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Abstract Adaptation is a key component of efficient coding in sensory neurons. However, it

remains unclear how neurons can provide a stable representation of external stimuli given their

history-dependent responses. Here we show that a stable representation is maintained if efficiency

is optimized by a population of neurons rather than by neurons individually. We show that spike-

frequency adaptation and E/I balanced recurrent connectivity emerge as solutions to a global cost-

accuracy tradeoff. The network will redistribute sensory responses from highly excitable neurons to

less excitable neurons as the cost of neural activity increases. This does not change the

representation at the population level despite causing dynamic changes in individual neurons. By

applying this framework to an orientation coding network, we reconcile neural and behavioral

findings. Our approach underscores the common mechanisms behind the diversity of neural

adaptation and its role in producing a reliable representation of the stimulus while minimizing

metabolic cost.

DOI: https://doi.org/10.7554/eLife.46926.001

Introduction
The range of firing rates that a sensory neuron can maintain is limited by biophysical constraints and

available metabolic resources. Yet, these same neurons represent sensory inputs whose strength

varies by orders of magnitude. Seminal work by Barlow (1961) and Laughlin (1981) demonstrated

that sensory neurons in early processing stages adapt their response threshold and gain to the range

of inputs that they recently received. A particularly striking example of such gain modulation at the

single cell level has been shown in the fly H1 neuron (Brenner et al., 2000). Gain adaptation has

been observed in other early sensory circuits (Blakemore and Campbell, 1969; Fairhall et al., 2001;

Solomon and Kohn, 2014; Wark et al., 2007), such as in the retina (Kastner and Baccus, 2014),

auditory hair cells (Nagel and Doupe, 2006; Wen et al., 2009) and is also present in later sensory

stages (Adibi et al., 2013; Wainwright, 1999). Moreover, cortical neurons acquire this property dur-

ing development (Mease et al., 2013).

The work of Laughlin and Barlow was instrumental in uncovering a principle of neural adaption as

maximizing information transfer. However, the natural follow-up question concerns the decoding of

such neural responses after they have been subject to adaptation. Indeed, such changes in neural

gains may result in profound changes of the mapping of neural responses to stimuli in a history-

dependent manner. This raises the issue of how such adapting responses are interpreted by down-

stream sensory areas (Seriès et al., 2009; Webster, 2011).

One possibility, of course, is that downstream areas do not change their decoding strategy, thus

introducing systematic biases in perception. This has been interpreted as the source of perceptual

illusions such as the tilt after-effect or the waterfall illusion (Barlow and Hill, 1963; Wain-

wright, 1999; Clifford, 2014; He and MacLeod, 2001; Schwartz et al., 2009). Such illusions are

classically triggered by long presentations of particularly strong or repetitive stimuli (Maffei et al.,
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1973). However, adaptation deeply affects neural responses even at short time scales or after only

one repetition of the same stimulus (Patterson et al., 2013).

Adaptation could make it impossible to recognize a visual object independently of the stimuli

presented previously. An example is given in Figure 1 where we present successive visual patterns

to a population of randomly connected leaky integrate-and-fire (LIF) neurons. For simplicity and for

the sake of illustration, the network takes a 7-dimensional time-varying input interpreted as a spatio-

temporal sequence of digital numbers (Figure 1b, top row). An optimal linear decoder was trained

to reconstruct the patterns from the spike counts during the presentation of the patterns. Not sur-

prisingly, the decoder could reconstruct the patterns accurately, regardless of their place in the

sequence (Figure 1b, 2nd row). We then tested the network in the presence of spike-based adapta-

tion in the LIF neurons. Spike-based adaptation was induced by temporarily hyperpolarizing the neu-

rons after each spike. The time scale of this adaptation was chosen to be long enough to cover

several visual patterns. When subjected to this spike-time dependent adaptation, the responses

became strongly history dependent, resulting in a highly inaccurate decoding (Figure 1b, 3rd row).

This would suggest that activity in downstream areas and perceptual interpretations should be

based not only on the current sensory responses, but also on the recent history of neural activity

(Fairhall et al., 2001; Borst et al., 2005). In this study, we show that this is not necessarily the case.

Recurrent connections can be tuned such that spike-dependent adaptation will not impair the stabil-

ity of the representation (Figure 1b, bottom row).

eLife digest Humans see, hear, feel, taste and smell the world as spiking electrical signals in the

brain encoded by sensory neurons. Sensory neurons learn from experience to adjust their activity

when exposed repeatedly to the same stimuli. A loud noise or that strange taste in your mouth

might be alarming at first but soon sensory neurons dial down their response as the sensations

become familiar, saving energy.

This neural adaptation has been observed experimentally in individual cells, but it raises

questions about how the brain deciphers signals from sensory neurons. How do downstream

neurons learn whether the reduced activity from sensory neurons is a result of getting used to a

feeling, or a signal encoding a weaker stimulus? The energy saved through neural adaptation cannot

come at the expense of sensing the world less accurately. Neural networks in our brain have

evidently evolved to code information in a way that is both efficient and accurate, and

computational neuroscientists want to know how. There has been great interest in reproducing

neural networks for machine learning, but computer models have not yet captured the mechanisms

of neural coding with the same eloquence as the brain.

Gutierrez and Denève used computational models to test how networks of sensory neurons

encode a sensible signal whilst adapting to new or repeated stimuli. The experiments showed that

optimal neural networks are highly cooperative and share the load when encoding information.

Individual neurons are more sensitive to certain stimuli but the information is encoded across the

network so that if one neuron becomes fatigued, others receptive to the same stimuli can respond.

In this way, the network is both responsive and reliable, producing a steady output which can be

readily interpreted by downstream neurons.

Exploring how stimuli are encoded in the brain, Gutierrez and Denève have shown that the

activity of one neuron does not represent the whole picture of neural adaptation. The brain has

evolved to adapt to continuous stimuli for efficiency at both the level of individual neurons and

across balanced networks of interconnected neurons. It takes many neurons to accurately represent

the world, but only as a network can the brain sustain a steady picture.
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Results

Neural network solving a global cost-accuracy tradeoff
We will start from an objective function quantifying the efficiency of a population of spiking neurons

in representing a time varying sensory stimulus, fðtÞ. We will then show that appropriate recurrent

connections between the neurons, namely connections that maintain a tight balance between the

excitation and inhibition received by each neuron, will minimize this objective function and thus,

maximize the efficiency of the neural code. For the sake of illustration, we hereby assume that the

stimulus is unidimensional and positive, as for luminance or color saturation (see

Materials and methods for multidimensional stimuli), and the stimulus has arbitrary units. The stimu-

lus will be decoded from the firing activity of the neurons by summing their responses with their

respective readout weights , wi.

f̂ðtÞ ¼
X

i

wiriðtÞ (1)

The neural response, riðtÞ, is defined as the spike train integrated at a short time scale,

_ri ¼�1

t
riþ oi (2)

where oiðtÞ corresponds to the spike train of neu-

ron i. The readout weight of neuron i is denoted

as wi and it is a fixed parameter. One may choose

to include a wide range of readout weights in the

network. The output estimate, f̂ðtÞ, can be inter-

preted as a postsynaptic integration of the out-

put spike trains of the population, weighted by

synaptic weights w.

We wish to construct a network that will mini-

mize the difference between fðtÞ and f̂ðtÞ, ensur-
ing an accurate representation of the stimulus.

Additionally, we wish to impose, not only accu-

racy, but also cost efficiency in the neural repre-

sentation. For biological neurons, spiking comes

with inherent metabolic costs. For example,

resources are expended after each spike and

neurons or neural populations may need some

time to recover from a period of strong activity.

Albeit many different types of cost can be incor-

porated into our approach, here we summarize

these constraints as a cost term representing the

sum of all squared firing rates. Thus, we define an

objective function composed of two terms, one

representing the precision of the representation,

and the other the cost of neural activity

(Boerlin et al., 2013):

EðtÞ ¼ ðfðtÞ� f̂ðtÞÞ2 þ�
X

i

fiðtÞ2 (3)

Where fi(t) is the firing history of neuron i and

the parameter m weights the relative contribu-

tions of error and metabolic costs. The firing his-

tory, fi(t), is defined as the spike train integrated

with a time constant, ta.

time

stimulus

sequence

trained random

 recurrent

 network output

trained random

 recurrent

 network output

with adaptation

balanced network

with adaptation

a

b

Figure 1. Digital number encoding network. (a)

Schematic of a 7-dimensional input (one dimension for

each bar position of a digital interface) being

presented to a random recurrent network that sends

input to a readout layer (here represented by a single

neuron). (b) Top, a sequence of digits that serve as

stimuli (presented for 200 ms each, spaced by 100 ms

between digits). Second row, decoded output of

random recurrent network with optimal decoder

(trained on 100 samples of completely random

patterns). Third row, decoded output of same random

recurrent network as above but with adapting neuron

responses. Bottom row, balanced network with

adaptation derived from efficient coding framework.

[All rows: 400 neurons, t ¼ 5ms for neural responses

integrated by decoder; 3rd and 4th row:

� ¼ 0:02; ta ¼ 2000ms for the adaptive firing rates].
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Gutierrez and Denève. eLife 2019;8:e46926. DOI: https://doi.org/10.7554/eLife.46926 3 of 17

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.46926.003
https://doi.org/10.7554/eLife.46926


_fi ¼� 1

ta
fiþ oi (4)

Typically, the adaptation time scale is assumed to be significantly longer than the decoder time

scale (ta>>t). A short t (e.g. of the order of 10 ms) ensures that fast changes in the stimulus can be

represented accurately. However, the metabolic cost of spiking accumulates and recovers at slower

time scales (e.g. ta corresponds to hundreds of ms). The underlying assumption is that the dynamics

allowing metabolic resources to be replenished are slower than the time scale at which neural popu-

lations transmit information. The sum of squared firing history will encourage, not only low activity at

the level of the population, but also low activity in single neurons. As a result, neurons will share the

burden of the representation.

From these assumptions, we derive a prescription for the voltage dynamics of leaky integrate-

and-fire (LIF) neurons performing a greedy minimization of the objective function, E (see

Materials and methods for full derivation). Our framework revolves around the assumption that a

neuron spikes only when doing so reduces the decoding error. This condition can be expressed in

terms of the objective function as EðtÞno >spike>EðtÞspike where a spike is justified if the objective is min-

imized relative to having no spike at that time step. Using Equation 3, we obtain a new expression

from this inequality that embodies a condition for spiking and that we interpret as a voltage expres-

sion and a threshold (see Materials and methods for derivation details) such that VðtÞ>threshold and

voltage is:

w
i

o
i
(t)

r
i
(t)

w
j
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Figure 2. Intrinsic model neuron properties. (a) High gain neurons (light blue) are intrinsically excitable and due to

their small decoding weights they are precise while low gain neurons (dark blue) are less excitable and less

precise. An arbitrary input, fðtÞ, elicits distinct responses from the two neurons (spikes train oi and oj, respectively).

Neurons send a filtered response, ri, rj, to the decoder weighted by wi and wj, respectively. (b) Relationship

between gain gi ¼ 1=ðw2

i þ �Þ, feedforward gain giwi ¼ wi=ðw2

i þ �Þ, and decoding weight wi (� ¼ 1). (c) Different

gains give neurons distinct adaptation dynamics. Instantaneous spiking rates in response to a constant input are

plotted over time for three model neurons with different decoding weights (light blue, w = 1; medium blue, w = 5;

dark blue, w = 9). High gain neurons have the steepest adaptation (light blue) whereas low gain neurons (dark

blue) do not adapt as rapidly given the same input. Inset shows the voltage trace, VðtÞ, and spike train, oðtÞ, for
each example neuron.

DOI: https://doi.org/10.7554/eLife.46926.004

Gutierrez and Denève. eLife 2019;8:e46926. DOI: https://doi.org/10.7554/eLife.46926 4 of 17

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.46926.004
https://doi.org/10.7554/eLife.46926


ViðtÞ ¼
1

w2
i þ�

ðwiðfðtÞ� f̂ðtÞÞ��fiðtÞÞ (5)

Taking the derivative of the voltage expression produces the voltage equation below:

t _Vi ¼�Viþ giwiðt _fþfÞ� tgi
X

j

Wijoj �kifi (6)

Where gi is the gain of neuron i,

gi ¼ 1=ðw2

i þ�Þ (7)

and the lateral connections are given by 
ij

Wij ¼wiwjþ�dij (8)

where dij is the delta function (equals one only if j¼ i, zero otherwise) and ki ¼ �gið1� t
ta
Þ.

The form of the voltage equation is amenable to being interpreted as a set of currents to a neu-

ron embedded in a recurrent network with all-to-all connectivity. Neurons are connected by mutually

inhibitory synapses determined by their decoding weights. The final term corresponds to an adapta-

tion current that depresses the voltage as a function of its recent activity (see Figure 2c). This indi-

cates that spike-frequency adaptation in single neurons is part of the solution to the cost-accuracy

tradeoff. However, we will show that it cannot work alone; it needs to be associated with appropri-

ately tuned recurrent connections.

It is easier to interpret the network function if we consider that the membrane potentials are

effectively proportional to the global coding error penalized by the past activity of the neuron, as

seen in Equation 5. A neuron that reaches the firing threshold is guaranteed to contribute a

decrease of the error term in the objective function (Equation 3). As a whole, the population per-

forms a greedy minimization of the objective function, or, in other terms, a greedy maximization of

the coding efficiency.

Finally, we note that since the integrated excitatory input, giwifðtÞ, is cancelled as precisely as

possible (except for the cost penalty) by the recurrent inhibition, �giwif̂ðtÞ, the network can be con-

sidered as balancing feedforward excitation and recurrent inhibition (see Equation 5). The second

ingredient for population efficiency (in addition to spike-based adaptation) is thus to maintain a tight

E/I balance in the network. In other words, we show that a memoryless decoder will be able to

reconstruct the stimulus from the output spike trains of an E/I balanced population of adapting neu-

rons. This is shown in the bottom row of Figure 1b. Before we investigate the network dynamics

and performance, we first describe the properties of single neurons and the relationship between

their gain and their coding precision.

Single neuron properties
Let us first consider the case without quadratic cost (i.e. � ¼ 0). In that case, each neuron effectively

has identical voltage and spiking dynamics. Neurons are differentiated only by their gain, gi, and

their decoding weight, wi (Figure 2). The strength of the feedforward gain is inversely related to the

strength of the output weight for each neuron. As a result, neurons with the smallest decoding

weights (and thus, the highest precision in representing the input) tend to respond most strongly to

the stimulus (Figure 2a). We will refer to these costly but reliable neurons as ’strongly excitable’. In

contrast, neurons with large decoding weights and small input weights (thus ’low gain’ neurons)

bring less precision to the estimate but are metabolically efficient. We will refer to these neurons as

’weakly excitable’.

Note that if � ¼ 0, the cost is not taken into account by the network. Thus, it will always favor pre-

cision over cost. In that case, only the most excitable neuron (with the smallest decoding weight) will

respond to the stimulus while completely inhibiting the other neurons. However, with the addition of

a cost (�>0), adaptive currents contribute to the voltage dynamics, penalizing neurons with large fir-

ing rates. Moreover, the feedforward gain, giwi, does not necessarily decrease monotonically with

the decoding weight (Figure 2b). For very small decoding weights, jwij2<<�, neurons with decoding

weights smaller in magnitude than
ffiffiffi

�
p

are penalized. These neurons would simply be too costly to
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participate meaningfully in the cost/accuracy

tradeoff solved by the population. Model neu-

rons in isolation (i.e. without any contribution

from recurrent connections) would respond to a

step-like input with a rate that decreases expo-

nentially in time before reaching a plateau

(Figure 2c), a classic signature of activity-depen-

dent suppression. The time constant of this adap-

tation is determined by ta, while the strength of

this adaptation increases with the gain. Highly

excitable neurons adapt strongly, while less excit-

able neurons adapt weakly.

However, these intrinsic properties of single

neurons will be deeply affected by the dynamics

introduced by recurrent connections. To gain a

better understanding of population adaptation,

we investigate how inhibitory connections orches-

trate the relative contributions of different neu-

rons over the duration of a long stimulus.

Network activity is distributed on a
manifold in neural activity space
We first illustrate the effect of recurrent connec-

tions with an example network composed of only

two neurons (Figure 3). The two neurons are

reciprocally connected with inhibitory connec-

tions, as prescribed in the derivation (schema-

tized in Figure 3a). They receive a constant

stimulus, but have different input weights.

During sustained stimulation, the response of

each neuron fluctuates dynamically despite the

fact that the stimulus is constant (Figure 3b). This

would be expected given their spike-time depen-

dent adaptation. However, if one removes the

recurrent connections and plots the response of

one neuron as a function of the other (Figure 3c,

right), we discover that the population response

wanders from the iso-coding line, f̂ ¼ w1r1 þ w2r2

(i.e. the manifold in activity space where the stim-

ulus would be decoded properly). In contrast, the

intact network with its recurrent connections

coordinates the two neurons such that the

weighted sum of their responses remains accu-

rate. The movement of the activity along the

manifold defined by the constant stimulus and

the decoding weights reflects a progressive

redistribution of activity to satisfy the unfolding

cost-accuracy tradeoff, as the cost slowly accumu-

lates (Figure 3d).

While to a naive observer, the high gain neu-

ron may appear to adapt while the low gain neu-

ron has a sustained response and a longer delay,

in fact both contribute to population adaptation because both neurons coordinate and adapt their

activity to limit the metabolic cost of the representation while maintaining its accuracy. Recurrent
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Figure 3. Two-neuron network. (a) Schematic of

recurrently connected two-neuron network derived

from efficient coding framework. Neuron 1 is strongly

excitable (wi ¼ 1), while neuron 2 is weakly excitable

(wi ¼ 2). (b) Spikes from neuron 1 (light blue) and

neuron 2 (dark blue) show the transient response of the

strongly excitable neuron and the delayed, but

sustained response of the weakly excitable neuron (top)

in response to a constant stimulus. Postsynaptic

activity, rðtÞ (bottom)

[� ¼ 0:02; t ¼ 25ms; ta ¼ 1000ms;fðtÞ ¼ 10]. (c) The

balanced network with adaptation follows a linear

manifold (left), whereas the network without recurrent

connections but with adaptation cannot be linearly

decoded (right). (d) The cost (�
P

n f
2

n , yellow)

accumulates steeply until neuron one adapts and

neuron two is recruited and the cost increases at a

slower rate. The network representation (orange) is

maintained despite the redistribution of activity among

the neurons.
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connections deeply affect the dynamics of each neuron. For example, the inhibition from the

strongly excitable neuron is responsible for the response delay of the weakly excitable neuron.

Coordinated adaptation in a neural population
Within a network with many neurons (Figure 4), recurrent connections interact with the intrinsic

properties of the neurons in a similar manner as in the previous example. The first neurons to be

recruited are strongly excitable and provide an initially very precise representation of the signal.

These neurons inhibit the less excitable neurons, preventing them from firing early in this stimula-

tion period. As the cost accumulates, however, the response of the high gain neurons decays due to

spike-frequency adaptation. This is compensated by weakly excitable neurons that become disinhib-

ited, fire, and then adapt in their turn. The less excitable a neuron is, the later it will be recruited,

resulting in strong response delays. The dynamic response properties of individual neurons are thus

dominated by network interactions and are markedly different from their intrinsic adaptive proper-

ties (Figure 2).

Because the disinhibition of weakly excitable neurons automatically compensates for the decay in

strongly excitable neural responses, the stimulus representation remains stable during the whole

period (Figure 4d). However, note that its precision degrades as more low gain neurons contribute

to the representation. As a result, the bias and standard deviation of the representation increases as

imposed by the global cost/accuracy tradeoff.

Coordinated adaptation of tuning curves
To illustrate what coordinated adaptation would predict for tuning curves measured experimentally,

we constructed a population of neurons that code for visual orientation; V1 simple cells. The input to

the network takes the form of a two-dimensional signal with a cosine and a sine of the presented ori-

entation (see Materials and methods). Each neuron has a preferred orientation that is given by the

combination of input weight strengths in the two input dimensions. In turn, the network orientation

estimate can be decoded from the population (see Materials and methods).

The lateral connections derived from the model maximally inhibit neurons with similar preferred

orientations and excite neurons with orthogonal orientations (see schematic in Figure 5a) due to the
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Figure 4. Adapting population of heterogeneous neurons. (a) Spike raster of all 10 neurons in a balanced network

with adaptation in response to a pulse stimulus (� ¼ 0:2; t ¼ 5; ta ¼ 1000;fðtÞ ¼ 10;w ¼ ½1; 2; :::; 10�). Neurons are

ordered from weakly excitable (top, dark blue) to highly excitable (bottom, light blue). (b) Both the error

(ðfðtÞ � f̂ðtÞÞ2, blue) and cost (�
P

n f
2

n , orange) accumulate over time. (c) The network estimate (f̂ðtÞ, orange)
tracks the stimulus (fðtÞ, gray) with increasing variance. (d) The smoothed network estimate (blue line) shows a

biased estimate with increasing variance (blue shade, standard deviation). (e) Instantaneous spiking rates of 3

example neurons in the network. Inset shows the voltage trace, VðtÞ, and spike train, oðtÞ, for each example

neuron. (f) Schematic of 10-neuron balanced network showing only connections to and from the middle neuron.

Excitatory connections are shown as triangles and in this particular network are only found in the feedforward and

output connections. Inhibitory connections are shown with small circles and make up only the recurrent

connections.
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choice of decoding weights which can be positive or negative, or some combination. To observe the

effects of adaptation on a diverse population of neurons, we constructed our network so that neu-

rons have equally spaced preferred orientations and a partner neuron that shares the same prefer-

ence but has a different gain. There is a high gain and a low gain neuron among each pair of

neurons that code for the same orientation.

Figure 5b illustrates the spiking response of the network to a prolonged oriented stimulus. As

seen in the simpler model from Figure 4, high gain neurons respond first, then adapt. As the

responses of those strongly excitable neurons decay, weakly excitable neurons are recruited, main-

taining the representation. This results in systematic changes in the tuning curves from early in the

response to later in the response (Figure 6). Highly excitable neurons are suppressed relative to

their early responses (Figure 6, top). In contrast, weakly excitable neurons see their tuning curves

widen when the adapting stimulus is similar to their preferred orientation (Figure 6, bottom). At the

flank of the adapting orientation, low gain neurons see an increase in their responsiveness. Here, the

network interactions override the intrinsic adapting currents in the weakly excitable neural popula-

tion. In other words, the disinhibition from strongly excitable neurons combined with the constant

feedforward drive to these low gain neurons results in facilitated activity rather than the suppressed

activity one would expect to be caused by adaptation. Finally, the tuning curves for the most excit-

able neurons are broader than those for weakly excitable neurons. These neurons are more likely to

fire first in response to oriented stimuli that are near their preferred orientation and prevent the low

gain neurons from doing the same.

Heterogeneity in a more plausible model
The same qualitative effects are observed in a more realistic network where the preferred orienta-

tions of different neurons and their decoding weights are taken from a random distribution (Fig-

ure 7), rather than regularly spaced with two levels of excitability. The tuning curves are more

heterogeneous not because of noise but because of the randomness of the decoding weights. Tun-

ing curves can be either facilitated or suppressed by adaptation. When the adapted stimulus falls on

the flank of the tuning curve, it can be accompanied by a shift toward or away from the adapting

stimulus. The effect of adaptation on single neurons is variable not because of noise (we did not

introduce any) but because of local heterogeneity in the competition they receive from other neu-

rons, itself due to the random choices of weights. In fact, adaptation in one neuron would be impos-

sible to predict quantitatively without observing the rest of the network.

Perceptual adapation
We have stressed the accuracy of the stimulus representation in the face of time-varying activity due

to adaptation. While this kind of activity could be interpreted as leading to a stable percept in spite

of adaptation, we acknowledge that perceptual errors and biases are abundant in the natural world.

Our network is capable of emulating these errors and it is able to do so in a manner that is consis-

tent with experimental findings. The network is designed to negotiate the tradeoff between accu-

racy and efficiency and it will prioritize the production of a stable representation if m is small. If m is

large, the network will favor cost over accuracy. Thus, strong adaptation and a prolonged stimulus

presentation can produce a representation that degrades over time. This degradation can lead to a

bias in the decoder. In Figure 8, an oriented, strong, adapting stimulus is presented for 2 seconds

followed by a test orientation (this is schematized in Figure 8a). An example of the resulting network

activity is shown in Figure 8b.

Before adaptation takes hold, the adapting stimulus activates the high gain neurons that have

preferences at or near the stimulus orientation. Because the adapting stimulus is strong, high gain

neurons with similar preferences are quickly recruited. As the stimulus persists, the most strongly

activated high gain neurons fatigue and the low gain neurons with matching preferences are

recruited. After the presentation of the adapting orientation, a weaker peripherally oriented test

stimulus is delivered. The response distribution and dynamics are markedly different. Instead of a

widely-tuned response, the weaker test stimulus produces a more narrowly distributed response.

The decoded orientation is offset from the test stimulus orientation, indicating a bias in the per-

ceived orientation.
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A classical study of perceptual bias is the tilt

illusion (Gibson and Radner, 1937; Clif-

ford, 2014). In the tilt illusion, the orientation of

a test grating is perceived incorrectly after adap-

tation to a differently oriented stimulus. Experi-

mental studies report that the perceived

orientation is often repulsed away from the

adapted orientation, the effect being maximal for

adapting stimuli tilted around 15–20 degrees

from the test stimulus. If the adapting stimulus is

oriented around 60 degrees from the

test stimulus, a repulsive effect is observed

instead. This effect has been confirmed in the

visual cortex (Jin et al., 2005; He and MacLeod,

2001). Our model replicates this effect

(Figure 8c,d). The test stimulus is decoded at an

orientation that is repulsed from its actual orien-

tation away from the adaptor when the adaptor

is approximately 15 degrees from vertical

(Figure 8c, middle). However, when the adaptor

is obliquely oriented from the test orientation,

the test stimulus is perceived to be oriented in a

direction that is attracted to the adaptor

(Figure 8c, right). Test stimuli within a range of

0–45 degrees difference from the adaptor orien-

tation are repulsed whereas test stimuli with a

greater than 45 degree difference from the adap-

tor orientation are attracted (Figure 8d). In accor-

dance with experimental findings, the repulsion

effect has a greater amplitude than the attraction

effect.

Discussion
Sensory neurons in cortex are embedded in

highly recurrent networks with each cell receiving

strong inhibitory currents that co-vary with excit-

atory currents (Graupner and Reyes, 2013) and

are thus E/I balanced. Here, we show that in bal-

anced networks, heterogeneous sensory neurons

with activity dependent suppression solve a

global cost/accuracy tradeoff rather than a local

tradeoff at the level of each neuron. In our case,

adaptation at the level of individual neurons co-

exists with a largely stable representation at the

population level. Rather than being globally sup-

pressed by adaptation, E/I balance indirectly

ensures that the neural activity is redistributed from highly responsive neurons to less responsive

neurons without changing the interpretation of this activity by downstream areas.

Our approach suggests that, given adaptation, neural coding cannot be understood at the level

of a single neuron, except in cases where a unique sensory feature is solely encoded by a single neu-

ron, such as the H1 neuron (Brenner et al., 2000). In areas containing large numbers of intercon-

nected neurons with redundant selectivity, many questions about neural coding and adaptation are

only meaningful when applied to whole populations. We show that the adapting tuning curves of a

single neuron can reflect a collective, flexible solution found by the network in particular contexts.

Other studies have used predictive coding and efficient coding frameworks to construct models of

500 ms

500 ms

a

b

Figure 5. Orientation coding-network. (a) Schematic

showing the dual-ring structure of the network of high

gain (light blue) and low gain (dark blue) neurons.

Some of the recurrent connections from the outlined

light blue neuron are illustrated to show that a neuron

inhibits its neighbors most strongly and excites neurons

with opposing preferences (inhibitory connections are

shown as circles, excitatory connections are shown as

chevrons). (b) Spike raster (top) of population activity

showing the evolution of the population response

during a prolonged stimulus presentation of a constant

orientation. Rasters are displayed in order of neuron

orientation preferences. The decoded orientation is

steady while the variance increases over time (bottom).

Arrow indicates the stimulus orientation.

(� ¼ 0:1; t ¼ 5ms; ta ¼ 2000ms, h ¼ 10, stimulus

magnitude C = 50, 200 neurons).

DOI: https://doi.org/10.7554/eLife.46926.007
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adapting neural responses (Chopin and Mamassian, 2012; Młynarski and Hermundstad, 2018;

May and Zhaoping, 2016) , however, our model incorporates a biologically plausible spike-fre-

quency adaptation mechanism.

Another problem arises in the trial-to-trial variability produced by adaptation that is observed at

the single neuron level. As mentioned in the introduction, the history-dependence caused by adap-

tation begs the question of how a consistent representation can be decoded from a network in

which all, or most, neurons are subject to adaptation. Our study shows that the potentially harmful

effects of adaptation on the individual neuron’s ability to encode a stimulus can be mitigated by a

coordinated population response. Other studies that have addressed this issue propose updating

the decoder (Benucci et al., 2009) or have considered divisive gain control mechanisms

(Schwartz et al., 2009) as well as synaptic plasticity mechanisms (Hosoya et al., 2005). Our study

offers an alternative, plausible framework for resolving the cost-accuracy tradeoff on a shorter time

scale than the operating time scale for synaptic plasticity. Instead of updating the weights to better

represent stimuli over several iterations, as is done for the perceptron and convolutional neural net-

works (Fukushima, 1980; LeCun et al., 1999; Olshausen and Field, 1996; Rosenblatt, 1958), we

derive a prescription for the voltage dynamics so that the network neurons can produce a recon-

struction of any stimulus with fixed decoder and recurrent weights.

Our model is developed from a normative encoding framework (Boerlin et al., 2013;

Druckmann and Chklovskii, 2012; Olshausen and Field, 1996; Spratling, 2010) in which we

enforce efficiency in the encoder and accuracy in the decoder. The new contribution compared to

Boerlin et al. (2013) is to allow more flexibility in the form that the metabolic cost can take. In par-

ticular, the time scales of the cost and of the representation are disassociated which leads to distinct

dynamics for the cost and for the neural firing rate. This approach can be generalized to many other

types of cost, arbitrary weights, and number of neurons.

Single neuron coding is dynamic rather than a static property
Our model suggests that diverse adaptation properties within a population can be an asset. The var-

iability of adaptation effects has been observed in V1 neurons (Jeyabalaratnam et al., 2013;

Nemri et al., 2009; Ghisovan et al., 2009). A heterogeneous population of neurons is able to better

distribute the cost to maximize efficiency in different contexts. Studies in the retina show that retinal

ganglion cells with different adaptive properties complement each other such that sensitizing cells

can improve the encoding of weak signals when fatiguing cells adapt (Kastner and Baccus, 2011).

This arrangement is particularly advantageous for encoding contrast decrements which would be dif-

ficult to distinguish from the prior stimulus distribution if only suppressive adaptation prevailed. At

the same time, these heterogeneities contribute to complex dynamics in the neural spike trains

(Dragoi et al., 2000; Okun et al., 2015; Nirenberg et al., 2010; Mohar et al., 2013; Wissig and

Kohn, 2012), obscuring the relationship between neural activity and neural coding for an observer

of single neuron activity. We make the prediction that neurophysiological studies where single neu-

ron activity is recorded may exhibit an experimental bias that results in highly responsive neurons

being overrepresented in the sample.

Moreover, our study challenges the notion that tuning is a static characteristic of neurons. Experi-

ments increasingly reveal that neurons change their tuning dynamically with changing stimulus statis-

tics (Hollmann et al., 2015; Hong et al., 2008; Hosoya et al., 2005; Nagel and Doupe, 2006;

Smirnakis et al., 1997; Solomon and Kohn, 2014; Wark et al., 2007; Wark et al., 2009). In the

visual cortex, it has been shown that the tilt after effect is not only an effect of response suppression

but that it also has the effect of shifting the tuning curves of neurons away from their preferred ori-

entations (Jin et al., 2005; Ghisovan et al., 2009; Dragoi et al., 2000). While it may be possible to

predict some aspect of the tuning change from measurements of intrinsic neuron properties, our

study shows that a great deal of the change may be a network effect rather than an intrinsic neuronal

effect. Thus, the extent of adaptation for a single neuron may be difficult to predict without consid-

ering the properties of the rest of the network (Fairhall, 2014). Such unpredictable adaptation could

be a problem for the interpretation by downstream readouts, however, we show that when the net-

work is considered as a whole, the adaptive effects in one neuron can be compensated for by

another neuron that reports to the same readout. In other words, the apparently complex adapta-

tion at the single neuron level is not an impediment to the network but rather an indicator of the

manner in which the signal is encoded by the network as a whole.
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Validating the framework experimentally
Our model applies at the level of relatively densely connected, and thus local, populations. Observ-

ing the organized transfer of responses between neurons through adaptation and E/I balance would

require one to record a significant proportion of these neurons locally (neurons that are likely to be

interconnected directly or through interneurons). Recent experimental techniques render such

recordings possible (Buzsáki, 2004), bringing an experimental validation of this framework within

grasp. These recordings could be compared before and after adaptation, over the duration of pro-

longed stimuli, or over many repetitions of the same stimulus. What we expect to see is a generaliza-

tion of the effect illustrated in Figure 4b,c to larger neural populations. First of all, there should

exist a decoder of neural activity, independent of stimulus history that can detect the stimulus

despite large changes in neural activity over time. Second of all, shuffling the neural responses, for

example between the early and latter part of the responses to a prolonged stimulus, should have

detrimental effects on such stable decoding. And finally, over the course of adaptation, the activity

of the different neurons should not vary independently. For example, if we performed

a dimensionality reduction (such as a principle component analysis) of the neural population activity

during a prolonged stimulus presentation, we might be able to observe that neural responses over

time are constrained on a subspace where the stimulus representation is stable. Another, more

direct way of testing our framework would be to activate or inactivate a part of the neural popula-

tion. This could be done optogenetically, for example (Okun et al., 2015).

Materials and methods
All simulations were done in Matlab using code that we developed from the spiking predictive cod-

ing model that is mathematically derived below.

Digital number encoding network
The network used in Figure 1 is a generic recurrent network of 400 neurons with random recurrent

and feedforward weights. The feedforward weights are a 7 � 400 matrix of values drawn from a uni-

form distribution in the [�1,1] range. The recurrent weights are drawn from a Gaussian distribution

with mean = 0, std = 0.87 (close to 1) and are a 400 � 400 matrix, however, all neurons had an

autapse that was the sum of the negative squares of its feedforward weights. The network was

trained on 100 stimulus examples of 300 ms each that were generated randomly from a uniform
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Figure 6. Population adaptation tuning curves show neuron responses to a full range of test orientations (x-axis)

after adaptation to a single orientation (black dashed line). Top, tuning curves for strongly excitable neurons

before adaptation (light blue) are broad. After adaptation (orange), tuning curves near the adaptor are

suppressed. Bottom, tuning curves for weakly excitable neurons before adaptation (dark blue) show less activation

than for high gain neurons and more specific tuning. After adaptation (red), flanking curves are facilitated and

shifted toward adaptor. [� ¼ 0:1; t ¼ 5ms; ta ¼ 2000ms, h ¼ 10, stimulus magnitude C = 50, 200 neurons].

DOI: https://doi.org/10.7554/eLife.46926.008
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distribution of arbitrary input values between 0 and 4. An optimal linear decoder was obtained from

this training by taking the inverse of the responses and multiplying them by the stimulus training

examples: decoder = pseudoinverse ðrðtÞÞ. The trained network was then presented with a sequence

of 8 digitized patterns for 200 ms each separated by 100 ms of no stimulus input. To demonstrate

the effect of adaptation, the trained network was run on the same stimulus sequence and with the

same linear decoder but this time the spiking threshold was dynamically regulated by past spiking

activity such that the threshold was 1þ �fiðtÞ, where _fiðtÞ ¼ � 1

ta
fiðtÞ þ oiðtÞ. For the example of the

balanced network with adaptation, the network was derived using the framework described below

using the following parameters: ta ¼ 2000ms; � ¼ 0:02; t ¼ 5ms.

Network model
We provide here a brief description of the network structure and the objective function it minimizes.

A detailed and closely related version of this derivation is found in Boerlin et al. (2013). The innova-

tion in our present study is the incorporation of a variable for spiking history in the derivation. We

consider a spiking neural network composed of N neurons that encodes a set of M sensory signals,

f ¼ ½f1; :::;fM �. Estimates of these input signals, f̂ ¼ ½f̂1; :::; f̂M �, are decoded by applying a set of

decoding weights, ½wi1;wi2; :::;wim�, to the filtered spike train of neuron i so that f̂mðtÞ ¼
PN

i wimriðtÞ
(see Equation 1). The filtered spike train, riðtÞ, corresponds to a leaky integration of its spikes, oiðtÞ,
while the spike history, fiðtÞ, filters the spike train on a longer time scale so that ta>t.

oiðtÞ ¼
X

k

dðt� tki Þ

(9)

_ri ¼�1

t
riþ oi (10)

_fi ¼� 1

ta
fiþ oi (11)

neuron 1 neuron 2 neuron 3 neuron 4

neuron 5 neuron 6 neuron 7 neuron 8

before adaptation

weak adaptation

strong adaptation

Figure 7. Selected tuning curves from orientation network with random decoder weights (and thus random

neuron gains). Blue curves, before adaptation; red curves, after weak adaptation; yellow curves, after strong

adaptation. Some neuron responses are suppressed after adaptation while others are facilitated, and some tuning

curves shift laterally after adaptation. Dashed lines indicate adaptor orientation.

[� ¼ 0:2; t ¼ 5ms; ta ¼ 1000ms;h ¼ 1, weak stimulus magnitude C = 10, strong stimulus magnitude C = 50, test

stimulus magnitude C = 10, 200 neurons].

DOI: https://doi.org/10.7554/eLife.46926.009
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with tki the spike time of the kth spike in neuron i and t the time scale of the decoder. As we will see,

t is the membrane time constant of the model neurons and ta is the adaptation time constant.

The decoding weights wim are chosen a priori. They determine the selectivity and gain of the

model neurons. We want to construct a neural network that represents the signals most efficiently,

given the fixed decoding weights. Efficiency is defined as the minimization of an objective function

composed of two terms, one penalizing coding errors, and the other penalizing firing rates:

EðtÞ ¼ kfðtÞ� f̂ðtÞk2 þ�
X

N

i

f 2i (12)

m is a positive constant regulating the cost/accuracy tradeoff. In order to minimize this objective

function, we define a spiking rule that performs a greedy minimization. Thus, neuron i fires as soon

as this results in a minimization of the cost, that is as soon as Espike in iðtÞ<Eno spike in iðtÞ. A spike in neu-

ron i contributes a decaying exponential kernel, hðuÞ, to its firing rate so that

riðuÞ! riðuÞþ hðu� tÞ (13)
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Figure 8. Tilt illusion. (a) Schematic of tilt adaptation protocol. (b) Network activity in response to an adapting

stimulus followed by a test stimulus. Rasters are ordered by neurons’ orientation preferences. Black arrow, neurons

that prefer adapting orientation; red arrow, neurons that prefer test orientation

(� ¼ 0:1; t ¼ 5ms; ta ¼ 2000ms;h ¼ 10, 200 neurons, adaptor C = 50, test C = 25). (c) Examples of tilt bias: (left) no

bias before adaptation, (middle) network estimate is biased away from test stimulus and adaptor when adaptor is

near test orientation, (right) estimate is biased towards adaptor when adaptor is at large angle to test stimulus

(red arrow, test orientation; grey arrow, adaptor; blue arrow, decoded orientation to test orientation after

adaptation). (d) Estimate bias is repulsive for near adaptation and attractive for oblique adaptation. Adaptor is

presented for 2 s and test orientation is presented for 250 ms (h ¼ 0, adaptor C = 25, test C = 5).
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Gutierrez and Denève. eLife 2019;8:e46926. DOI: https://doi.org/10.7554/eLife.46926 13 of 17

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.46926.010
https://doi.org/10.7554/eLife.46926


f̂mðuÞ! f̂mðuÞþ hðu� tÞ (14)

fiðuÞ! fiðuÞþ ~hðu� tÞ (15)

where ~hðuÞ is a more slowly decaying exponential kernel than hðuÞ. The spiking condition,

Espike in iðtÞ<Eno spike in iðtÞ, can be expressed as:

kf� f̂þwiheik2þ�
X

N

n 6¼i

f 2n þ�ðfiþ ~hÞ2<kf� f̂k2 þ�
X

N

n

f 2n (16)

The i-th element in the Euclidean basis vector, ei, is one while all other entries are zero. Algebrai-

cally rearranging this expression leads to the following spiking rule: neuron i spikes if:

gið
X

M

m

wimðfmðtÞ� f̂mðtÞÞ��fiÞ>
1

2
(17)

gi ¼ 1=ðkwik2þ�Þ (18)

With gi being the ’gain’ of neuron i. We interpret the left-hand side of Equation 17 as the mem-

brane potential, ViðtÞ, of neuron i, and the right-hand side as its firing threshold. Membrane poten-

tials are normalized such that each neuron has a threshold equal to 1/2 and reset potential equal to

�1/2. The membrane potential dynamics are obtained by taking the derivative of the voltage

expression with respect to time (where ki ¼ �gið1� t
ta
Þ):

t _Vi ¼�Viþ gi
X

M

m

wimðt _fmþfmÞ�kfi� tgi
X

M

m

X

N

j

wimwjmoj��tgioi (19)

Notice that the lateral connection between neuron i and neuron j is equal to tgi
P

mwimwjm. Thus,

the lateral connections measure to what extent the feed-forward connections of two neurons are

correlated, and they remove those correlations to obtain the most efficient code.

Orientation model
The orientation-coding network follows the same derivation as outlined for the generic network

model. It has two input dimensions and 200 neurons. There are two subpopulations of neurons such

that 100 neurons are high gain neurons and the remaining 100 neurons are low gain neurons. Both

populations span the unit circle evenly such that one low gain and one high gain neuron share the

same preferred orientation.

More precisely, we endowed each neuron with a decoding vector , wi:

½wi1;wi2� ¼ ½gicosð2QiÞ;gisinð2QiÞ�;�
p

2
<Qi<

p

2
(20)

gi equals three for high gain neurons and nine for low gain neurons and Qi is the preferred orien-

tation of neuron i. Feedforward inputs correspond to two time-varying inputs,

f1ðtÞ ¼CðtÞcosð�ðtÞÞ;f2 ¼CðtÞsinð�ðtÞÞ, where CðtÞ is the stimulus magnitude and �ðtÞ is the stimulus

orientation at time t (�p
2
<�<p

2
). The orientation estimate , �̂ðtÞ, is decoded from the population as

�̂ðtÞ ¼ arctanðf̂2ðtÞ
f̂1ðtÞ

Þ (21)

The spiking threshold includes an additional term, hgi, that ensures that neurons with opposing

preferences will not be activated to spike so easily by the excitation from opposing neurons.

Tuning curves in Figures 6 and 7 were generated by presenting the network with a full range of

stimulus orientations Each orientation was presented for 250 ms after reinitializing the network. Neu-

ron responses were centered on their preferred orientation and the mean was taken for each sub-

population. Tuning curves after adaptation were made by lining up neuron responses to an adapting
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stimulus that corresponded with its preferred orientation. Adapting stimuli were presented for 1.5 s.

Standard deviations were computed on these centered data. The random gain network was identical

to the above with the exception that the feedforward weight gains, g, were randomly selected from

a uniform distribution with values ranging from 3 to 9.

The tilt illusion was generated by presenting the network with an adaptor orientation (duration of

2 s) and a subsequent test orientation (250 ms). The perceived angle was decoded from the mean

network output over the 250 ms presentation of the test stimulus. The adaptor had a stimulus mag-

nitude of 25 while the test stimulus had a magnitude of 5.
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Boerlin M, Machens CK, Denève S. 2013. Predictive coding of dynamical variables in balanced spiking networks.
PLOS Computational Biology 9:e1003258. DOI: https://doi.org/10.1371/journal.pcbi.1003258, PMID: 24244113

Borst A, Flanagin VL, Sompolinsky H. 2005. Adaptation without parameter change: dynamic gain control in
motion detection. PNAS 102:6172–6176. DOI: https://doi.org/10.1073/pnas.0500491102, PMID: 15833815

Brenner N, Bialek W, de Ruyter van Steveninck R. 2000. Adaptive rescaling maximizes information transmission.
Neuron 26:695–702. DOI: https://doi.org/10.1016/S0896-6273(00)81205-2, PMID: 10896164
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