and drinker. Brooding was done with
the help of incandescent bulbs up to 21 days. All of the chickens of the Vencobb 400
line received maize and soya bean meal-based balanced diets, as per feeding standards.
Chickens had free access to antibiotic- and coccidiostat-free feed and water. The chickens
were fed with a pre-starter diet (229.3 g/kg CP and 2950 kcal/kg ME) from hatch to 14 d, a
starter diet (214 g/kg CP and 3100 Kcal/kg ME) from 15 to 28 d, followed by a finisher
diet (195 g/kg CP and 3250 kcal/kg ME from 29 d onward, as per feeding standards
recommended by the breeder. Detailed compositions of the diets are presented in Table S1.
All birds were vaccinated against viral diseases, such as Marek’s disease, Newcastle disease,
and infectious bursal disease, as per the recommended schedules.

Care was taken to ensure that all birds received, exactly, similar husbandry to minimize
non-host variation. Birds of each breed or line were housed in separate distantly placed
houses so that there was no fecal contamination between pens.

2.2. Sample Collection and DNA Extractions

For each breed/line, eight apparently healthy male chickens in their finishing (mar-
ketable age) stage, with body weight close to mean body weight (BW) (average BW, 2.4 kg;
age, indigenous: 35 weeks; broiler, 6 weeks) were selected at random (each one from
separate pens in case of Vencobb 400) from each group, caught, and euthanized by cervi-
cal dislocation. Gut was opened immediately using sterile scissors; luminal contents of
hindgut (from duodenum to cloaca including caeca) were recovered into sterile cryovials,
mixed thoroughly, and immediately stored in a portable freezer at −20 ◦C, transported to
the laboratory and stored at −80 ◦C.

Total genomic DNA was extracted from the pooled gut contents of each individual
chicken using the commercially available QIAamp Fast DNA Stool Mini kit (QIAGEN,
Hilden, Germany), following the manufacturer’s Instructions. DNA concentration and
quality were assessed using a Qubit 2.0 fluorometer (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA) and gel electrophoresis. DNA was stored at −20 ◦C until further pro-
cessing.
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2.3. 16S rRNA Gene Amplification and Sequencing

Hypervariable V3 and V4 regions within the 16S rRNA gene were amplified from gut
microbial DNA sample using the primer pair S-D-Bact-0342-b-S-17(5′-CCTACGGGNGGC
WGCAG-3′) and S-D-Bact-0785-1-A-21(5′-GACTACHVGGGTATCTAATCC-3′) recommend-
ed by Klindworth et al. [17] with adapters (for forward primer: 5′-TCGTCGGCAGCGT
CAGATGTGTATAAGAGACAG-3′; for reverse primer: 5′-GTCTCGTGGGCTCGGAGATG
TGTATAAGAGACAG-3′). Each 25 µL PCR reaction comprised of 2.5 µL DNA (~5 ng/µL),
5 µL each forward and reverse primer (1 pM) and 12.5 µL 2X KAPA HiFi HotStart ReadyMix
(Kapa Biosystems, London, UK). PCR amplification cycles were as follows: initial denat-
uration at 94 ◦C for 3 min, followed by 25 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and
72 ◦C for 30 s, and a final extension at 72 ◦C for 5 min. Amplicons were further processed
for library preparation using Illumina’s Nextera XT library preparation kit (Illumina, San
Diego, CA, USA). Sequencing was performed using an Illumina MiSeq desktop sequencer.
Trimming of adaptor sequences was performed using Illumina analysis software V2.5 as
recommended by the manufacturer using default parameters. Samples were processed
with three negative controls per plate in the sequencing run.

2.4. Sequence Data Analysis

Illumina reads were analyzed using MOTHUR software package (v 1.40.0) [18] by
following analysis pipeline of MiSeq SOP (https://www.mothur.org/wiki/MiSeq_SOP;
accessed on 31 March, 2020) with some modifications. Briefly, read pairs were assembled
into contigs. A threshold of Phred quality scores (Q ≥ 25) of the base was chosen for
a stringent quality control processing. Any contigs with ambiguous base (N), having
homopolymer bases greater than 8 and shorter than 200 bp were culled. Identical or
duplicate sequences were merged. Sequences were aligned to SILVA [19] seed alignment
(silva.seed_v138.align; available in the MOTHUR website). Poorly aligned sequences were
removed and overhangs at both ends were trimmed so that they overlap the same region.
Unique sequences were screened and further de-noised based on pre-clustered command
for up to 2 bp differences between sequences. Chimera sequences were checked and re-
moved using VSEARCH [20], as implemented in MOTHUR. Sequences were then classified
using naïve Bayesian classifier against ribosomal database project (RDP) 16S rRNA gene
training set (version 16) with bootstrap cutoff of 51% [21]. Sequences classified to unrelated
taxon (other than bacteria or Archaea) were removed. Clean sequences were subjected to
operational taxonomic unit (OTU) clustering using DMSC software [22] at 97% similarity
cutoff. DMSC output was converted to MOTHUR formatted list file and shared file for
further analysis. OTUs were taxonomically classified using RDP classifier as implemented
in MOTHUR using the GreenGene [23] Taxonomy (gg_13_8_99.gg.tax) database, available
in the MOTHUR website. MOTHUR formatted shared file and consensus taxonomy files
were converted to BIOM file format, and singleton and doubleton OTUs were removed
from the BIOM file. The BIOM file along with the sample metadata files were uploaded to
the MetaCoMET web server [24] for plotting Venn diagram of OTUs. The breed specific
OTU tables along with metadata were uploaded to the METAGENassist website [25] for
analysis, where data were filtered as per default settings, and samples were normalized
using total sum (sample vs. sample) and Pareto scaling (taxon vs. taxon; mean centered
and divided by the square root of standard deviation of each variable). The processed
data were used for the generation of correlation heatmaps using the Spearman rank option.
The BIOM (or MOTHUR generated shared and consensus taxonomy files) along with the
metadata file and a neighbor joining (NJ) tree file prepared from the OTU representatives
were uploaded to MicrobiomeAnalyst [26] for the analysis of alpha diversity, beta diversity,
differential abundance, biomarker identification, core microbiome, and correlation network
analysis. For the analysis of alpha diversity and beta diversity (nonmetric multidimen-
sional scaling (NMDS) and principal coordinate analysis (PCoA)), data were normalized by
the cumulative sum scaling (CSS) method after disabling the default data filtering options
for low counts and low variances. However, features appearing only in one sample were

https://www.mothur.org/wiki/MiSeq_SOP
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removed automatically as there was no option to disable such minimal filtering function.
Additionally, for the analysis of alpha diversity, data were rarefied to the minimum library
size (at 12151 sequences per sample). For the analysis of differential abundance (using
edgeR), biomarker identification (using linear discriminant analysis effect size or LEfSe)
and correlation network data were filtered for low counts and low variances using the
default setting to remove less informative features, to focus on important features, and to
improve downstream statistical analysis (this process removed 127 low count OTUs out of
296 taxonomic OTUs). Beta diversity profiling and significance testing were carried out at
different taxonomic levels, such as OTU, genus, family, class, and phylum using PCoA as
well as NMDS ordination based on different distance methods, such as Bray–Curtis dissim-
ilarities, Jensen–Shannon diversion, and Weighted UniFrac, using statistical methods, such
as permutational multivariate analysis of variance (PERMANOVA) and homogeneity of
group dispersion (PERMDISP). Core microbiome analysis was carried out at OTU level
using MicrobiomeAnalyst with relative abundance cutoff of 0.1% [6,27], and a prevalence
cutoff of 50% applied, instead of default values of 0.01% and 20%, respectively, to focus
on the most commonly shared OTUs. On detection of significant difference in overall
abundance between groups on edgeR analysis, followed by Benjamini–Hochberg false
discovery rate (FDR) correction for multiple comparison, groups were compared pairwise
using nonparametric Mann–Whitney U test (Wilcoxon rank sum test) as implemented in
SPSS [28]. Chicken breed/line-specific biomarkers at multiple taxonomical level analyses
were performed using the linear discriminant analysis (LDA) effect size (LEfSe) algorithm
using Benjamini–Hochberg false discovery rate (FDR) adjusted p-value cutoff value of
0.05 and the logarithmic LDA score cutoff of 2, as well as 3.5 [29]. The LEfSe bar plots
were created using MicrobiomeAnalyst, but the cladogram was created using a standalone
version of LEfSe [29]. In all analyses, p-values were corrected for Benjamini–Hochberg
false discovery rate (FDR). BIOM data were rarefied to the minimum library size (at 12151
sequences per sample) and rarefaction analyses were carried out using MOTHUR. Rar-
efaction curve was visualized by creating plots using R package. Alpha diversity matrices
were compared at the OTU level using the Kruskal–Wallis test followed by Dunn’s test, as
implemented in SPSS [28], and Benjamini–Hochberg false discovery rate (FDR) adjustment
of p-values. Correlation networks at different taxonomic levels were built based on the
pairwise Spearman rank correlation coefficients, where each node represents a taxon, and
two taxa are connected by an edge if the Spearman rank correlation between the two taxa
meet the p-value (<0.05) and correlation (>0.6) thresholds. Taxonomic assignments were
presented as Krona charts from CSS normalized relative abundance data using standalone
KronaTools (version 2.7.1) [30]. Stacked barplots of taxonomic assignments at the phylum
level were created using MicrobiomeAnalyst.

3. Results
3.1. Microbiome Sequencing

High throughput sequencing generated 5.095 million raw reads corresponding to
4.08 Gbp of raw data from the gut content of the 32 chickens. After read quality filter-
ing, merging paired-end reads, denoising, removing chimeras, and filtering low-quality
sequences, the average number of quality-controlled sequences per sample was 113,028
(range, 50,392–295,955) (Table 1). The 16s rRNA gene amplicon sequencing results were de-
posited in the Sequence Read Archive of the National Centre for Biotechnology Information
(NCBI) (accession numbers: PRJNA641245 and PRJNA641779).
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Table 1. Summary statistics of sequences analyzed, operational taxonomic unit (OTU) numbers
detected (clustered at >97% similarity), and microbial diversity covered.

Aseel Broiler Ghagus Nicobari

Total Sequences 2,135,894 493,732 484,707 502,563
Average Sequences/Sample 266,987 61,717 60,588 62,820
Average No. OTUs (n > 2) 3461 857 1911 1767

Average Microbial Diversity (%
Good’s Coverage) 99.1 98.6 97.2 97.7

3.2. Operational Taxonomic Unit (OTU) Occurrence

The indigenous Aseel breed presented the highest number of non-singleton non-
doubleton (with >2 members) OTUs (genetic distance based OTUs at 97% similarity cutoff)
(3461), followed by Ghagus (1911) and Nicobari (1767) (Table 1). The commercial broiler line
presented the lowest number of OTUs (857). Observed OTU numbers were significantly
(p < 0.05) higher in the indigenous breeds than that of the commercial broiler line. Observed
OTU numbers in the Aseel breed were higher than those of Ghagus and Nicobari. However,
OTU numbers in Ghagus and Nicobari were comparable.

Based on Good’s coverage index, 98.6, 99.1, 97.2, and 97.7% of gut microbial diversity
were covered in Broiler, Aseel, Ghagus, and Nicobari, respectively (Table 1).

3.3. Taxonomy Assignment

The assignment of consensus taxonomy resulted in the identification of 18 phyla,
138 genera, and 296 phylotype-OTUs (phylotype-OTUs were obtained after merging
distance-based OTUs with the same consensus taxonomy) being represented across the gut
samples of the chicken population. Figure S1 (Krona charts and stacked barplots) provides
an overview of the average CSS normalized relative abundance levels of most of the abun-
dant microbiota at different taxonomic levels in the gut microbiota of different breeds/lines.
In Aseel, the gut microbiota was dominated by Bacteroidetes (44%) followed by Firmicutes
(43%), Proteobacteria (6%), Actinobacteria (1%), and Cyanobacteria (0.8%) that constituted
94.8% of the whole phyla. In the broiler line Firmicutes, Bacteroidetes, Cyanobacteria, Pro-
teobacteria, and Verrucomicrobia were the major phyla, which accounted for 81, 6, 6, 4, and
1% of total sequences, respectively. In Ghagus Bacteroidetes, Firmicutes, Proteobacteria,
and Cyanobacteria were the major phyla, which accounted for 62, 26, 3, and 0.9% of total
sequences, respectively. In Nicobari Bacteroidetes (53%), Firmicutes (24%), Proteobacteria
(8%), Fusobacteria (5%), Verrucomicrobia (2%), and Cyanobacteria (2%) were predominant
phyla. Overall, the two phyla, Firmicutes and Bacteroides, represented 77–88% of gut
prokaryotes.

A Venn diagram depicting the extent of overlap of phylotype-OTUs between different
hosts has been presented in Figure S2. Aseel, Broiler, Ghagus, and Nicobari had 263, 172,
249, and 230 phylotype-OTUs, respectively. Only 27 phylotype-OTUs were specific to
any breed or line (Aseel: 25; Broiler: 1; Ghagus: 8; Nicobari: 3), whereas, 35, 89, and 135
phylotype-OTUs were shared between 2, 3, and 4 groups, respectively.

3.4. Microbial Alpha Diversity and Data Rarefaction

Different alpha diversity metrics (the diversity within each breed or line) were esti-
mated based on rarified data to assess different aspects of the community structure and
the results are presented in Figure 1 and Table 2. The mean observed richness (number
of observed OTUs) was comparable among native breeds, but was lower in the broiler
line. The species richness (or the number of species or OTUs) indices, such as abundance
based coverage estimator (ACE) and Chao1, were higher (p < 0.01) in the indigenous breeds
than that of the commercial broiler line. Indigenous breeds had comparable ACE and
Chao1 estimates.
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Table 2. Statistical analysis of alpha diversity measures for comparing different breeds or line. p-values were adjusted for
false discovery rate (FDR).

Metrics
Mean ± SD Values #

Kruskal–Wallis
Test (p-Values)

Dunn Post-Hoc Test—FDR Adjusted p-Values

B A G N B vs. A B vs. G B vs. N A vs. G A vs. N G vs. N

Richness

Observed
richness 513.9 ± 147 902 ± 99 984 ± 243 857 ± 131 0.001 <0.001 <0.001 0.002 0.663 0.688 0.645

Chao1 717 ± 119 1653 ± 223 1601 ± 371 1450 ± 246 <0.001 <0.001 <0.001 <0.001 0.195 0.606 0.721
ACE 755 ± 103 1691 ± 255 1704 ± 392 1557 ± 274 <0.001 <0.001 <0.001 <0.001 0.492 0.530 0.959

Diversity

Simpson 0.938 ±
0.027

0.974 ±
0.015

0.973 ±
0.019

0.976 ±
0.010 0.011 0.018 0.020 0.014 1 1 1

Shannon 4.01 ± 0.54 4.91 ± 0.32 4.95 ± 0.41 4.83 ± 0.34 0.007 0.018 0.015 0.010 0.967 0.865 0.959
Fisher 116 ± 43 240 ± 35 274 ± 99 225 ± 46 0.001 <0.001 <0.001 0.002 0.492 0.530 0.645

# Sequences were rarefied to the minimum library size (at 12,151 sequences per sample); A, Aseel, B, Broiler, G, Ghagus, N, Nicobari.

The diversity (which takes into account both richness and evenness) estimators, such
as Simpson, Shannon, and Fisher were also higher (p < 0.01) in the indigenous breeds (Aseel,
Ghagus, and Nicobari) as compared to the commercial broiler line, and these estimators
were comparable among the indigenous breeds.

Besides richness and diversity estimators, rarefaction curves based on the Chao1 index
were also plotted. The rarefaction curve depicts the correlation between the number of
sequences and the number of OTUs and the steeper the slope, the higher the diversity [31].
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The rarefaction curve also indicated that the broiler line had lower diversity than those of
the indigenous breeds (Figure 2). Rarefaction curve approached the asymptotic level for
each breed or line, suggesting the availability of sufficient reads to represent each microbial
community.
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3.5. Microbial Beta Diversity

The beta diversity (the partitioning of biological diversity among breeds or along a
gradient, e.g., the number of species shared between two breeds or lines) analysis was
undertaken to assess the relationship of microbial communities of different breeds/line
using different metrics to calculate the dissimilarity/distance matrix, such as Bray–Curtis,
Jensen–Shannon, unweighted UniFrac, and weighted UniFrac.

The correlation between the distance matrix and metadata categories was tested using
PERMANOVA, which reports an coefficient of determination or R squared (R2 ) value
indicating the proportion of variation explained by this category, and a p-value representing
the statistical significance [32]. Homogeneity of group dispersions was also tested using
PERMDISP. Beta diversity was visualized using NMDS as well as PCoA but due to space
limitation only plots obtained using NMDS are presented. Results of beta diversity analysis
at phylotype-OTU level, including results of ordination using NMDS, are presented in
Figure 3.

PERMANOVA tests performed using all beta diversity metrics used in this study
showed significant (p < 0.001) differences in community structure between different
breeds/lines, both at Phylotype-OTU level and at the Phylum level (Table S2). At phylotype-
OTU level, Jensen, Shannon based PERMANOVA analysis had the highest pseudo–F (11.56)
and R2 (0.553) values among all four distance metrics indicating that 55.3% of microbiota
variation is explained by this category (breed) besides a significant p-value (p < 0.001). The
weighted UniFrac based analysis at the phylotype-OTU level showed that breed explained
47.3% (R2) of microbial variation (PERMANOVA, pseudo–F 8.4, p < 0.001). At the phylum
level, Jensen Shannon based PERMANOVA analysis had the highest Pseudo- F (18.54;
p < 0.001) and R2 (0.665) value among all four distance metrics, indicating that 66.5% of
microbiota variation is explained by this category (breed) besides a significant p-value
(p < 0.001). The weighted UniFrac based analysis at the phylum level showed that breed
explained 52.7% (R2) of microbial variation (PERMANOVA, pseudo–F 10.4, p < 0.001). The
beta dispersion values (PERMDISP) were non-significant for all groups in all diversity
metrics analyzed at phylotype-OTU or the phylum level, except in the case of unweighted
UniFrac analysis for phylum data, indicating homogeneous dispersion among groups.
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Beta diversity plots visualized using ordination methods NMDS at the phylum level
using NMDS method of ordination have been presented in Figure S3. Jaccard index resulted
in similar plots in NMDS scaling as that of Bray–Curtis distance both at phylotype-out, as
well as at Phylum Level and, hence, plots for the Jaccard index have not been presented.

The NMDS scaling based on all five distance metrics showed clear visual separation
of breed/line at phylotype-OTU level. At the phylum level, there was a high degree of
overlap between the indigenous breeds, but the only minor overlap between Broiler and
indigenous breeds (Aseel or Nicobari or Ghagus) was observed, and the extent of overlap
between breeds/line varied with the distance metric used.

3.6. Differential Abundances at Different Taxonomic Levels

The 157 phylotype-OTUs (with ≥4 members and prevalence in >20% samples) were
taxonomically placed (using RDP classifier and Greengenes database) into a total of 91
genera with 88, 69, 88, and 87 genera in Aseel, broiler, Ghagus, and Nicobari, respectively.
At the family level, sequences were classified into a total of 68 families with 66, 54, 65,
and 68 families in Aseel, broiler, Ghagus, and Nicobari, respectively. At the order level,
sequences were classified into a total of 44 orders with 42, 32, 42, and 44 orders in Aseel,
broiler, Ghagus, and Nicobari, respectively. At class level, sequences were classified into a
total of 35 classes with 34, 29, 35, and 35 classes in Aseel, broiler, Ghagus, and Nicobari,
respectively. At the phylum level, sequences were classified into a total of 20 phyla with 19,
18, 20, and 20 phyla in Aseel, broiler, Ghagus, and Nicobari, respectively.

Out of 157 phylotype-OTUs, edgeR analysis with FDR correction indicated that 88
phylotype-OTUs were significantly different in abundance between breeds/line. Major
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phylotype-OTUs (top 41 out of 88 phylotype-OTUs in term of CSS normalized abundance)
with significant difference in abundances between breeds/line along with taxonomy (last
classified level) has been presented in Figure 4. Many phylotype-OTUs containing a large
number of sequences had low taxonomic resolution (having a taxonomic resolution only
down to the order level). Comparisons between pairs of groups using the Mann-Whitney
U test indicated that among the 41 most abundant phylotype-OTUs there was a significant
difference in abundance of 24, 19, 21, 24, 26, and 6 phylotype-OTUs between Aseel vs.
broiler, Aseel vs. Ghagus, Aseel vs. Nicobari, broiler vs. Ghagus, respectively. Interest-
ingly, the abundance of many phylotype-OTUs such as OTU1000062 (order Bacteroidales),
OTU100296 (family equivalent S24-7 uncultured gut microbial group), OTU102407 (genus
Bacteroides), OTU1057116 (phylum Bacteroidetes), OTU168571 (species Bacteroides bar-
nesiae), OTU1758401 (genus equivalent SMB53 uncultured gut group), and OTU4324240
(genus Faecalibacterium) and were very low in the broiler line although these were highly
abundant in all indigenous breeds. On the other hand, abundance of OTU137026 (genus
Lactobacillus), OTU1021172 (species Lactobacillus salivarius), OTU137026 (species Lacto-
bacillus agilis), OTU181074 (genus equivalent CC115 gut group), and OTU549991 (species
Lactobacillus helveticus) were higher in the broiler line than those of indigenous breeds.

Many phylotype-OTUs were significantly higher in abundance in Aseel than in Gh-
agus or Nicobari. The notable ones, besides others, include OTU1000113 (order Burkholderi-
ales), OTU100567 (genus Ruminococcus), OTU839684 (family Lachnospiraceae), OTU586453
(family Christensenellaceae), OTU1010876 (genus Oscillospira), OTU1057116 (phylum Bac-
teroidetes) OTU 167741 (genus Dorea), and OTU1649772 (species Escherichia coli). On the
other hand, abundance of OTU1021172 (species Lactobacillus salivarius) and OTU1066621
(genus Prevotella) were higher in Ghagus than in Aseel. The abundance of a few phylotype-
OTUs, such as OTU100296 (family S24-7) and OTU1758401 (family SMB53) were lower
in Nicobari than in Aseel or Ghagus. The abundance of OTU4369050 (family Fusobacteri-
aceae) was higher in Nicobari than in Aseel or Ghagus. The abundance of OTU1066621
(genus Prevotella) was significantly higher in Ghagus than in Aseel or Nicobari.

Out of 91 genera, having a mean abundance of ≥4 and prevalence of >20%, twenty-
four genera were significantly different in relative abundance between breeds/line. Genera
having significant differences in abundance between breeds/lines have been presented in
Figure S4. Out of 45 orders, meeting the minimum count and prevalence criteria, twenty-
two orders were significantly different in relative abundance between breeds/line. Orders
having a significant difference in abundance between breeds/lines have been presented
in Figure S5. Phylum level abundance data of gut microbiota have been presented in
Figure S6. Out of 19 Phyla, edgeR analysis followed by FDR correction indicated that
abundances of five phyla were significantly different between groups. Comparisons
between different pairs of groups using the Mann–Whitney U test indicated a significant
difference in abundance of 3, 0, 5, 3, 3, and 1 phylum between Aseel vs. broiler, Aseel
vs. Ghagus, Aseel vs. Nicobari, broiler vs. Ghagus, broiler vs. Nicobari, and Ghagus
vs. Nicobari groups, respectively. The broiler line had a significantly higher abundance
of Firmicutes as compared to indigenous breeds. Indigenous breeds had a significantly
higher abundance of unclassified Bacteroidetes as compared to the broiler line. Some of
the phyla, such as Deferribacteres, Elusimicrobia, Spirochetes, TM7, and unclassified WPS2
were either not detected or detected in a few samples in the broiler but were detected
consistently although in low numbers in indigenous breeds. At the phylum level, there was
a significantly higher abundance of Actinobacteria, unclassified Bacteroidetes, Firmicutes,
and TM7 in Aseel as compared to Nicobari. There was no difference in the abundance of
any phylum between Excel and Ghagus. The abundance of phylum TM7 was significantly
higher in Ghagus than in Nicobari.
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Figure 4. Differential abundance of gut microbiota in different breeds or lines at OTU level. Top
35 abundant phylotype-OTUs, out of 88 phylotype-OTUs with a significant difference in relative
abundance among groups identified with edgeR, were plotted. The size of bubbles in the bubble
plot indicates the normalized (cumulative sum scaling) abundance of each OTU. * p-value < 0.05;
** p-value < 0.01.

3.7. The Core Gut Microbiome

Phylotype-OTUs with a mean normalized (CSS) relative abundance of at least 0.1%
and having within breed prevalence of at least 50% in at least one breed were considered to
define core microbiome in different breeds/lines. Analysis of the prokaryotic community
composition at the OTU level indicated that of the 296 phylotype-OTUs detected, only
22 phylotype-OTUs were present in >0.1% relative abundance in at least 50% of the birds
in at least one breed or line (Figure 5). Twelve, five, and two of the 22 phylotype-OTUs
belonged to the phyla Firmicutes, Bacteroidetes, and Proteobacteria, respectively, with
the rest belonging to other diverse phyla, such as Fusobacteria and Cyanobacteria. Only
five phylotype-OTUs (OTU1000113 belonging to the order Clostridiales, OTU100567 be-
longing to the genus Ruminococcus, OTU1010876 belonging to the genus Oscillospira,
OTU839684 belonging to the family Lachnospiraceae, and OTU98948 belonging to the
family Ruminococcaceae) occurred as core microbiome across all breeds or lines and these
core phylotype-OTUs represented 26% of total microbial count. The OTU839684 belonging
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to the family Lachnospiraceae alone accounted for 13% of the total microbiome (or 50% of
core microbiome) count of all chicken breeds/lines. Three phylotype-OTUs were unique
to the broiler line (OTU181074 belonging to the genus level group cc_115, OTU2229500
belonging to the species Subdoligranulum variable, OTU549991 belonging to the species
Lactobacillus helveticus). Two phylotype-OTUs were unique to the Aseel breed (OTU586453
assigned to the family Christensenellaceae and OTU60774 assigned to the species Anaero-
biospirillum thomasii). One phylotype-OTU was unique to the Nicobari breed (OTU4369050
belonging to the genus Fusobacterium). Seven phylotype-OTUs (OTU1000062 belonging
to the order Bacteroidales, OTU100296 belonging to the family level gut group S24_7,
OTU102407 belonging to the genus Bacteroides, OTU1057116 belonging to the phylum
Bacteroidetes, OTU1105376 belonging to the genus Sutterella, OTU168571 belonging to
the species Bacteroides barnesiae, and OTU4324240 belonging to the species Faecalibacterium
prausnitzii) were core OTUs across the three indigenous breeds, but were not consistently
detected in the broiler line. These indigenous chicken specific core OTUs represented 49.3%
of the total prokaryote count of indigenous birds.

Microorganisms 2021, 9, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 5. Breed or line-specific and across-breed or line core phylotype-OTUs. Phylotype-OTUs 
with a mean normalized (cumulative sum scaling) relative abundance of at least 0.1% and having 
within breed or prevalence of at least 50% in at least one breed were taken into account The size of 
bubbles in the bubble plot indicates normalized (cumulative sum scaling) abundance of each OTU. 

3.8. The Breed/Line Specific Biomarkers Based on LEfSe Algorithm 
The LEfSe analysis identified biomarkers in the gut microbiota (a specific tax 

that varies in abundance consistently by chicken breed or line) that were indicative of 
gut microbiota of each breed or line. In total, 82, 35, 54, 37, 27, 21, and 14 biomarkers 
were identified with LDA scores >2 at phylotype-OTU, species, genus, family, order, 
class, and phylum levels, respectively. A high abundance of genera Bacteroides, Os-
cillospira, Faecalibacterium, Coprococcus, Anaerobiospirillum, Sutterella, Olsenella, 
Paraprevotella, unclassified Clostridiaceae, Cloacibacillus, Turicibacter, Treponema, 
Collinsella, Succinatimonas, Gemmiger, Methanobrevibacter, and Desulfovibrio 
were typical for Aseel breed (Figure 6a). 

Figure 5. Breed or line-specific and across-breed or line core phylotype-OTUs. Phylotype-OTUs with
a mean normalized (cumulative sum scaling) relative abundance of at least 0.1% and having within
breed or prevalence of at least 50% in at least one breed were taken into account The size of bubbles
in the bubble plot indicates normalized (cumulative sum scaling) abundance of each OTU.

3.8. The Breed/Line Specific Biomarkers Based on LEfSe Algorithm

The LEfSe analysis identified biomarkers in the gut microbiota (a specific tax that
varies in abundance consistently by chicken breed or line) that were indicative of gut
microbiota of each breed or line. In total, 82, 35, 54, 37, 27, 21, and 14 biomarkers were
identified with LDA scores >2 at phylotype-OTU, species, genus, family, order, class,
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and phylum levels, respectively. A high abundance of genera Bacteroides, Oscillospira,
Faecalibacterium, Coprococcus, Anaerobiospirillum, Sutterella, Olsenella, Paraprevotella,
unclassified Clostridiaceae, Cloacibacillus, Turicibacter, Treponema, Collinsella, Succinati-
monas, Gemmiger, Methanobrevibacter, and Desulfovibrio were typical for Aseel breed
(Figure 6a).
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Figure 6. Chicken breed or line-specific biomarkers. (a) Genus level biomarkers identified using linear discriminant analysis
effect size (LEfSe) analysis using the Kruskal–Wallis test (p < 0.05) with linear discriminant analysis (LDA) score >2.0. (b)
Cladogram representation of differentially abundant microbiota at the different taxonomic levels. The taxonomic levels of
the phylum are labeled, while the order to the genus is abbreviated (only labels of top 43 clades are shown here), with the
colors indicating breed/line with the highest abundance. The cladogram has been dual rooted to denote domain archaea
and bacteria.

A high abundance of genera or genus equivalent taxonomic groups Lactobacillus,
Ruminococcus, unclassified Lactobacillaceae, Subdoligranulum, Dorea, cc_115, Blautia,
Escherichia, Clostridium, Bilophila, Defluviitalea, Bifidobacterium, and Eggerthella were
typical for the broiler line. Similarly, a higher abundance of few genera or genus equivalent
taxonomic groups namely SMB53, Prevotella, Odoribacter, Parabacteroides, Akkermansia,
YRC22, and RFN20 were typical to the Ghagus breed. Higher abundance of Fusobac-
terium, Megamonas, Asteroleplasma, Barnesiella, Helicobacter, Elusimicrobia, WCHB1_41,
Desulfovibrio, and Spirochaetes were typical to the Nicobari breed.

A cladogram of important biomarkers identified at different taxonomic levels in dif-
ferent breeds/lines using LefSe with LDA scores >3.5 has been presented in Figure 6b. The
class Coriobacteriia, orders, such as unclassified Bacteroidetes and Aeromonadales, fami-
lies, such as Christensenellaceae, Ruminococcaceae, and Succinovibrionaceae, were major
biomarkers in the Aseel. The phylum Firmicutes, class Bacilli, order Enterobacteriales,
and families, such as Lactobacillaceae and Enterobacteriaceae, were top biomarkers in the
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broiler line. The phylum Bacteroidetes, classes TM7_3, Bacteroidia, and Lentisphaeria,
orders, such as Bacteroidales, and families, such as Odoribacteraceae, Paraprevotellaceae,
Porphyromonadaceae, Prevotellaceae, S24_7, Clostridiaceae, and Victivallaceae were top
biomarkers in Ghagus. The phylum Elusimicrobia and Synergistetes, classes Fusobacte-
ria, Elusimicrobia, Synergistia, Verruco_5, Epsilonproteobacteria, Betaproteobacteria and
Pedosphaerae, orders, such as Elusimicrobiales, Fusobacteriales, Burkholderiales, and
families, such as Bacteroidaceae, Elusimicrobiaceae, Fusobacteriaceae, Alcaligenaceae, and
Synergistaceae were top biomarkers in Nicobari.

3.9. Correlation Analysis

Family level correlations among microbes in Aseel, broiler, Ghagus, and Nicobari are
shown in Figure S7. For Aseel, the occurrence of families that include potentially pathogenic
species, such as Enterobacteriaceae, Clostridiaceae, Campylobacteraceae, Pasteurellaceae,
Streptococcaceae, Staphylococcaceae, Fusobacteriaceae, Enterococcaceae, Corynebacteri-
aceae, and Helicobacteraceae exhibited a positive correlation with each other, and a high
negative correlation with Christensenellaceae and Ruminococcaceae and a low correlation
with Lactobacillaceae and Bifidobacteriaceae (Figure S7a).

In the case of the broiler line, several small family level clusters with a strong positive
correlation with each other were detected. Campylobacteraceae, Fusobacteriaceae, Pre-
votellaceae, Rikenellaceae, Acidaminococcaceae, Bacteroidaceae, and Desulfovibrionaceae
exhibited a strong positive correlation with each other and a negative correlation with most
other families. Enterobacteriaceae, Pseudomonadaceae, and Coriobacteriaceae showed a
strong positive correlation with each other (Figure S7b).

In Ghagus, also, several family level clusters of prokaryotes having strong positive cor-
relations among themselves were detected, such as Lactobacillaceae, Desulfovibrionaceae,
and Enterobacteriaceae; Succinovibrionaceae, Helicobacteraceae, Fusobacteriaceae, Bifi-
dobacteriaceae, and Peptostreptococcaceae, etc. (Figure S7c).

In Nicobari, the families, such as Methanocorpusculaceae, Victivallaceae, Fusobacte-
riaceae, Campylobacteraceae, Prevotellaceae, Veillonellaceae, Verrucomicrobiaceae, and
Bacteroidaceae exhibited a strong positive correlation with each other with a negative cor-
relation with Coriobacteriaceae, Enterobacteriaceae, Erysipelotrichaceae, Lachnospiraceae,
Leuconostocaceae, Clostridiaceae, Hyphomicrobiaceae, and Lactobacillaceae (Figure S7d).

4. Discussion

The advent of high throughput sequencing and omics approaches as tools for the study
of microbial communities has allowed a detailed characterization of the gut microbiota of
chickens in a quick and robust fashion, without the need to culture the microorganisms.
This is the first study exploring gut microbiome of Nicobari and Ghagus breeds of Chicken
breeds originating in Nicobari islands (a well-known biodiversity hotspot) and coastal
India, respectively. Here, we attempted to identify differences in the gut microbial commu-
nity structure of native chicken breeds originating in diverse geographical locations and
with a global commercial broiler line at the end of their productive life (finishing stage).

The microbial communities differ through the chicken’s gastro intestinal tract with
particular microbial profiles detected in crop, gizzard, ileum, cecum, and colon of broiler
chickens [33]. Here we analyzed microbiota from the entire hindgut (duodenum to cloaca
including caecum) to focus on segments generally considered to be most important for
gut health and function. Within hindgut segments, population density in caecal content is
generally higher than other segments. Samples from entire hindgut was mixed and, hence,
it is likely that cecal microbiota might have dominated over other segments. However,
considering that we had modest sequencing depth, it can be safely assumed that microbes
from all gut segments are adequately represented. Further, as we have mixed the gut
content similarly for all of the groups, the mixing is unlikely to impact results with respect
to ability to compare community composition and diversity between breeds or lines.
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The initial colonization of the gastrointestinal tract of birds occurs naturally after
hatching and can even begin before, by passing of microorganisms through the pores of
the eggshell [34]. After the initial colonization of the intestine, the species richness and
complexity of the population structure of the microbiota increases as the birds grow, until
microbiota reaches a state of stabilization. Based on results from multiple studies [35–38]
Diaz Carrasco et al. [39], while reviewing the subject noted that this process normally
occurs in commercial broiler chickens around 3 weeks of life. However, they also noted
that development times and succession patterns of intestinal microbiota species could vary,
depending on the genetic makeup of the birds and management factors. Here, we selected
time points late in the production cycle of each breed or line (as each breed matures, i.e.,
at marketing age) to permit assessment of the outcome of colonization throughout each
chicken’s productive life. In the present study, there was considerable difference in age
between the broiler and native chickens (5 weeks vs. 35 weeks). The rate of growth and
rate of passage of digesta are faster in the case of broiler as compared to native birds. It is
difficult to find an ideal equivalent age to compare fast growing broilers with slow growing
native chickens. Studies on broiler gut microbiota beyond 6 weeks age are scarce and may
not be of much interest to stakeholders as these birds are unlikely to be reared beyond
5–6 weeks. On the other hand, at 5 or 6 weeks, native birds would have much lower BW
and probably immature gut than broilers of same age. Our intent was to compare the
microbiome profile of these two groups of birds at marketable age (at the end of their
productive life), as this is essential to help design strategies to modulate composition—not
only to improve host health and performance—but also to control zoonotic agents that can
contaminate poultry products (thus, posing a risk to consumer health) and, in turn, reduce
use of antibiotics. Earlier, Ocejo et al. [40] sampled chickens of fast growing broilers (Ross
308) and a slow growing free-range chicken breed (Sasso-T451A) at different ages (42 d
and 86 d, respectively) to define and compare their microbial community structure at the
end of their productive life.

In the present study, the indigenous chicken breed presented a higher number of
OTUs (1767 to 3461) than that of the commercial broiler line (857). In contrast, in an earlier
study the commercial broiler line VenCobb 400 was reported to have more OTUs (1273)
than Indian indigenous chicken breeds, such as Aseel (735 to 1134) or Kadaknath (816 to
833). In general, more OTUs were detected in this study as compared to that of Pandit
et al. [6]. This may be partly attributed to the fact that, in the current study, no antibiotic
growth promoter (AGP) was used, and we analyzed the gut content from the entire hindgut
(duodenum to cloaca including caeca), whereas in the study reported by Pandit et al. [6],
only cecal content of bird-fed diets containing AGP was analyzed.

A total of 135 (out of 296) phylotype-OTUs (with >2 members) were shared by chickens
from all groups.

The gut microbiota of Indian native chicken breeds evaluated here were dominated
by sequences belonging to the phyla Bacteroidetes and Firmicutes whereas the gut micro-
biota of the commercial line was dominated by sequences representative of the phylum
Firmicutes. Within Indian indigenous breeds, Firmicutes/Bacteroidetes ratio were more
and less similar in the Ghagus and Nicobari breeds, but substantially different from that of
Aseel. Our data are in discordance with a previous report by Saxena et al. [13], showing the
dominance of Firmicutes in gut microbiome of the Assamese breed of Indian Indigenous
chickens. Pandit et al. [6] reported that Bacteroidetes was the dominant phyla in most of
the gut caecal samples of Indian indigenous breeds, such as Kadaknath, and Aseel and
Firmicutes were more common in Cobb 400 samples, which is in concordance with our
current study. Generally, higher Firmicutes/Bacteroidetes ratios are shown to correlate
with obesity in humans [41]. Both Firmicutes and Bacteroidetes are primarily carbohydrate
fermenters. Firmicutes are known to produce both butyrate and propionate, whereas Bac-
teroidetes primarily produce propionates, such as fermentation end product [42]. Within
Firmicutes, different genera under the order Clostridiales were predominant in different
breeds or line. The Bacilli members, like Lactobacillus spp., possessing prebiotic and probi-
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otic activities, were present in very high proportions in the broiler line but were in small
proportions in indigenous breeds. However, the genus Faecalibacterium (under order
Clostridiales and family Ruminococcaceae), known to produce butyrate and, thus, have a
crucial role in maintaining gut health and host well-being [43], were present in significant
proportion in indigenous breeds, but not in the broiler line. The genus Bacteroides and an
unknown genus under the order Bacteroidales constituted the top two dominant genera
in all of the indigenous breeds, whereas Lactobacillus and an unknown genus under the
family Lachnospiraceae constituted the top two dominant genera in the boiler line. It
has been shown that Faecalibacterium co-occurs with several members of Bacteroidetes
in gut [44] and it has been suggested that Faecalibacterium may rely on Bacteroides for
cross-feeding [43]. Interestingly, as in case of broiler, an unknown genus under the family
Lachnospiraceae constituted a very high proportion (11%) of microbiota in Aseel, but
were detected in relatively lower proportion in other indigenous breeds. Gut microbial
composition is mediated by many factors, such as geographical location, host diet, and
administration of antibiotics and other medicines. It has been shown that the succession of
changes in gut microbiota correlates with changes in the cytokine profile expressed by host
intestinal cells [35].

In the present study, alpha diversity estimators measuring species richness (Chao1and
ACE) as well as diversity (Simpson, Shannon, and Fisher) and rarefaction curve indicated
that the broiler line VenCobb 400 had lower diversity than those of the indigenous breeds,
in disagreement with a previous study [6], where both slow growing native breeds and a
broiler line were sampled at the same (42 d) age. Our study is consistent with two previous
studies [40,45], which presented higher richness and complexity of the gut microbiome in
slow growing free range chicken breeds than in the broiler when sampled at their respective
finishing age, or at random, irrespective of age. Since age is considered as one of the factors
that are known to influence gut microbiota composition [40], part of the observed difference
between the broiler line and native breeds may also be attributed to the difference in age.
Nevertheless, the present study shows that species richness and complexity in hindgut
microbiota of three Indian native breeds (Aseel, Ghagus, and Nicobari) are significantly
higher than that of the broiler chicken line Vencobb 400 at the finishing stage of their life.

Beta diversity analysis involving different distance metrics has indicated clear sep-
aration of microbiome at both OTU as well as phylum levels by chicken breed or line,
indicating a strong host component in microbiome composition, in agreement with pre-
vious studies [6,46,47]. Low levels of overlap between microbiome of the broiler line
with those of indigenous breeds also suggest a highly different microbial composition
across these two categories. Interestingly, NMDS plots also indicate that compositional
distribution of gut microbiome of the island breed (Nicobari) have very high degree of
similarity with both the coastal breed (Ghagus) and the breed from Indian mainland (Aseel),
indicating possibility of strong evolutionary linkage among all of these indigenous breeds.

Differential abundance analysis using edgeR indicated that abundances of several
phylotype-OTUs belonging to the order Bacteroidales, and a phylotype-OTU under genus
Faecalibacterium were significantly lower in the broiler line VenCobb 400. However, abun-
dances of few phylotype-OTUs belonging to the genera, such as Lactobacillus, Bilophila,
Clostridium, Weissella, Eggerthella, and Defluviitalea were higher (p < 0.05) in the broiler
line as compared to indigenous breeds.

At order level 18, 6, 12, 14, 17, and 1, orders were differentially abundant between
Aseel vs. broiler, Aseel vs. Ghagus, Aseel vs. Nicobari, broiler vs. Ghagus, broiler vs.
Nicobari, and Ghagus vs. Nicobari, respectively. A similar trend was also observed at other
taxonomic levels, indicating highest overlap in microbial community composition between
the coastal breed (Ghagus) and the island breed (Nicobari) among indigenous breeds and a
very low overlap between the broiler line and all indigenous breeds.

LEfSe biomarkers also indicated a possible strong host genetic influence on gut micro-
biome.
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Breed- or line-specific potential pathogenic and/or zoonotic organisms were also
detected as biomarkers, such as Bilophila, Escherichia, Clostridium and Eggerthella in
broiler; Anaerobiospirillum, Sutterella, Turicibacter, Collinsella, and Treponema in Aseel;
SMB53 gut microbial group in Ghagus; Fusobacterium, Asteroplasma, Helicobacter, and
Elusimicrobia in Nicobari.

On the other hand, many breed- or line- specific prokaryotes having potential benefi-
cial effects on gut health of hosts (probiotic or butyric acid or short chain fatty acid produc-
ing properties) were also associated as biomarkers, such as Faecalibacterium [48], Copro-
coccus [49], Gemmiger [50] in Aseel; Lactobacillus [48], Subdoligranulum [48], Dorea [51],
Blautia [48], and Bifidobacterium [52] in the broiler line; Akkermansia [53] in Ghagus;
Barnesiella [54] in Nicobari.

Using 0.1% relative abundance and 50% prevalence cutoff criteria, 22 phylotype-OTUs
out of 296 phylotype-OTUs representing 26% of the total microbial count were found to
qualify as core OTUs in at least one breed or line. In contrast, only five phylotype-OTUs
representing 13% of total microbiome occurred as core microbiome across all breeds or line.

Interestingly, few potentially pathogenic or harmful (Sutterella in Aseel and Nicobari,
Fusobacterium in Nicobari, and Anaerobiospirillum in Aseel) prokaryotes were detected
above the abundance and prevalence cutoffs; thus, qualifying to be part of the core micro-
biome in different breeds or lines. This is in line with an earlier report where Campylobacter
was detected above the 1% cutoff in Kadaknath and Aseel, but not in Cobb400 or Ross
308 [6].

In contrast, many prokaryotes having potential beneficial effects on gut health of the
hosts (having probiotic or butyric acid producing properties) were also detected above the
0.1% relative abundance and 50% prevalence cutoff in different breeds and lines.

Further work will be required to ascertain the exact role of the pathogenic bacteria
detected as biomarkers or core microbiome. However, besides being opportunistic or
primary pathogens, inflammatory and immune responses induced by these pathogens have
been suggested to influence the intestinal environment, host immunity, and its bacterial
communities [55,56].

Despite inter-individual differences in community composition, a core set of microbes
shared across individuals of a particular breed, suggesting presence of breedwise distinct
community composition. Millions of years of co-evolution between the host and microbes
have led to a mutualistic symbiosis in which the microbiota contributes to many host phys-
iological processes, and the host, in turn, provides a nutritious and hospitable environment
to the microbes. Further, the normal gut symbionts forms a stable community that resists
the invasion and colonization of non-native bacteria [57].

Potentially opportunistic pathogens, such as those within the families Enterobacte-
riaceae, Clostridiaceae, Campylobacteraceae, Fusobacteriaceae, etc., exhibited a strong
correlation with each other and a negative correlation with beneficial bacteria, having
probiotic (competitive exclusion) properties or short chain fatty acids (SCFA) production
ability, belonging to families, such as Christensenellaceae, Lactobacillaceae, and Bifidobac-
teriaceae. Several breed- or line-specific microbial family level clusters with strong positive
correlations with each other and negative correlations with other clusters were detected in
all of the breeds or lines, suggesting the existence of strong interactions among different
microbial groups. Correlation network analysis data, at genus and order levels, further
substantiates existence of diverse and complex microbial networks. Similar results were
reported in few earlier reports [6,58].

The present study indicates existence of breed specific gut microbial structure, which
will be useful in the development of breed- or line-specific feed additives. In the future,
further efforts should be made to characterize gut microbiome of other major breeds or
lines of chicken.
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5. Conclusions

In this study, we carried out the first comprehensive analysis of the chicken gut
microbiome of the Nicobari and Ghagus breeds of Indian native chickens originating in
biodiverse hotspots, such as Nicobari Island and coastal India, respectively. We carried out
a comparative analysis of diversity and composition of gut microbiota of three indigenous
breeds and one commercial broiler line. This study provides important insights into chicken
breed- or line-specific variations in enteric bacterial occurrences, diversity, and complex
microbial networks. Our amplicon sequencing results emphasizes more similarity of the
microbiota within the gut lumen of indigenous breeds as compared to the commercial
broiler line VenCobb 400, but exhibits distinctive taxonomic differences between them as
well. The study also indicates that, among native breeds, there is more similarity of the
gut microbiome of the island breed (Nicobari) with that of the coastal breed (Ghagus), as
compared to the mainland breed (Aseel). This study indicates the existence of breed- or
line-specific core microbial as well as across-breed or line core microbiome in chickens,
and the occurrence of beneficial and potentially opportunistic pathogenic microbes as
part of the core microbiome. A deeper understanding of host–microbiome interactions, as
emanated from the current study, is expected to support the development of strategies,
including the development of breed-specific feed additives and probiotics for enhanced
productivity from unconventional or low-value diets, to prevent colonization by pathogenic
and zoonotic organisms, and to develop an alternative to antibiotic growth promoters.
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