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ABSTRACT
Background: Medical images play an important role in diagnosis and treatment of pediatric solid tumors. The field of radiol-
ogy, pathology, and other image- based diagnostics are getting increasingly important and advanced. This indicates a need for 
advanced image processing technology such as Deep Learning (DL).
Aim: Our review focused on the use of DL in multidisciplinary imaging in pediatric surgical oncology.
Methods: A search was conducted within three databases (Pubmed, Embase, and Scopus), and 2056 articles were identified. 
Three separate screenings were performed for each identified subfield.
Results: In total, we identified 36 articles, divided between radiology (n = 22), pathology (n = 9), and other image- based diag-
nostics (n = 5). Four types of tasks were identified in our review: classification, prediction, segmentation, and synthesis. General 
statements about the studies'’ performance could not be made due to the inhomogeneity of the included studies. To implement DL 
in pediatric clinical practice, both technical validation and clinical validation are of uttermost importance.
Conclusion: In conclusion, our review provided an overview of all DL research in the field of pediatric surgical oncology. The 
more advanced status of DL in adults should be used as guide to move the field of DL in pediatric oncology further, to keep im-
proving the outcomes of children with cancer.

1   |   Introduction

In Europe, more than 14,000 children are diagnosed with can-
cer every year [1]. Besides hemato-  and neuro- oncologic enti-
ties, extracranial solid tumors account for approximately 38% of 
the cases, which represent a field of responsibility for medical 
professionals working in pediatric surgical oncology [1, 2]. To 
diagnose and treat solid tumors, medical images play an import-
ant role, including radiology, pathology, and other image- based 
diagnostics.

Radiology is an important cornerstone in the management of 
children with cancer, from diagnosis and response assessment, 
as well as surveillance for relapses in the follow- up [3]. Imaging 
modalities such as X- ray and ultrasound (US) are fast and often 
used for the initial diagnosis of pediatric tumors [4]. Computed 
tomography (CT) and magnetic resonance imaging (MRI) pro-
vide detailed anatomical information, useful for discrimination 
of tumor types, staging, volume assessment, and organ infiltra-
tion and intravascular extension, as well as response monitor-
ing and surgical and radiotherapy planning [5]. Furthermore, 
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nuclear imaging such as positron emission tomography/CT 
(PET- CT) and meta- iodobenzylguanidine (MIBG) imaging can 
aid in the diagnosis, staging, and monitoring of specific tumors 
[6, 7].

Pathology is still the gold standard in many tumor types for di-
agnostician and risk stratification [8–10]. Since the introduction 
of whole slide imaging, the amount of visual pathological data 
has widely increased [11]. Combined with the rise of precision 
medicine and the associated need for more precise tumor sub-
typing, an increased burden is placed upon pathologists to pro-
cess visual information in a timely and thorough manner while 
limiting the large inter-  and intra- observer variability.

Medical visual information is not limited to the often recog-
nized areas of radiology and pathology. In clinical practice, 
image- based diagnostics also play an important role. From skin 
pictures in dermatological oncology and 3D images of children 
to screen for genetic predispositions, to fundoscopic images, 
more and more visual data are being created and used [12–14].

Although technical advances in radiology, pathology, and other 
image- based diagnostics have improved diagnosis and out-
comes for children with cancer, early detection and treatment 
of certain aggressive malignancies remain challenging. The 
increased amount of medical images in different disciplines 
combined with their specific challenges indicates a need for 
implementation of advanced image processing technology, 
such as artificial intelligence (AI). This might not only decrease 
workload by automation but also give insights beyond human 
comprehension.

AI applications are gaining more interest in the medical com-
munity [15]. In machine learning (ML), a subfield of AI, tasks 
are automated by utilizing computational models that are able to 
find patterns using training data, and generalize these patterns 
to unseen data. An emerging field in medical image analysis is 
DL, a subfield of ML where models consist of many computa-
tional layers (Figure  1). These layers can transform the input 
data to the relevant output parameter(s). As DL is a powerful 
tool, this is especially helpful in the information- rich context of 
images. In adult oncology, DL is already widely applied both in 
research and in the clinical workflow [15–20].

In our scoping review, we aim to introduce the reader to the 
current status of DL applications specifically for use in medical 
images in pediatric surgical oncology. First, we will give an in-
troduction about the terms most commonly used in DL. Then, 
we will discuss the spectrum of DL applications we found and 
highlight the most important areas of current research and 
those where opportunities can still be seized.

2   |   Background

We will briefly introduce the terms used, both to familiarize the 
reader with these terms and to give strict definitions to increase 
consistency in our review. Deep learning is based on a group 
of algorithms called neural networks (NNs) [21]. A subtype of 
NNs especially suited for image- related tasks are convolutional 
neural networks (CNNs), loosely inspired by the visual cortex 

[22]. The exact inner workings of (C)NNs fall beyond the scope 
of this review.

DL methods need to be “trained” in order to be able to perform 
the specific task. This training is usually based on a dataset in-
cluding pairs of the input together with the desired and already 
known output (often referred to as “ground truth”). Besides a 
training dataset, common DL methods use a testing dataset 
(consisting of unseen examples), to ensure a fair evaluation of 
the DL method. The testing dataset can either be from the same 
source as the training dataset (commonly referred to as test set) 
or from another data source (an external test set).

Different image- related tasks can be performed by DL, with dif-
ferent types of outcome parameters. We will define these tasks 
as technical tasks in our review, to distinguish them from the 
clinical embedding. We will discuss the technical tasks included 
in our review, but more tasks may exist.

2.1   |   Classification and Prediction

Classification can be regarded as the most basic of DL tasks [23]. 
The most elemental form, binary classification, divides the input 
examples into two groups. Classification can be applied to a wide 
range of input types, for example numerical data such as patient 
parameters, 2D images such as pathology images or 3D volumes 
such as CT images. Often, binary classification distinguishes be-
tween positive and negative cases, for example whether disease 
is present or not. Classification can also be multiclass, such as 
trying to predict the specific subtype of a disease.

In the literature, classification is often referred to as prediction. 
However, the output of classification is discrete (e.g., tumor sub-
groups), whereas the output of prediction is continuous (e.g., 
event free survival). We will use this distinction in our review, 
even if not consistent with the terminology of the specific study.

The most important and easiest to interpret outcome parame-
ters in classification are accuracy, sensitivity and specificity 
[24]. Accuracy is defined as the number of correct predictions 

FIGURE 1    |    Overview of artificial intelligence and its relation to 
deep learning.
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divided by the total number of predictions, implying that an ac-
curacy of 100% is the perfect score. Sensitivity is defined as the 
number of true positives divided by the total number of positive 
examples. Specificity is defined as the number of true negative 
cases divided by the total number of negative examples. These 
scores can be combined into a metric called the Area Under the 
Receiver Operating Characteristic Curve (AUC- ROC). This met-
ric represents the trade- off between sensitivity and specificity, 
providing an overall measure of the model's performance. An 
AUC- ROC score of 1 indicates perfect performance.

2.2   |   Semantic Segmentation

Semantic segmentation is an important task when using DL in 
images [25]. In essence, segmentation is pixel- wise classification 
of an image. By classification of every pixel, an image is divided 
into discrete parts. Again, this can be binary, such as segment-
ing an X- ray image into tumorous/nontumorous areas, or mul-
ticlass, for example the segmentation of organs at risk on a CT 
scan in radiotherapy planning.

Segmentation algorithms are almost always validated by com-
paring the resulting segmentation to the manually created 
ground truth. The most important outcome score in segmenta-
tion applications is the Dice similarity coefficient (Dice) [26]. A 
Dice score of 0 can be interpreted as no overlap between the seg-
mentation and the ground truth, while a Dice score of 1 means 
perfect overlap. Other validation parameters of segmentation do 
exist and can provide additional information about the quality of 
the segmentation, but for our review, we will only focus on the 
most common and most intuitive Dice score.

2.3   |   Image Synthesis

Image synthesis is the process of creating an artificial image 
based on a provided input [27]. The input can be text, for exam-
ple creating an image based on a word of sentence, or another 
image, such as creating a T1- weighted MR image from a T2- 
weighted MR image.

There are several ways to evaluate image synthesis [28]. The 
most used outcome score is the mean absolute error between 
the ground truth image and the predicted image. A higher error 
indicates a worse outcome. If CT scans are used as the ground 
truth image and the predicted image, the error is often expressed 
in Hounsfield Units (HU), a standardized unit to express radi-
odensity in CT images.

2.4   |   AI in the Clinical Workflow

Roughly, adding DL to the multidisciplinary workflow of onco-
logical care can be divided in two use cases. First, the DL can 
be used to assist a medical specialist in their work. For example, 
performing tumor volume measurements on MRI can be done 
by the radiologist, but using DL can make this faster and more 
reliable. Second, DL can be used to augment the specialist, by 
adding another layer of information. For this, you can think 
about defining DL- based risk scores. In case of augmenting, the 

oncologist plays an important role in interpreting this extra in-
formation of the context of the whole patient and treatment plan. 
The exact implementation in the clinical workflow therefore de-
pends on the exact use case of the application.

3   |   Methods

This systematic review consists of three sections, all focusing on 
a different part of the question “What is the role of deep learning 
for medical image analysis in the diagnosis and treatment of pe-
diatric surgical oncology?” To structure our review, we defined 
three areas of interest, based on the specific image type: radiol-
ogy including radiotherapy, pathology, and other image- based 
diagnostics. All sections are based on the same search, but with 
different inclusion and exclusion criteria.

3.1   |   Search

The systematic search of the literature was conducted in 
October 2023, using PubMed, Scopus, and Embase. The search 
string was developed and adapted for each specific database in 
collaboration with a librarian. The resulting strings can be seen 
in Table S1. Each database was searched based on title, abstract, 
and keywords. The search results from the databases were 
merged and duplicates were removed.

3.2   |   Inclusion and Exclusion Criteria

Studies about the application of DL in pediatric, extracranial 
solid tumors were included in the review. The full list of the in-  
and exclusion criteria can be seen in Table 1.

TABLE 1    |    List of in-  and exclusion criteria for the review in general 
and per subsection.

Criteria type Section Description

Inclusion General Studies about extracranial, 
pediatric solid tumors

Inclusion General Studies about DL

Exclusion General Median age not reported 
in a non- childhood 

specific tumor

Exclusion General Median age > 18 in a non- 
childhood specific tumor

Exclusion General Classical ML

Exclusion General No peer- review or 
original study

Inclusion Section 4.1 Study about radiology

Inclusion Section 4.2 Study about pathology

Inclusion Section 4.3 Study met general 
inclusion criteria, but 
not inclusion criteria 
for Sections 4.1 or 4.2
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3.3   |   Screening

Screening was performed for each section separately. 
Preliminary screening was done in ASReview (Version 1.2.1.), 
based on title and abstract [29]. ASReview uses a process called 
“active learning” to rank studies on relevance during the review 
process, updating the order of the studies to be screened with 
every study that is in-  or excluded. To initialize the screening 
order, the screener first provides three relevant and three irrel-
evant articles, based on their experience in the topic. Because 
the screener reads more relevant studies first, screening can be 
stopped when meeting predefined stopping criteria. We decided 
to combine two common, literature- based, stopping criteria 
[30]. First, a screening percentage of 33% of the total number 
of studies had to be reached. After this was fulfilled, screening 
continued until 50 studies were consecutively labeled irrele-
vant. Screening was done in duplicate by a technical physician 
(M.A.D.B.) and a pediatric surgeon (M.M.). As a result of the 
changing screening order while using ASReview, there is a po-
tential difference in the studies that are seen by each screener. 
Therefore, nonconsensus was defined as either one screener did 
include the study and the other screener did not, or the study 
only being included by one screener and not seen by the other. 
After the first screening, consensus was reached by discussing 
the nonconsensus studies. If one screener excluded the study 
and the other screener did not label it, we implicitly assume con-
sensus for noninclusion.

The studies selected after the title and abstract screening were 
reviewed in full text for the final inclusion. Again, consensus 
was reached by discussing the studies in case of nonconsen-
sus. When nonconsensus could not be resolved, one of the co-
authors was asked to provide a third opinion. The citations of 

all included studies were checked to include relevant papers not 
present in the original search.

3.4   |   Data Extraction

The following data were extracted from the included studies: 
technical task, clinical aim of the study, tumor type, anatomical 
region, study cohort, number of patients and number of samples, 
the DL model used, the type of validation (in case of an external 
dataset, only the external dataset was mentioned), the validation 
metrics and the validation performance. In case of multiple val-
idated DL methods, the highest scoring method was reported.

For Section  4.1, imaging modality was also extracted. For 
Section 4.2, the staining used and highest magnification was in-
cluded. For Section 4.3, the image type was reported.

4   |   General Results

In total, 3802 studies were identified (1164 from Pubmed, 1091 
from Embase and 1547 from Scopus). After deduplication, 2056 
studies remained (Figure 2).

4.1   |   Deep Learning in Pediatric Oncology 
Radiology and Radiotherapy

In total, 22 studies about DL in (nuclear) imaging were selected. 
Most studies focused on segmentation (n = 10) or classification 
(n = 8). Other research areas included image synthesis (n = 3) 
or prediction (n = 1). Most studies used (CB)CT (n = 8) or MRI 

FIGURE 2    |    Flow diagram of inclusions for all three subquestions.
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(n = 9) as input modality. Other modalities included X- ray (n = 3), 
US (n = 1), or MIBG imaging (n = 1).

4.1.1   |   Classification and Prediction

Eight studies in our review focused on classification and one 
on prediction. Most studies focused on classifying imaging be-
tween benign and malignant. Breden et al. showed a sensitivity 
of 89.1% and a specificity of 93.2% to classify X- rays of pediat-
ric knees suspected to be benign or malignant [31]. They used a 
dataset including the X- ray images of 176 children (n = 366 X- ray 
images) with a histopathologically confirmed bone tumor and 
220 X- ray images of healthy children. To further support their 
goal of aiding less experienced physicians in their decision mak-
ing, they implemented Explainable AI (XAI) to give insight into 
what part of the image was used to base this classification on.

Hinterwimmer et al. [32] also focused on bone tumors, as they 
used transfer learning to classify X- rays of extremities between 
Ewing sarcoma and acute osteomyelitis. Transfer learning is a 
way of leveraging training on a large, often unrelated, dataset 
(pre- training) to use for a task in which limited data are avail-
able (fine- tune training). Often, the technical task for pretrain-
ing and fine- tune training is the same. Hinterwimmer used 
> 42,000 unlabeled X- ray images of the musculoskeletal region 
for pretraining, in which the task was to cluster these unlabeled 
X- ray images in five groups that were most similar. Next, they 
performed fine- tuning training on 63 images of 22 acute osteo-
myelitis and 41 osteosarcoma patients, using histopathologically 
confirmed ground truth. This two- staged strategy resulted in a 
classification accuracy of 88.1%.

Yang et al. [33] investigated thyroid nodules on US, for which 
the malignancy was histologically confirmed with a biopsy or 
surgery in a group of 139 patients. They used a previously pub-
lished DL method, developed on an adult dataset, with a result-
ing accuracy of 87.5% for the classification between benign and 
malignant nodules [34]. They compared this with three radiol-
ogists who also classified the US images with a mean accuracy 
of 58.3% (31.2%–75.0%). Although the accuracy and specificity 
of the DL algorithm was comparable in both the adult series 
and the pediatric series, the pediatric population showed a de-
creased specificity. Therefore, the authors did not recommend 
the use of the algorithm into pediatric clinical practice yet.

Other studies focused on classification of specific diagnoses. 
Zhu et al. [35] trained a DL method on abdominal CT scans of 
364 children with a renal tumor, to discriminate between Wilms 
tumor and non- Wilms tumor. The ground truth was histopatho-
logically determined. The test set was also classified by three 
radiologists with 3–15 years of experience, resulting in a sensi-
tivity ranging from 13.3% to 20.0% between the radiologists. The 
resulting DL method scored a significantly higher sensitivity 
of 78.1%.

Banerjee [36] used a combination of DWI and T1- weighted MRI 
scans to classify rhabdomyosarcoma patients in suspected em-
bryonal and suspected alveolar subtype (confirmed by biopsy). 
To mitigate the effect of their limited number of patients (n = 21), 
they used transfer learning with a big dataset of nonmedical 

images. Their method was evaluated by cross- validation, result-
ing in a classification accuracy of 85%.

Yang, Zhou, and Li [37] developed a classification method based 
on MRI to discriminate children with either hemangioma or 
hepatoblastoma. They compared this method with a classi-
fication method based on the clinical parameters age, gender, 
hepatic function, and serum alpha fetoprotein levels. The DL 
method based on the MR imaging performed better with an 
accuracy of 77%, compared with 60% for the clinical prediction 
model. However, the statistical significance of this difference 
was not reported.

Consalvo et al. [38] tried to classify between acute osteomyelitis 
and osteosarcoma. They did a two- phased approach in which 
they first trained a DL algorithm to classify images in patho-
logical and nonpathological X- rays. Next, they used another DL 
network to classify the pathological images between acute os-
teomyelitis and osteosarcoma, with a final accuracy of 86.7%.

Mayampurath [39] used MIBG scans obtained before chemo-
therapy to classify patients between likely and not likely to react 
to induction chemotherapy (Curie score ≤ 2). When comparing a 
clinical model with the DL method, they found that the classifi-
cation methods did not significantly differ in performance (56% 
for the DL method, 66% for the clinical method).

Guerreiro [40] focused on prediction instead of classification, 
namely predicting dose distributions for both proton and photon 
radiation in pediatric abdominal tumors. An extensive model, 
using 10 different inputs including the planning CT and seg-
mentations of several structures, was used to predict the patient- 
specific radiotherapy dose. Besides a technical evaluation, they 
performed a study in which radiologists needed to state their 
preference for either proton or photon radiation, based on either 
the planned or predicted dose estimation. For 18 of the 20 pa-
tients in this evaluation, the choice was the same for the pre-
dicted and planned dose.

4.1.2   |   Semantic Segmentation

Out of the 10 included studies, most studies focused on tumor 
segmentation only. Kayal et al. [41] compared several methods 
of segmentation of osteosarcoma on diffusion- weighted imag-
ing (DWI). Their included methods contained both classical ML 
techniques as well as one DL method. Their DL method, trained 
on a total of 55 patients, showed comparable results to the other 
methods with a mean Dice score of 0.73 (Table 2).

A multicenter study about segmentation of neuroblastoma was 
performed by Veiga- Canuto et  al. [42]. They included 132 pa-
tients from five centers in Europe and compared the results of 
the segmentation algorithm with the interobserver variability. 
They showed Dice scores above 0.96. In the next study by Veiga- 
Canuto, the neuroblastoma segmentation method was tested on 
an independent test set of 300 children [43]. For this test set, they 
found a median Dice score of 0.98.

Three studies focused on Wilms tumor segmentation. First, 
Müller et al. [44] aimed to set a benchmark dataset for Wilms 
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tumor segmentation, consisting of 28 MRI scans from 17 pa-
tients. They compared several classical ML algorithms with one 
DL method. In this case, several of the classical ML methods 
outperformed the DL (Dice = 0.30 postchemotherapy scans), 
which was attributed to the small dataset they used to train 
the network. Buser et al. [45] used a larger set of patients and a 
more advanced DL method, leading to a postchemo Dice score 
of 0.90. The aim of their study was to determine whether DL can 
support the radiologist in making more accurate tumor volume 
measurements.

Marie et al. [46] proposed a semiautomatic workflow to segment 
healthy kidney and tumor in Wilms tumor patients. In their 
method, the DL method was not trained on intact MRI scans 
of multiple patients, but on individual patient slices for each 
patient separately. Several slices belonging to one patient were 
manually segmented, after which a DL method is trained specif-
ically for this patient. They showed that with manual segmenta-
tion 26% of the tumor slices, a mean segmentation Dice of 0.897 
can be reached. However, this system was not fully automated 
and did need input from a radiologist. Corbat [47] used the same 
DL method for Wilms tumor patients, but for both kidney and 
tumor segmentation. They developed a fusion DL method to 
determine if a pixel was tumor or kidney if the DL segmented 
that pixel as both tumor and kidney. They showed an increased 
segmentation performance when using this fusion method, with 
a Dice score increasing from 0.86 to 0.88 for kidney and tumor 
combined.

Yeow et  al. [48] used classical ML methods to try and predict 
MYCN gene amplification neuroblastoma cases from abdominal 
CT scans. However, part of their pipeline was a DL- based seg-
mentation method. For training, they used a set of 47 patients, 
which resulted in neuroblastoma segmentation with a median 
Dice score of 0.68. The rest of the pipeline, with the goal of pre-
dicting MYCN gene amplification, included extraction of image 
features of the segmented tumor and several ML classifiers, with 
a highest overall accuracy of 87.88%.

Strijbis et al. [49] not only focused on the tumor segmentation on 
the MR scans of retinoblastoma patients but also included seg-
mentation of relevant anatomical structures located in the eye. 
The tumor segmentation was segmented with a median Dice 
score of 0.78. Next to tumor segmentation, they segmented four 
other structures, with Dice scores ranging from 0.64 for retinal 
detachment to 0.87 for the sclera.

Qiu et  al. [50] did not focus on tumor segmentation. Instead, 
they developed a DL method to segment growth centers in the 
skeleton, with the aim of sparing these centers during radiother-
apy. Besides a technical validation, they compared radiotherapy 
plans with and without avoidance of skeletal growth centers, 
showing the clinical need for their research.

4.1.3   |   Image Synthesis

All image synthesis studies (n = 4) we identified were within 
the field of radiotherapy. These studies all aimed to create 
synthetic CTs to perform radiotherapy planning. Florkow 
[51] included images of 66 children with either Wilms tumor T
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or neuroblastoma to train a DL method to create synthetic 
CT scans from MR images. Besides technical evaluations, 
they quantified the effect of using a synthetic CT instead of 
a ground truth CT on the resulting dose distribution of the 
radiotherapy plan. They defined clinically acceptable differ-
ences between the dose distribution of the ground truth CT 
and the synthetic CT to be 2% or less, which were obtained in 
61/66 patients.

Cone beam CT (CBCT) was used as input in the studies of Szmul 
and Uh. Szmul et  al. [52] trained their method on 63 patients 
with abdominal, thoracic, and pelvic region of radiation. They 
reported a mean absolute error between the ground truth CT 
and the synthetic CT of 55 HU. Uh et al. [53] also used CBCT 
to generate synthetic CT scans. They excluded air in the gastro-
intestinal tract from their analysis, leading to slightly smaller 
mean absolute errors of 47 HU. They also performed a patient- 
by- patient dosimetric evaluation of the synthetic CT compared 
with the reference CT.

4.2   |   Deep Learning in Pediatric Oncological 
Pathology

In total, nine studies focusing on DL in pathology were in-
cluded. Most studies were focused on classification (n = 7). One 
study was focused on prediction, and one study was focused on 
segmentation.

4.2.1   |   Classification and Prediction

Three studies focused on (ganglio- )neuroblastoma. Liu et  al. 
[54] aimed to classify neuroblastoma patients with the intent to 
discriminate between favorable and unfavorable histology. They 
compared several methods, of which the DL method showed an 
accuracy of 90.9%. The study by Gheisari et al. [55] focused on 
classification between differentiated and undifferentiated neu-
roblastoma, ganglioneuroblastoma, and ganglioneuroma. They 
compared their methods with several other, commonly used, 
DL networks, for which they found a significantly different 
precision of 84%. Liu, Yin, and Sun [56] also created a method 
to classify whole slide images to discriminate between neuro-
blastoma, ganglioneuroblastoma, and ganglioneuroma. Besides 
a technical validation, they performed an experiment to deter-
mine whether diagnostic accuracy of seven predefined classes 
improves when a junior pathologist worked in conjunction with 
the developed DL tool. They found a diagnostic accuracy of 56% 
without the DL tool, and 75.86% with the DL tool.

Frankel et al. [57] focused on the differential diagnosis of rhab-
domyosarcoma. While training on 274 patients and testing on 
an external test set of 30 patients, they found an AUC- ROC of 
0.64 for clear cell sarcoma, 0.89 for alveolar rhabdomyosarcoma, 
and 0.61 for embryonal rhabdomyosarcoma.

Zhang et al. [58] also focused on diagnosing subtypes of rhab-
domyosarcoma. They found an accuracy of 84% for alveolar 
rhabdomyosarcoma, 90.2% for embryonal rhabdomyosarcoma, 
and 76.3% spindle cell sclerosing rhabdomyosarcoma. They also 
tried to predict prognosis based on the pathological images. 

They found, that when using this image- based prognostic score 
to predict patient risk for relapse, the ratio of patients in the 
image- based high- risk group was 4.64 times higher than the 
low- risk group.

While the previous rhabdomyosarcoma studies used 20× or 40× 
magnification, Agarwal et al. [59] tried to classify rhabdomyo-
sarcoma subtypes with a magnification of only 5×. By doing so, 
they intend to decrease training time and to enhance process-
ing, by decreasing the amount of data per patient. Their method, 
combining multiple trained DL methods in an ensemble, yielded 
a 95% classification accuracy.

Milewski et  al. [60] did extensive research to predict several 
genetic mutations from hematoxylin and eosin (H&E) images 
for rhabdomyosarcoma patients, after which they trained a DL 
method to predict event- free survival from whole slide images. 
They found that their method predicted event- free survival bet-
ter than current clinical models.

Rather falling into the area of translational cytology than his-
topathology, Berker et  al. [61] used a process called transfer 
learning to introduce a method of image- based phenotypic 
drug profiling with the aim of better classifying drug response 
in vivo. They aimed to predict whether wells contained viable 
cells or not. They pretrained a CCN via Imagenet and phases of 
fine- tuning to assess tumor cell viability from confocal fluores-
cence microscopy images of spheroids in response to treatment 
modalities. They used available cell lines (e.g., one neuroblas-
toma cell line) and isolated patient cells with the aim to provide 
an image- based drug response tool for individualized, more ef-
fective treatment of pediatric cancer patients.

4.2.2   |   Segmentation

One study was focused on segmentation. van der Kamp et  al. 
[62] annotated eight selected cell types on the HE- stained slides 
of Wilms tumor patients, and trained a DL method to automate 
this segmentation process. They found an overall Dice score of 
0.85, with the lowest Dice score for areas of bleeding and the 
highest Dice score for areas of necrosis (Tables 3 and 4).

4.3   |   Deep Learning in Image- Based Diagnostics

Five studies about DL for applications in image- based diagnos-
tics were included. Most studies (n = 4) focused on classification, 
with one on segmentation.

4.3.1   |   Classification

Two studies focused on the classification of fundoscopic images. 
First, Aldughayfiq et al. [63] used 400 fundoscopic images with 
retinoblastoma and 400 images without retinoblastoma to de-
velop a classification method, with a final accuracy of 97%. A 
significant component of their work was explainable AI (XAI), 
for which they used two techniques to visualize which parts of 
the image were most decisive for the classification of the spe-
cific image [63]. In line with clinical experience, the DL methods 
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seemed to use features like yellow- white masses and calcifica-
tions to predict the classification outcome.

Zhang et  al. [64] also focused on classification of fundoscopic 
images, but with the aim of surveillance in retinoblastoma in-
stead of diagnostics. Using a large dataset for training and an 
external test set of 103 patients for testing they showed an ac-
curacy of 99% for the classification between normal and active 
retinoblastoma and 93% for the classification between stable and 
active retinoblastoma. In addition to the technical evaluation, 
they performed a clinical analysis in a simulated scenario where 
the DL method and the ophthalmologist worked together to per-
form the diagnosis, in which performance of the ophthalmolo-
gist seemed to improve.

The last paper about retinoblastoma screening, by Bernard et al. 
[65], used smartphone pictures to classify leukocoria, a telltale 
sign of retinoblastoma. In a low- income country, they set up a 
workflow to test their developed classification method, in the 
form of a smartphone app. In their test set of 291 patients, their 
method scored a sensitivity of 87% and a specificity of 73%.

Mehta et al. [66] used both an adult and pediatric dataset to train 
a DL method for classification of melanoma on pictures of pe-
diatric skin lesions. The classification method developed on a 
dataset with additional pediatric patients showed an increased 
performance compared with the method trained on only adult 
patients.

4.3.2   |   Segmentation

The study by Rahdar et al. [67] focused on segmentation of fun-
doscopic images. They used a large dataset containing more 

than 4000 fundoscopic images to perform non- DL- based, un-
supervised segmentation. These segmentations were manually 
checked for quality and either excluded or edited, after which 
the obtained segmentations were used to train a DL method 
for retinoblastoma segmentation, scoring a final average Dice 
of 0.93.

5   |   Discussion

Our review focused on DL in medical images in pediatric sur-
gical oncology. We chose to focus on DL in contrast to classi-
cal machine learning, because of the rapid growth of DL- based 
image research, the high applicability of DL in image specific 
applications and its potential to create insights beyond human 
comprehension. In total, we included 36 studies in our review. 
Most of our included studies were published in 2023 (n = 14), 
with the oldest studies dating back to 2017, indicating the recent 
development of this area in the field of pediatric oncology.

Four types of DL- specific tasks were identified in our included 
studies. First, classification tasks were most common, with 
studies classifying between malignant and benign or with stud-
ies doing multiclass classification for cancer specific subtypes. 
Prediction was only present in one article, focused on predict-
ing dose distributions in radiotherapy. Other studies focused on 
segmentation, mainly for radiology and pathology. These stud-
ies mainly segmented tumor, but segmentation of healthy struc-
tures was also an area of research. Lastly, a task present only in 
radiology was image synthesis. For image synthesis all studies 
were embedded within radiation therapy, with studies trying to 
produce synthetic CT images for radiotherapy planning from 
either MRI or CBCT. The research in adult oncology covers a 
wider range of technical tasks than the studies we covered in our 

TABLE 4    |    Table of inclusion for miscellaneous studies.

Title First author Year Image type Task Clinical focus Tumor type

Explainable AI for 
Retinoblastoma Diagnosis: 
Interpreting Deep Learning 
Models With LIME and SHAP

Aldughayfig 2023 Fundoscopy Clas Retinoblastoma/
no retinoblastoma

Retinoblastoma

Automatic Retinoblastoma 
Screening and Surveillance 
Using Deep Learning

Zhang 2023 Fundoscopy Clas Normal 
fundus/stable 

retinoblastoma/
active 

retinoblastoma

Retinoblastoma

EyeScreen: Development and 
Potential of a Novel Machine 
Learning Application to Detect 
Leukocoria

Bernard 2023 Smartphone 
pictures

Clas Leukocoria/
no leukocoria

Retinoblastoma

Improving Artificial 
Intelligence- Based Diagnosis on 
Pediatric Skin Lesions

Mehta 2023 Skin pictures Clas Melanoma/other 
skin lesions

Melanoma

Semi- Supervised Segmentation 
of Retinoblastoma Tumors in 
Fundus Images

Rahdar 2023 Fundoscopy Seg Tumor Retinoblastoma

Abbreviations: Clas, classification; Seg, segmentation. The greyish color supports the visual differentation of the different tasks (Classification, Prediction, etc…).
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review. The biggest category of technical tasks missing is image 
registration, in which different images are aligned together [68]. 
For example, this can be used to register per- operative US im-
ages to the pre- operative MR imaging. Since registration is a 
relatively new field in DL, it is expected that this research will 
follow in the coming years.

We decided to divide our review into three chapters, reflecting 
three important sources of visual information in clinical prac-
tice. Most of the included studies were about radiology and nu-
clear imaging (n = 22). In adult oncology, this category is also of 
big importance [16]. Pathology was an important aspect of our 
review (n = 9). Again, this is a large area of research in adult on-
cology as well, with more than 40 studies included in a recent 
review by Ahmed, Abouzid, and Kaczmarek [69]. In our last cat-
egory, DL in other medical images, we only identified studies 
about fundoscopy and skin pictures. An area especially import-
ant for pediatric surgeons, DL in endoscopic and laparoscopic 
images, is lacking in our review but abundant in adult oncology. 
For example, DL can be used to classify polyps during colonos-
copy, or to perform landmark detection in laparoscopic surgery 
[17]. In the future years, when laparoscopic surgery in children 
with solid tumors might be more common, this might be an in-
teresting field of research.

It is tempting to make statements about the general performance 
of the DL methods: But even for comparing performance in sim-
ilar tasks, the spread of tumor types and (clinical) application is 
too big. Moreover, the performance metrics we talked about in 
the review are a mere proxy for clinical implementation. All re-
search focused on DL should consider translation to the clinical 
workflow and choose the performance metrics accordingly [70]. 
Questions about the effect of false negatives and false positives 
should be asked to make a trade- off between sensitivity and 
specificity, for example. A Dice score should not be used without 
knowing what the clinical effect of a slightly too big or a slightly 
too small segmentation would be. Is the segmentation always 
slightly too big or too small or is this inconsistent? Questions 
like these can only be asked and answered by those with clear 
understanding about both DL and the clinical practice.

Of course, it is essential to not only think about the validation 
of the algorithm but also consider the effect of the algorithms 
on the clinical workflow and the individual patient. For this, it 
is important to consider the use case of the DL application, does 
it aid or augment the clinical specialist? How does the clinical 
practice change when this application is implemented in the 
workflow? For example, some studies focused on screening in 
hospitals without specialized personal or low- income countries 
[31, 65]. Other studies focused on aiding the clinical specialist, 
for example in tumor subtyping or volume measurements [45]. 
Lastly, some research was aimed at augmenting the specialist in 
tasks currently not part of the clinical workflow, for example in 
predicting based on imaging which patients would respond to 
chemotherapy [39]. Consequently, the place and task of the DL 
method in the clinical workflow determines the potential risks 
and benefits. Some of the included studies did look at the po-
tential impact of their applications. For example, Florkow et al. 
created radiotherapy plans with-  and without DL enabled skel-
eton growth center avoidance to show the potential benefits of 
their method [51]. To our knowledge, no DL methods specific 

for pediatric oncology are currently approved for clinical use. In 
adult oncology, several applications have already made the tran-
sition from research settings to clinical settings [20, 71]. Tools 
such as the APPRAISE- AI tool can help assess the clinical safety 
and utility of AI algorithms [72].

The best path forward for DL in pediatric oncology depends on 
the application. It begins with identifying clear use cases with 
input from all relevant stakeholders, including pediatric on-
cologists, radiologists, pathologists, and radiotherapists. This 
is followed by collecting and labeling appropriate data. Due to 
the rarity of pediatric oncology cases, multicenter studies are 
essential, though regulatory, ethical, and political challenges 
can arise. Federated learning, a method of training DL appli-
cations without the need for sharing of data, offers a potential 
solution to these limitations [73, 74]. Clinical validation, ideally 
conducted across multiple centers and embedded in larger stud-
ies like UMBRELLA is critical for implementing DL models in 
practice [9]. Generalizability, how well an algorithm performs 
with diverse data, machines, or settings, is crucial, especially 
during validation and implementation. Rigorous, multicenter 
studies are needed to incorporate DL into clinical guidelines, 
with the validation method tailored to the use case. DL aimed to 
augment the specialist should be validated like all new clinical 
tests or applications: with randomized controlled trials being the 
gold standard.

Trustworthy DL is of uttermost importance throughout the 
whole process of implementing DL in the clinical practice. 
Logically, this starts with trustworthy research with transparent 
reporting about research population, data quality, and perfor-
mance. Guidelines such as STREAM- URO, created for reporting 
ML in urology, should be developed specifically for pediatric on-
cology The type of validation that was used in the articles varied 
widely. Some articles used cross validation, other articles used 
an internal or external test set. Some articles reported selection 
on data quality, which might have impacted the validation [64]. 
Due to the small number of patients and the big variety in be-
tween patients, validation is an extra challenge in the pediatric 
population. Assessing all articles for their validation methods, 
risk of bias and other important limitations falls outside our aim 
to provide a general overview of the field.

Generalizability of the DL method will be key for implementing 
the developed methods outside the developing center. As data 
quality is of high importance for this, data and knowledge shar-
ing is key to create applicable DL solutions. Data standardization 
and multicenter studies are key for this. Another factor that can 
help in building trust in DL methods is explainable AI (XAI). 
XAI aims to increase the interpretation of the DL algorithm, 
which is thought to increase trust [75, 76].

While this study showed that the development of DL in pediat-
ric oncology is still quite limited, the next steps forward should 
already be considered. Again, the adult oncology can guide our 
field, as plenty of studies about the validation of DL in the clin-
ical workflow have been performed, together with clear guide-
lines and roadmaps to go forward [77–83]. However, pediatric 
research has unique challenges: the vulnerability of pediatric pa-
tients necessitates special ethical considerations, and the rarity 
of cases complicates data availability and validation. Pediatric 
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oncology should adapt adult oncology frameworks where feasi-
ble, while proactively addressing pediatric- specific challenges.

6   |   Conclusion

This review provided an overview of DL research on image- 
based applications in pediatric surgical oncology. Current ex-
perimental algorithms in imaging, pathology, and other fields of 
clinical imaging show promising performance. However, more 
research is needed to interpret these results and their effect on 
clinical practice. The more advanced status of DL in adult on-
cology should be used to guide researchers in the pediatric field 
forward. While we are at the start of the DL revolution, we are 
not even close to revealing the full potential of DL applications: 
giving insights beyond human comprehension and leading to 
further improvement of the outcomes of children with cancer.
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