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Abstract
The joint analysis of multiple traits has recently become popular since it can increase statis-

tical power to detect genetic variants and there is increasing evidence showing that pleiot-

ropy is a widespread phenomenon in complex diseases. Currently, most of existing

methods use all of the traits for testing the association between multiple traits and a single

variant. However, those methods for association studies may lose power in the presence of

a large number of noise traits. In this paper, we propose an “optimal”maximum heritability

test (MHT-O) to test the association between multiple traits and a single variant. MHT-O

includes a procedure of deleting traits that have weak or no association with the variant.

Using extensive simulation studies, we compare the performance of MHT-O with MHT,

Trait-based Association Test uses Extended Simes procedure (TATES), SUM_SCORE

and MANOVA. Our results show that, in all of the simulation scenarios, MHT-O is either the

most powerful test or comparable to the most powerful test among the five tests we

compared.

Introduction
Increasing evidence shows that pleiotropy, the effect of one variant on multiple traits, is a wide-
spread phenomenon in complex diseases [1]. Furthermore, in genetic association studies of
complex diseases, multiple related traits are usually measured. For example, hyperuricemia is
usually present in patients with gout [2]; coronary heart disease is predicted by cytokine inter-
leukin-6, C-reactive protein, interleukin-1, tumor necrosis factor-α and fibrinogen [3, 4]; and
neuropsychiatric disorders depend on a range of overlapping clinical characteristics [5].
Although most published genome-wide association studies (GWASs) analyze each of the
related traits separately, joint analysis of multiple traits may increase statistical power to detect
genetic variants [6–9]. Thus, joint analysis of multiple traits has recently become popular.

Several statistical methods have been developed for joint analysis of multiple traits. These
methods can be roughly divided into three groups: combining the univariate analysis results,
regression methods, and dimension reduction methods. For combining univariate analysis
results, one first conducts the univariate test by performing an association test for each trait
individually and then combines the univariate test statistics or combines the p-values of the
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univariate tests [2, 10–12]. Regression methods include mixed effect models [9, 13, 14], gener-
alized estimating equation (GEE) methods [15, 16], and reverse regression methods [5, 17].
Mixed effect models can account for relatedness, population structure, and polygenic back-
ground effect, but it is computationally challenging. The GEE methods, based on a marginal
regression model, allow the variant having different effect sizes and effect directions on differ-
ent traits. These methods can also accommodate covariates and different types of traits.
Reverse regression methods take genotypes as the response variable and multiple traits as inde-
pendent predictors, therefore, reverse regression models do not need to know the complex dis-
tributions of traits and can be applied to a large number of mixed types of traits. Dimension
reduction methods include canonical correlation analysis (CCA) [18], principal components of
traits (PCT) [19], and principal components of heritability (PCH) [20–23]. CCA is to seek a
linear combination of multiple variants and a linear combination of multiple traits such that
the correlation between the two linear combinations reaches its maximum. The PCT methods
are usually based on the first PC or first few PCs of the traits [22, 24]. However, as Aschard
et al. [2014] showed that testing only the first few PCs often has low power, whereas combining
signals across all PCs can have greater power. Nevertheless, it is not clear how many PCs are
needed, and how robust these methods are when there exists noise traits. PCH is to find a linear
combination of multiple traits such that this linear combination has the maximum heritability.

In this article, we first propose a maximum heritability test (MHT). Based on MHT, we
develop an “optimal”maximum heritability test (MHT-O) to test the association between mul-
tiple traits and a single variant. In each step of MHT-O, we delete one trait that has the weakest
association with the variant. Then, we find the optimal number of traits and use MHT to test
the association between the optimal number of traits and the variant. Using extensive simula-
tion studies, we compare the performance of MHT-O with MHT, Trait-based Association Test
uses Extended Simes procedure (TATES) [11], SUM_SCORE and MANOVA [8]. Our results
show that, in all of the simulation scenarios, MHT-O is either the most powerful test or compa-
rable to the most powerful test among the five tests we compared.

Method
We consider a sample with n unrelated individuals. Each individual has K (potentially corre-
lated) traits and has been genotyped at one variant. Let Y = (Y1,. . .,YK)

T denote the random
vector of K traits and X denote the random variable of the genotype score at a variant. Let yi =
(yi1,. . .,yiK)

T denote the values of K traits and xi denote the genotype score of the i
th individual,

where xi is the number of minor alleles that the ith individual has at the variant. We can con-
sider that y1,. . .,yn is a random sample from Y and x1,. . .,xn is a random sample from X.

Now, let us consider linear models

Yk ¼ ak þ bkX þ εk ðk ¼ 1; . . . ;KÞ:

We partition the total phenotypic covariance of Y as VP = VG + VR [25]; VG = var[β1X,. . .,
βKX] = var(X)ββT is the genetic variance due to the genotype scores X, where β = (β1,. . ., βK)

T;
VR = var[ε1,. . ., εK] is the residual covariance after removing the genetic effect. var(X) can be

estimated by 1
n

Xn
i¼1

ðxi � �xÞ2; �x ¼ 1
n

Xn
i¼1

xi. β and VR can be estimated from the linear models

yik ¼ ak þ bkxi þ εik ðk ¼ 1; . . . ;K; i ¼ 1; . . . ; nÞ:

βk is estimated by the least square estimator. Let rik denote the estimates of residuals εik. Then,

the (j, k)th element of VR is estimated by 1
n

Xn
i¼1

rijrik.
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Let us consider a linear combination of Y, wTY ¼
XK
k¼1

wkYk, where w = (w1,. . .,wK)
T. The

heritability of wTY can be written as

h2
w ¼ wTVGw

wTVPw
:

If we defineW ¼ V1=2
P w, we can write h2

w as

h2
w ¼ WTV

�1
2

P VGV
�1
2

P W
WTW

¼ WTVW
WTW

;

where V ¼ V
�1
2

P VGV
�1
2

P . The heritability of wTY depends on w and we can find a linear combina-
tion of wTY that has the largest heritability among all linear combinations of Y. We define the
maximum heritability as the test statistic to test the association between these K traits and the
variant. We denote this test as maximum heritability test (MHT). The MHT statistic can be
written as

TMHT ¼ maxwh
2
w ¼ lmaxðVGV

�1
P Þ ¼ varðXÞlmaxðbbTV�1

P Þ ¼ varðXÞbTV�1
P b;

where λmax(A) denotes the largest eigenvalue of matrix A.
However, the test statistic TMHT may lose power in the presence of a large number of noise

traits. Therefore, we propose an “optimal”maximum heritability test (MHT-O) to test the
association between multiple traits and the variant. MHT-O includes a procedure of deleting
traits that have weak or no association with the variant. It has the following steps:

Step 1. Given traits Y = (Y1,. . .,YK), initialize r = K and Y(r) = Y. Denote TMHT, r as TMHT based
on Y(r).

Step 2. Denote T�i
MHT ; r as TMHT based on Y(r) with the ith trait deleted for i = 1,. . .,r; denote I ¼

arg maxi T
�i
MHT ; r and TMHT ; r�1 ¼ T�I

MHT ; r. Let Y
(r−1) denote Y(r) with the Ith trait deleted and

update r = r − 1.

Step 3. Repeat step 2 until r = 1.

Denote pr as the p-value of TMHT, r. The test statistic of MHT-O is defined as

TMHT�O ¼ min1�r�K pr:

We use a permutation test to evaluate the p-value of TMHT−O. Intuitively, two layers of per-
mutations are needed to estimate pr and the overall p-value for the test statistic TMHT−O. Ge
et al. [26] proposed that one layer of permutation can be used to estimate these p-values. We
use the permutation procedure of Ge et al. to estimate pr and the overall p-value for the test sta-
tistic TMHT−O. In details, we randomly shuffle the genotypes in each permutation. Suppose we

perform B times of permutations. Let T ðbÞ
MHT; r denote the value of TMHT, r based on the bth per-

muted data, where b = 0 represents the original data. Then, we transfer T ðbÞ
MHT; r to p

ðbÞ
r by

pðbÞr ¼ #fd : T ðdÞ
MHT; r > T ðbÞ

MHT; r for d ¼ 0; 1; . . . ;Bg
B

:
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Let pðbÞ ¼ min1�r�K p
ðbÞ
r , then, the p-value of TMHT−O is given by

fb : pðbÞ < pð0Þ for b ¼ 1; 2; . . . ; Bg
B

:

The R code of MHT-O is available at Shuanglin Zhang’s homepage http://www.math.mtu.
edu/~shuzhang/software.html.

Comparisons of Methods
We compare our proposed method with MHT, TATES [11], MANOVA [8], and SUM_SCORE.
TATES combines p-values obtained in a standard univariate GAWS to acquire one trait-based p-
value, while correcting for correlations between components. SUM_SCORE performs an associa-
tion test for each trait individually to obtain the univariate score test statistic for each trait. Then,
the test statistic of SUM_SOCRE is the summation of the univariate score test statistics. We use
asymptotic distributions to evaluate the p-values of SUM_SCORE, TATES andMANOVA.

Simulation
To evaluate the type I error rates and powers of MHT and MHT-O, we generate genotypes
according to minor allele frequency (MAF) and assume Hardy Weinberg equilibrium. Then,
we generate K traits by the factor model [11, 19]

y ¼ lx þ cγf þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
� ε ; ð1Þ

where y = (y1,. . .,yK)
T; x is the genotype score at the variant of interest; λ = (λ1,. . .,λK) is the vec-

tor of effect sizes of the genetic variant on the K traits; f = (f1,. . .,fR)
T*MVN(0, S), S = (1 − ρ)

I + ρA, A is a matrix with elements of 1, I is the identity matrix, and ρ is the correlation between
factors; γ is a K by Rmatrix; c is a constant number; and ε = (ε1,. . ., εK)

T is a vector of residuals,
and ε1,. . ., εK are independent, and εk* N(0, 1) for k = 1,. . ., K.

Based on Eq (1), we consider five models:
Model 1: There is only one factor and genotypes impact on all traits with the same effect

size. That is, R = 1, λ = (β,. . .,β)T, and γ = (1,. . .,1)T.
Model 2: There are five factors and genotypes impact on one factor. That is,

R ¼ 5; l ¼
 
0; . . . ; 0; b; . . . ; b|fflfflfflffl{zfflfflfflffl}

K=5

!T

, and γ = diag(D1,D2,D3, D4, D5), whereDi ¼
 
1; . . . ; 1|fflfflfflffl{zfflfflfflffl}

K=5

!T

for i = 1,. . .,5.
Model 3: There are two factors and genotypes impact on one factor. That is,

R ¼ 2; l ¼
 
0; . . . ; 0; b; . . . ; b|fflfflfflffl{zfflfflfflffl}

K=2

!T

, and γ = diag(D1,D2), where Di ¼
 
1; . . . ; 1|fflfflfflffl{zfflfflfflffl}

K=2

!T

for i = 1, 2.

Model 4: There are five factors and genotypes impact on one trait. That is, R = 5, λ = (0,. . .,0, β)T,

and γ = diag(D1,D2,D3,D4,D5), whereDi ¼
 
1; . . . ; 1|fflfflfflffl{zfflfflfflffl}

K=5

!T

for i = 1,. . .,5.

Model 5: There is only one factor and genotypes impact on one trait. That is, R = 1,
λ = (0,. . .,0, β)T, and γ = (1,. . .,1)T.

To evaluate type I error rates of MHT and MHT-O, we let β = 0. To evaluate powers, we
let β> 0. In the simulation studies for evaluation of type I error rates and powers, we set
MAF = 0.3 and ρ = 0.2.

#
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Results
To evaluate the type I error rates of the two proposed tests (MHT and MHT-O), we consider
20 quantitative traits. We also consider different sample sizes, different significance levels, and
different models. In each simulation scenario, the p-values of MHT and MHT-O are estimated
by 1,000 permutations and the type I error rates of the two tests are evaluated using 10,000 rep-
licated samples. For 10,000 replicated samples, the 95% confidence intervals (CIs) for estimated
type I error rates of nominal levels 0.05 and 0.01 are (0.046, 0.054) and (0.008, 0.012), respec-
tively (see Appendix for details). The estimated type I error rates of the two tests are summa-
rized in Table 1. From this table, we can see that 58 out of 60 (greater than 95%) estimated type
I error rates are within the 95% CIs and the two estimated type I error rates (0.05415 and
0.0126) not within the 95% CIs are very close to the bound of the corresponding 95% CI,
which indicates that the two tests are all valid.

For power comparisons, we consider different values of the effect size, different models, and
different numbers of traits. Sample size is 1,000 for all the cases. In each of the simulation sce-
narios, the p-values of MHT and MHT-O are estimated using 1,000 permutations and the p-
values of SUM_SCORE, TATES and MANOVA are estimated using their asymptotic distribu-
tions. The powers of all of the five tests are evaluated using 500 replicated samples at a signifi-
cance level of 0.05.

Fig 1 gives the power comparisons of the five tests (SUM_SCORE, TATES, MHT, MHT-O
and MANOVA) for the power as a function of the effect size based on the five models for 20
traits. This figure shows that (1) MHT-O is either the most powerful one (genotypes directly
impact on a single trait: models 4–5) or comparable to the most powerful one (genotypes
directly impact on all or a portion of the traits: models 1–3) among the five tests; (2) MHT and

Table 1. The estimated type I error rates of MHT and MHT-O. 10,000 replicates used.

Sample size

500 1000 2000

Model 1 α = 0.05 MHT-O 0.05415 0.0494 0.04875

MHT 0.05235 0.05005 0.0501

α = 0.01 MHT-O 0.01035 0.012 0.0091

MHT 0.00985 0.01195 0.01105

Model 2 α = 0.05 MHT-O 0.0499 0.0515 0.0526

MHT 0.04815 0.05175 0.05285

α = 0.01 MHT-O 0.01045 0.01175 0.01135

MHT 0.0117 0.0118 0.0126

Model 3 α = 0.05 MHT-O 0.05015 0.0517 0.05315

MHT 0.04875 0.0507 0.0529

α = 0.01 MHT-O 0.00995 0.0109 0.012

MHT 0.0104 0.01035 0.012

Model 4 α = 0.05 MHT-O 0.04815 0.0516 0.05255

MHT 0.04875 0.05275 0.0507

α = 0.01 MHT-O 0.00975 0.0118 0.00975

MHT 0.00855 0.012 0.01

Model 5 α = 0.05 MHT-O 0.04865 0.0499 0.04975

MHT 0.05095 0.05195 0.04755

α = 0.01 MHT-O 0.012 0.0119 0.00915

MHT 0.01075 0.01115 0.0096

doi:10.1371/journal.pone.0150975.t001
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MANOVA have very similar powers; (3) MHT and MANOVA are much less powerful than
other methods when genotypes directly impact on only a portion of the traits (models 2–3); (4)
TATES is much less powerful than other methods when genotypes directly impact on all the
traits (model 1); and (5) SUM_SCORE is much less powerful than other methods when geno-
types directly impact on a single trait (models 4–5).

Power comparisons of the five tests for 30 and 40 traits are given in Figs 2 and 3, respec-
tively. The patterns of power comparisons for 30 and 40 traits (Figs 2 and 3) are similar to that
for 20 traits (Fig 1). We also give power comparisons of the five tests using a significance level
of 5×10−8 with 108 permutations and 500 replicates for 20 traits under model 1 (S1 Fig). S1 Fig
shows that the patterns of the power comparisons using significance level 5×10−8 are similar to

Fig 1. Power comparisons of the five tests (SUM_SCORE, TATES, MHT, MHT-O and MANOVA) for the power as a function of the effect size. Sample
size is 1000. Total number of traits is 20.

doi:10.1371/journal.pone.0150975.g001
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that using a significance level of 0.05 in Fig 1 (model 1). In summary, MHT-O is either the
most powerful test or comparable to the most powerful test among all the tests we compared.
Therefore, our MHT-O is a robust test to a variety of models.

Discussion
We propose MHT-O to perform joint analysis of multiple traits in association studies based on
the following reasons: (1) multiple related traits are usually measured in genetic association
studies of complex diseases; (2) there is increasing evidence showing that pleiotropy is a wide-
spread phenomenon in complex diseases; and (3) the power of existing methods decreases in
the presence of non-associated traits. The proposed MHT-O includes a procedure of deleting
traits that have weak or no association with the variant. Therefore, it can be robust to the exis-
tence and the number of non-associated traits. By deleting one trait that has the weakest associ-
ation with the variant in each step, MHT-O can maintain high power in the presence of a large
number of non-associated traits. This feature is essentially important when there exist a large
number of correlated traits but there are no guidelines to select relevant traits. Our results
show that MHT-O has correct type I error rates and is either the most powerful test or compa-
rable to the most powerful test among the five tests we compared. No other methods in the
simulation studies show consistent good performance.

Due to the allelic heterogeneity and the extreme rarity of individual variants in rare variant
association studies, the variant-by-variant methods for common variant association studies
may not be optimal [27]. It has been shown by recent studies that complex diseases are caused
by both common and rare variants [28–34]. Statistical methods including burden tests [27, 35–
38], quadratic tests [39–41], and combined tests [42–44] have been developed for rare variant
association studies with a single trait. Currently, there are limited researches on rare variant
association studies for joint analysis of multiple traits [14, 45]. MHT-O can be extended to rare
variant association studies by extending Eq (1) to include multiple variants. MHT-O can also
be extended to family-based studies by extending Eq (1) to mixed linear model. However, the
performance of MHT-O in rare variant association studies and in family-based association
studies needs further investigation.

The fact that population stratification can seriously confound association results has been
long recognized in association studies based on unrelated individuals [46, 47]. Several methods
to control for population stratification have been developed for association studies based on
unrelated individuals. These methods include principal component (PC) approach [48–52],
genomic control (GC) approach [53–55], and mixed linear model (MLM) approach [29, 56].
Like most association tests based on unrelated individuals, MHT-O subjects to bias due to pop-
ulation stratification. To make MHT-O robust to population stratification, we can use the PC
approach. Let Pi = (pi1,. . .,piL)

T denote the first L PCs of the genotypes at a set of genomic
markers for the ith individual. Let y�ik and x

�
i denote the residuals of the regressions yik ¼

a0k þ aTk Pi þ εik and the residuals of the regression xi = α0 + αTPi + εi, respectively. Using y�ik
and x�i to replace yik and xi, we can make MHT-O robust to population stratification. However,
the performance of using the PC approach to control for population stratification in MHT-O
needs further investigations.

Appendix
Let p denote the p-value of the test and denote a random variable

x ¼ 1; p � a

0; p > a
;

(
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where α is the significance level. Then, Pr(ξ = 1) = α and Pr(ξ = 0) = 1 − α because p follows a uni-
form distribution between 0 and 1 under the null hypothesis. Suppose there are R replicates. Let ξi
denote the value of ξ for the ith replicate, where i = 1,. . .,R Then, the estimated type I error rate is

given by �x ¼ 1
R

XR

i¼1
xi that asymptotically follows a normal distributionN a; að1�aÞ

R

� �
. Thus,

Pr

����� �x�affiffiffiffiffiffiffiffiffiffiffiffi
að1�aÞ=R

p
����� � 1:96

 !
¼ Prða� 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ=Rp � �x � aþ 1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ=Rp Þ ¼ 0:95.

We define ða� 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ=Rp

; aþ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
að1� aÞ=Rp Þ as the 95% confidence interval

for the estimated type I error rate for the nominal level α.

Fig 2. Power comparisons of the five tests (SUM_ SCORE, TATES, MHT, MHT-O and MANOVA) for the power as a function of the effect size.
Sample size is 1000. Total number of traits is 30.

doi:10.1371/journal.pone.0150975.g002
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Supporting Information
S1 Fig. Power comparisons of the five tests (SUM_SCORE, TATES, MHT, MHT-O and
MANOVA) for the power as a function of the effect size (model 1). Sample size is 1000.
Total number of traits is 20. The significance level is 5×10−8. The number of replicates is 500.
The number of permutations is 108.
(EPS)

Fig 3. Power comparisons of the five tests (SUM_SCORE, TATES, MHT, MHT-O and MANOVA) for the power as a function of the effect size. Sample
size is 1000. Total number of traits is 40.

doi:10.1371/journal.pone.0150975.g003
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