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Critical mingling and universal correlations
in model binary active liquids
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Ensembles of driven or motile bodies moving along opposite directions are generically

reported to self-organize into strongly anisotropic lanes. Here, building on a minimal model of

self-propelled bodies targeting opposite directions, we first evidence a critical phase transition

between a mingled state and a phase-separated lane state specific to active particles.

We then demonstrate that the mingled state displays algebraic structural correlations also

found in driven binary mixtures. Finally, constructing a hydrodynamic theory, we single out

the physical mechanisms responsible for these universal long-range correlations typical of

ensembles of oppositely moving bodies.
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S
hould you want to mix two groups of pedestrians, or two
ensembles of colloidal beads, one of the worst possible
strategies would be pushing them towards each other.

Both experiments and numerical simulations have demonstrated
the segregation of oppositely driven Brownian particles into
parallel lanes1–5. Even the tiniest drive results in the formation of
finite slender lanes which exponentially grow with the driving
strength5. The same qualitative phenomenology is consistently
observed in pedestrian counterflows6–10. From our daily
observation of urban traffic to laboratory experiments, the
emergence of counter-propagating lanes is one of the most
robust phenomena in population dynamics, and has been at the
very origin of the early description of pedestrians as granular
materials11,12. However, a description as isotropic grains is
usually not sufficient to account for the dynamics of interacting
motile bodies13–15. From motility-induced phase separation15,
to giant density fluctuations in flocks13,16,17, to pedestrian
scattering18,19, the most significant collective phenomena in
active matter stem from the interplay between their position and
orientation degrees of freedom.

In this communication, we address the phase behaviour of a
binary mixture of active particles targeting opposite directions.
Building on a prototypical model of self-propelled bodies
with repulsive interactions, we numerically evidence two non-
equilibrium steady states: a lane state where the two populations
maximize their flux and phase separate, and a mixed state where
all motile particles mingle homogeneously. We show that these
two distinct states are separated by a genuine critical phase
transition. In addition, we demonstrate algebraic density correla-
tions in the homogeneous phase, akin to that recently reported
for oppositely driven Brownian particles20. Finally, we construct
a hydrodynamic description to elucidate these long-range
structural correlations, and conclude that they are universal to
both active and driven ensembles of oppositely moving bodies.

Results
A minimal model of active binary mixtures. We consider
an ensemble of N self-propelled particles characterized
by their instantaneous positions ri(t) and orientationsbpiðtÞ¼ cos yi; sin yið Þ, where i¼ 1, y, N (in all that follows bx
stands for x/|x|). Each particle moves along its orientation vector
at constant speed _rij j¼1ð Þ. We separate the particle ensemble into
two groups of equal size following either the direction Yi¼ 0
(right movers) or p (left movers) according to a harmonic angular
potential V yið Þ¼ H

2 yi�Yið Þ2. Their equations of motion take the
simple form:

_ri¼bpi; ð1Þ

_yi¼� @yiV yið Þþ
X

j

Tij: ð2Þ

In principle, oriented particles can interact by both forces and
torques. We here focus on the impact of orientational couplings
and consider that neighbouring particles interact solely through
pairwise additive torques Tij. This type of model has been
successfully used to describe a number of seemingly different
active systems, starting from bird flocks, fish schools and bacteria
colonies to synthetic active matter made of self-propelled colloids
or polymeric biofilaments13,21–27. We here elaborate on a
minimal construction where the particles interact only by
repulsive torques. In practical terms, we choose the standard
form Tij¼� @yiEij, where the effective angular energy simply
reads Eij¼�B rij

� �bpi:brij. As sketched in Fig. 1a, this interaction
promotes the orientation of bpi along the direction of the centre-
to-centre vector rij¼ (ri� rj): as they interact particles turn their
back to each other (for example, refs 24,28–30). The spatial decay

of the interactions is given by: B(rij)¼B(1� rij/(aiþ aj)), where B
is a finite constant if rijo(aiþ aj) and 0 otherwise. In all that
follows, we focus on the regime where repulsion overcomes
alignment along the preferred direction (B41). The interaction
ranges ai are chosen to be polydisperse to avoid the specifics of
crystallization, and we make the classic choice a¼ 1 or 1.4 for one
in every two particles. Before solving equations (1) and (2), two
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Figure 1 | Phase behaviour. (a) Trajectories of two particles interacting

solely by a repulsive torque as defined in equation (2) with B¼ 5. The

post-collision orientations bpiðtÞ are along the centre-to-centre axis rij.

(b,d) Snapshots of a square window at the centre of the simulation box

(Lx¼ 168, N¼ 1,973, pra2¼0:65), respectively, in the lane (B¼ 2) and the

homogeneous (B¼ 5) states. The arrows indicate the instantaneous position

and orientation of the particles. Dark blue: right movers. Light blue: left

movers. (c) Phase diagram. pra2 is the particle area fraction. Filled symbols:

homogeneous state. Open symbols: lanes. (e) Probability distribution

function (p.d.f.) of the density difference ~r¼rr� rl . Light orange line: B¼ 2,

pra2¼0:65. Dark blue line: B¼ 5, pra2¼0:65. Dashed line: best Gaussian fit.

(f) p.d.f. of the orientational fluctuations around the preferred orientation

(lin-log plot). Same parameters and colours as in e. Inset: orientational

diffusivity Dy in the homogeneous state at a fixed repulsion magnitude

(B¼ 5) and different particle area fractions pra2. Dy is defined as the

decorrelation time of the particle orientation. In the mingled state, the

velocity autocorrelation decays exponentially at short time, Dy is therefore

defined without ambiguity, see also Supplementary Note 1 for a full

description of the numerical computation of Dy. Dashed line: best linear fit.
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comments are in order. First, this model is not intended to
provide a faithful description of a specific experiment. Instead,
this minimal set-up is used to single out the importance of
repulsion torques typical of active bodies. Any more realistic
description would also include hard-core interactions. However,
in the limit of dilute ensembles and long-range repulsive torques,
hard-core interactions are not expected to alter any of the results
presented below. Second, unlike models of driven colloids or
grains interacting by repulsive forces1,5,20, equations (1) and (2)
are not invariant upon Gallilean boosts, and therefore are not
suited to describe particles moving at different speeds along the
same preferred direction.

Critical mingling. Starting from random initial conditions,
we numerically solve equations (1) and (2) using forward Euler
integration with a time step of 10� 2, and a sweep-and-prune
algorithm for neighbour summation. We use a rectangular
simulation box of aspect ratio Lx¼ 2Ly with periodic boundary
conditions in both directions. We also restrain our analysis to
H¼ 1, leaving two control parameters that are the repulsion
strength B and the overall density �r. The following results
correspond to simulations with N comprised between 493 and
197,300 particles.

We observe two clearly distinct stationary states illustrated in
Fig. 1b,d. At low density and/or weak repulsion the system
quickly phase separates. Computing the local density difference
between the right and left movers ~rðr; tÞ¼rrðr; tÞ� rlðr; tÞ, we
show that this dynamical state is characterized by a strongly
bimodal density distribution, Fig. 1e. The left and right movers
quickly self-organize into counter-propagating lanes separated by
a sharp interface, Fig. 1b. In each stream, virtually no particle
interact and most of the interactions occur at the interface,
Supplementary Movie 1. As a result the particle orientations are
very narrowly distributed around their mean value, Fig. 1f.
In stark contrast, at high density and/or strong repulsion,
the motile particles do not phase separate. Instead, the two
populations mingle and continuously interact to form a
homogeneous liquid phase with Gaussian density fluctuations,
and much broader orientational fluctuations, Fig. 1d–f. This
behaviour is summarized by the phase diagram in Fig. 1c.

Although phase separation is most often synonymous of
first-order transition in equilibrium liquids, we now argue that
the lane and the mingled states are two genuine non-equilibrium
phases separated by a critical line in the (B, �r) plane. To do so, we
first introduce the following orientational order parameter:

Wh i¼ 1� cos yi�Yið Þh ii: ð3Þ

hWi vanishes in the lane phase where on average all particles
follow their preferred direction, and takes a non-zero value
otherwise. We show in Fig. 2a how hWi increases with the
repulsion strength B at constant �r. For pra2¼0:65 the order
parameter averages to zero below Bc¼ 2.17±0.02, while above Bc

it sharply increases as W� B�Bcj jb, with b¼ 0.33±0.07,
Fig. 2b. This scaling law suggests a genuine critical behaviour.
We further confirm this hypothesis in Fig. 2c, showing that the
fluctuations of the order parameter diverge as |B�Bc|� g, with
g¼ 0.64±0.07. Deep in the homogeneous phase the fluctuations
plateau to a constant value of the order of 1/N. Finally, the
criticality hypothesis is unambiguously ascertained by Fig. 2d,
which shows the power-law divergence of the correlation time of
hWi(t): tW� B�Bcj j� zn with zn¼ 1.21±0.16.

We do not have a quantitative explanation for this critical
behaviour. However, we can gain some insight from the
counterintuitive two-body scattering between active particles. In
the overdamped limit, the collision between two passive colloids

driven by an external field would at most shift their position over
an interaction diameter31. Here these transverse displacements
are not bounded by the range of the repulsive interactions. For a
finite set of impact parameters, collisions between self-propelled
particles result in persistent deviations transverse to their
preferred trajectories illustrated in Fig. 3 and Supplementary
Note 2. This persistent scattering stems from the competition
between repulsion and alignement. When these two contributions
compare, bound pairs of oppositely moving particles can even
form and steadily propel along the transverse direction by,
Fig. 3b,c. We stress that this behaviour is not peculiar to this
two-body setting: persistent transverse motion of bound pairs is
clearly observed in simulations at the onset of laning,
Supplementary Movie 2. We therefore strongly suspect the
resulting enhanced mixing to be at the origin of the sharp melting
of the lanes and the emergence of the mingled state.

Long-range correlations in mingled liquids. We now evidence
long-range structural correlations in this active-liquid phase,
and analytically demonstrate their universality. The overall pair
correlation function of the active liquid, g(r), is plotted in Fig. 4a.
At a first glance, deep in the homogeneous phase, the few visible
oscillations would suggest a simple anisotropic liquid structure.
However, denoting a and b the preferred direction of the
populations (left or right), we find that the asymptotic behaviours
of all pair correlation functions gab(x, y¼ 0) decay algebraically as
1� gabðx; 0Þ
�� ��� x� nx with nx� 1:5, Fig. 4b. This power-law
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Figure 2 | Critical transition from laned to homogeneous liquid states.

(a,b) Linear and log plots of the order parameter hWi defined in

equation (3). (a): pra2¼0:65, the bifurcation curves collapse for five

system sizes. (b–d) Log plots at five densities for a box of length Lx¼ 336

(N ranges from 5,462 to 7,892). (c) Fluctuations of the order parameter

plotted versus B� Bc for the same densities as in (b). The fluctuations

are defined as DhW2ic�hW2ic(B)�hW2ic(B-N). (d) Correlation

time tW plotted against B� Bc. The correlation time is defined as

Wðtþ tWÞWðtÞh ic¼ 1
2 W2ðtÞ
� �

c
. All error bars correspond to two standard

deviations. The error on the estimate of the exponents correspond to

one s.d. after considering linear fits for each density.
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behaviour is very close to that reported in numerical simulations4

and fluctuating density functional theories of oppositely driven
colloids at finite temperature20.

Hydrodynamic description. To explain the robustness of these
long-range correlations, we provide a hydrodynamic description
of the mingled state, and compute its structural response
to random fluctuations. We first observe that the orientational
diffusivity of the particles increases linearly with the average
density �r in Fig. 1f inset. This behaviour indicates that
binary collisions set the fluctuations of this active liquid, and
hence suggests using a Boltzmann kinetic-theory framework,
for example, refs 32,33 from an active-matter perspective. In the
large B limit, the microscopic interactions are accounted for by a
simplified scattering rule anticipated from equation (2) and
confirmed by the inspection of typical trajectories (Fig. 1a). Upon
binary collisions the self-propelled particles align their orientation
with the centre-to-centre axis regardless of their initial orientation
and external drive. Assuming molecular chaos and binary
collisions only, the time evolution of the one-point distribution
functions ca(r, y, t) reads:

@tcaþr � bpca½ � þ @y @y bp � bha

� �
ca

h i
¼ I coll

a : ð4Þ

The convective term on the l.h.s stems from self-propulsion, the
third term accounts for alignment with the preferred directionbha¼bx (resp. �bx) for the right (resp. left) movers. Using the
simplified scattering rule to express the so-called collision integral
on the r.h.s., we can establish the dynamical equations for the
density fluctuations dra around the average homogeneous state
(see Methods section for technical details). Within a linear
response approximation, they take the compact form:

@tdraðr; tÞþr � JaþeJ� �
¼0; ð5Þ

where Ja describes the convection and the collision-induced dif-
fusion of the a species, and eJ is the coupling term, crucial to the

anomalous fluctuations of the active liquid:

Ja¼v0
bhadra�D � rdra; ð6Þ

eJ¼�~vbhad�r� eD � rd�r: ð7Þ

The two anisotropic diffusion tensors D and eD are diagonal and
their expression is provided in Supplementary Note 3 together
with all the hydrodynamic coefficients. eJ is a particle current
stemming from the fluctuations of the other species and has two
origins. The first term arises from the competition between
alignment along the driving direction bha and orientational
diffusion caused by the collisions: the higher the local density �r,
the smaller the longitudinal current. The second term originates
from the pressure term pr�r: a local density gradient results in a
net flow of both species (see Methods section for details). This
diffusive coupling is therefore generic and enters the description
of any binary compressible fluid. Two additional comments are in
order. First, this prediction is not specific to the small-density
regime and is expected to be robust to the microscopic details of
the interactions. As a matter of fact, the above hydrodynamic
description is not only valid in the limit of strong repulsion and
small densities discussed above but also in the opposite limit,
where the particle density is very large while the repulsion
remains finite as detailed in Supplementary Note 5. Second,
the robustness of this hydrodynamic description could have
been anticipated using conservation laws and symmetry
considerations, as done for example, in ref. 16 for active flocks.
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Here the situation is simpler, momentum is not conserved and no
soft mode is associated to any spontaneous symmetry breaking.
As a result the only two hydrodynamic variables are the coupled
(self-advected) densities of the two populations34. The associated
mass currents are constructed from the only two vectors that can
be formed in this homogeneous but anisotropic setting: ha and
rdra. These simple observations are enough to set the functional
form of equations (5)–(7).

By construction the above hydrodynamic description alone
cannot account for any structural correlation. To go beyond this
mean-field picture we classically account for fluctuations by
adding a conserved noise source to equation (5) and compute the
resulting density-fluctuation spectrum13. At the linear response
level, without loss of generality, we can restrain ourselves to the
case of an isotropic additive white noise of variance 2T
(Supplementary Note 4). Going to Fourier space, and after
lengthy yet straightforward algebra, we obtain in the long
wavelength limit:

draðqÞj j2
� �

/
q4

y Dyþ ~Dy
� �2þ q2

x v0�~vð Þ2

q4
yDy Dy þ 2~Dy
� �

þ q2
xv0 v0� 2~vð Þ

ð8Þ

with drðqÞ¼
R
drðrÞexpð� iq � rÞdr, and where h � i is a noise

average. The cross-correlation hdra(q)drb(� q)i has a similar
form, Supplementary Note 4. Even though the above
hydrodynamic description qualitatively differs from that of
driven colloids, they both yield the same fluctuation spectra20.
A key observation is that the structure factor given
by equation (8) is non-analytic at q¼ 0. Approaching q¼ 0
from different directions yields different limits, which is
readily demonstrated noting that hjdra qx; qy¼0

� �
j2i and

hjdra qx¼0; qy
� �

j2i are both constant functions but have
different values. The non-analyticity of equation (8) in the long
wavelength limit translates in an algebraic decay of the density
correlations in real space. After a Fourier transform, we find:
rað0; 0Þraðx; 0Þj jh i¼ 1� gaaðxÞj j � x�

3
2, in agreement with our

numerical simulations of both self-propelled particles, Fig. 4b,
and driven colloids4,20. Beyond these long-range correlations
it can also be shown (Supplementary Note 4) that the pair cor-
relation functions take the form 1� gabðx; yÞ

�� ��� x� 3=2 Cðy=x1=2Þ
again in excellent agreement with our numerical findings.
Figure 4c,d indeed confirm that the pair correlations between
both populations are correctly collapsed when normalized by
x� 3/2 and plotted versus the rescaled distance y/x1/2.

Discussion
Different non-equilibrium processes can result in algebraic
density correlations with different power laws, for example,
ref. 35. We thus need to identify the very ingredients yielding
universal x�

3
2 decay, or equivalently structure factors of the form

hjdraðqÞj
2i / ðq4

y þ a2q2
xÞ=ðq4

y þ b2q2
xÞ found both in active and

driven binary mixtures. We first recall that this structure factor
has been computed from hydrodynamic equations common to
any system of coupled conserved fields in a homogeneous
and anisotropic setting (regardless of the associated noise
anisotropy,35 and Supplementary Note 4). The structure factor
is non-analytic as q-0, and the density correlations algebraic,
only when aab. Inspecting equation (8), we readily see that this
condition is generically fulfilled as soon as the coupling currenteJ is non-zero. In other words, as soon as the collisions between
the particles either modify their transverse diffusion eD � rd�r

� �
,

or their longitudinal advection ð~vbhad�rÞ. Both ingredients are
present in our model of active particles (equation (5)) and, based
on symmetry considerations, should be generic to any driven

binary mixtures with local interactions. Another simple physical
explanation can be provided to account for the variations of
the pair correlations in the transverse direction shown in Fig. 4c,d
and also reported in simulations of driven particles20.
Self-propulsion causes the particles to move, on average, at
constant speed along the x-direction while frontal collisions
induce their transverse diffusion. As a result the x-position of the
particles increase linearly with time, and their transverse position
increases as Bt1/2. We therefore expect the longitudinal and
transverse correlations to be related by a homogeneous function
of y/x1/2 in steady state as observed in simulations of both active
and driven particles. Altogether these observations confirm the
universality of the long-range structural correlations found in
both classes of non-equilibrium mixtures.

In conclusion, we have demonstrated that the interplay
between orientational and translational degrees of freedom,
inherent to motile bodies, can result in a critical transition
between a phase separated and a mingled state in binary active
mixtures. In addition, we have singled out the very mechanisms
responsible for long-range structural correlations in any ensemble
of particles driven towards opposite directions, should they be
passive colloids or self-propelled agents.

Methods
Boltzmann kinetic theory. Let us summarize the main steps of the kinetic
theory employed to establish equations (5)–(7). The so-called collision integral
on the r.h.s of equation (4) includes two contributions, which translate the
behaviour illustrated in Fig. 1a:

I coll
a ¼DinraðrÞ�r r� 2ap̂ð Þ�Dout�rðrÞcaðr; yÞ: ð9Þ

The first term indicates that a collision with any particle located at r� 2abpð Þ
reorients the a particles along bpðyÞ at a rate Din. The second term accounts for the
random reorientation, at a rate Dout, of a particle aligned with bpðyÞ upon collision
with any other particle. Within a two-fluid picture, the velocity and nematic texture
of the a particles are given by va¼r� 1

a bph iy and Qa¼r� 1
a bpbp� 1

2 I
� �

y . The mass
conservation relation, @traþr � (raVa)¼ 0, is obtained by integrating equation (4)
with respect to y and constrains ð2pDinÞ¼Dout � D. The time evolution of the
velocity field is also readily obtained from equation (4):

@t ravað Þþr � ra
I

2
þQa


 �� 
¼F a; ð10Þ

where the second term on the l.h.s is a convective term stemming from
self-propulsion. The force field F a on the r.h.s. of equation (10) reads:

F a¼ra I
2 �Qa
� �

� bha � aDrað Þr�r� D�rð Þrava . The first term originates from the

alignment of particles along the bha direction, the second term is a repulsion-
induced pressure, and the third one echoes the collision-induced rotational
diffusivity of the particles. An additional closure relation between Qa, va and ra
is required to yield a self-consistent hydrodynamic description. Deep in the
homogeneous phase, we make a wrapped Gaussian approximation for the
orientational fluctuations in each population24,36. This hypothesis is equivalent to
setting Qa¼ vaj j4 bvabva � 1

2 I
� �

(refs 24,37). As momentum is not conserved, the
velocity field is not a hydrodynamic variable; in the long wavelength limit the
velocity modes relax much faster than the (conserved) density modes. We therefore
ignore the temporal variations in equation (10) and use this simplified equation to
eliminate va in the mass conservation relation, leading to the mass conservation
equation (5).

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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20. Poncet, A., Bénichou, O., Démery, V. & Oshanin, G. Universal long ranged
correlations in driven binary mixtures. Phys. Rev. Lett. 118, 118002 (2017).

21. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).
22. Cavagna, A. & Giardina, I. Bird flocks as condensed matter. Annu. Rev.

Condens. Matter Phys. 5, 183–207 (2014).
23. Couzin, I. D., Couzin, J., James, R., Ruxton, G. D. & Franks, N. R. Collective

memory and spatial sorting in animal groups. J. Theor. Biol. 218, 1–11 (2002).
24. Bricard, A., Caussin, J. B., Desreumaux, N., Dauchot, O. & Bartolo, D.

Emergence of macroscopic directed motion in populations of motile colloids.
Nature 503, 95–98 (2013).
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