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Abstract

Ship collision accidents are the primary threat to traffic safety in the sea. Collision accidents

can cause casualties and environmental pollution. The collision risk is a major indicator for

navigators and surveillance operators to judge the collision danger between meeting ships.

The number of collision accidents per unit time in a certain water area can be considered to

describe the regional collision risk However, historical ship collision accidents have contin-

gencies, small sample sizes and weak regularities; hence, ship collision conflicts can be used

as a substitute for ship collision accidents in characterizing the maritime traffic safety situation

and have become an important part of methods that quantitatively study the traffic safety

problem and its countermeasures. In this work, an EMD-QPSO-LSSVM approach, which is a

hybrid of empirical mode decomposition (EMD) and quantum-behaved particle swarm optimi-

zation (QPSO) optimized least squares support vector machine (LSSVM) model, is proposed

to forecast ship collision conflicts. First, original ship collision conflict time series are decom-

posed into a collection of intrinsic mode functions (IMFs) and a residue with EMD. Second,

both the IMF components and residue are applied to establish the corresponding LSSVM

models, where the key parameters of the LSSVM are optimized by QPSO algorithm. Then,

each subseries is predicted with the corresponding LSSVM. Finally, the prediction values of

the original ship collision conflict datasets are calculated by the sum of the forecasting values

of each subseries. The prediction results of the proposed method is compared with GM,

Lasso regression method, EMD-ENN, and the predicted results indicate that the proposed

method is efficient and can be used for the ship collision conflict prediction.

1. Introduction

The global shipping industry is witnessing a boom as economic globalization gains speed and

the world economic integration trend intensifies in recent decades. According to the Review

of Maritime Transport 2019, about 90 percent of global trade in terms of the weight of goods is

undertaken by shipping, there is no doubt that shipping plays an irreplaceable role in the

global economy [1]. However, shipping has long been regarded as a complex and high-risk

activity, and maritime accidents often lead to serious damage, death, loss, injury or pollution,

and may also have significant political, economic and environmental consequences [2]. The
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greater the role that shipping plays in international trade, the greater the impact on the world

economy from the loss arising from maritime accidents. There are various international safety

regulations to regulate the operation of ships and prevention of accidents, such as SOLAS 74/

78/88 (International Convention for the Safety of Life at Sea), MARPOL 73/78 (Marine Pollu-

tion), STCW 78 (Standards of Training, Certification and Watch keeping for Seafarers) and

COLREG 72 (International Regulations for Preventing Collisions at Sea), but the complex and

high-risk environment at sea make it difficult to eliminate ship accidents [3]. Therefore, stud-

ies on maritime accidents will be helpful in guiding the management of maritime traffic safety

and consequently reduce life and property loss [4].

The Taiwan Strait is a large channel between northern and southern China and is an impor-

tant maritime passage connecting the Korean Peninsula, Japan, Southeast Asian countries,

Hong Kong and Macao. With the steady increase in cargo throughput in Chinese ports, the

number of ships sailing along the coast of China has also gradually increased. Taking the Taiwan

Strait as an example, the number of 300 GT and above merchant ships passing through the Tai-

wan Strait every day during the three years from 2015 to 2017 is as high as 483 [5]. The increase

in ship density and flow will inevitably lead to an increase in maritime traffic accident probabil-

ity, among which ship collision accidents rank first among all kinds of accidents. The collision

risk is a major indicator for navigators and surveillance operators to judge the collision danger

between meeting ships [6], as well as the surveillance on shore plays an important role in pre-

venting ship collision accidents [7]. Based on the historical statistical data, the number of colli-

sion accidents per unit time in a certain water area was considered to describe the regional

collision risk by researchers, for example, the Formal Safety Assessment concept and Bayesian

network method were used to evaluate the collision risk of ships in Yangtze River waters in

China with real accident data [8]. Since historical ship collision accidents have the features of

strong contingencies, small sample sizes and weak regularity, in general it is difficult to extract

valuable information from historical data. So ship collision conflicts can be used as a substitute

for ship collision accidents in characterizing the maritime traffic safety situation and have

become an important part of methods that quantitatively study the traffic safety problem and its

countermeasures. Therefore, it is of practical significance to carry out research on the analysis of

collision conflicts and the prediction of future situations with the purpose of providing data sup-

port for early warning and future implementation of the maritime security strategy in China [9].

With the development of time series analysis, artificial intelligence, fuzzy logic, chaos the-

ory, artificial neural network and statistical learning theory, a large number of methods have

been proposed for maritime traffic accident prediction [10–15]. The performance of some

classic time series prediction models fail to satisfy expectations due to the ship motion process

complexity with nonlinearity and uncertainty in harsh climates [16]. Support vector machine

(SVM), a novel type of machine learning algorithm, has a strong capacity for processing non-

linear data. Based on SVM, the support vector regression model (SVR model) is an effective

method in solving regression problems [17]. Compared to the neural network model, the SVR

model needs less training data. Even though SVR is an effective prediction method, non-sta-

tionary time series have a great impact on its prediction accuracy [18]. As a new type of SVM,

the LSSVM greatly improves the convergence speed by solving the function estimation prob-

lem with the quadratic programming method [19], and it can be used for ship collision predic-

tion research [20]. However, due to the intrinsic complexity of ship collision conflicts, it is

difficult to describe the variation trend in ship collision conflicts. In order to construct a suit-

able prediction model, the original dataset features of ship accidents need to be considered.

Since a ship accident depends on the climate, which has specific cycles such as year, month,

and week, the ship collision conflict time series can be considered as a combination of subse-

ries characterized by different frequencies. Each subseries corresponds to a range of
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frequencies, shows much more regularities and is predicted more accurately than the original

ship collision conflict series. EMD, proposed by Huang [21], exhibits a strong generality in

dealing with non-stationary data. This method can reflect the physical characteristics of the

original time series signal without pre-set basis function. As a special signal processing tech-

nique, EMD can decompose a complex signal into a collection of IMFs and a residue, which

are relatively stationary subseries and can be readily modelled [22, 23]. Discrete wavelet trans-

form (DWT) is also a powerful method in dealing with non-stationary and nonlinear signals

[24, 25]. But the processing procedure of DWT is not autoregressive and the decomposition

accuracy is affected by the band-pass filters which are chose to decompose target signals.

Wavelet basics function and decomposed layer also affect the decomposition results. There-

fore, the decomposition accuracy of DWT is relatively lower than EMD, and EMD is used in

the decomposition of ship collision conflict time series.

According to the above comprehensive analysis, in this work, an EMD-QPSO-LSSVM

approach, which is a hybrid of empirical mode decomposition and quantum-behaved particle

swarm optimization optimized least squares support vector machine model, is proposed to

forecast ship collision conflicts. In the approach, the original ship collision conflict time series

are decomposed into a collection of IMFs and a residue with EMD. Then, both the IMF com-

ponents and the residue are used to establish the corresponding LSSVM models, where the key

parameters of each LSSVM models are optimized by quantum- behaved PSO algorithm.

Finally, the prediction values of the original ship collision conflict datasets are calculated by

summing the forecasting values of every subseries. The effectiveness of the proposed model is

verified using the real data from ship collision conflicts in the Taiwan Strait in 2014. The pre-

diction results can, to some extent, provide a theoretical basis for the maritime department to

develop an effective maritime management countermeasure and will be helpful in guiding the

management of maritime traffic safety.

2. Objectives and contributions

Maritime transport plays an extremely important role in international trade and makes great

contributions to national economic development. Shipping has long been regarded as a com-

plex and high-risk activity, and maritime accidents often lead to serious damage, death, loss,

injury or pollution, and may also have significant political, economic and environmental con-

sequences. The collision risk is a major indicator for navigators and surveillance operators to

judge the collision danger between meeting ships. In order to measure the collision risk, ship

collision conflicts are used as an important index for measuring maritime traffic safety and

maritime management. The objective of this study is to propose an efficient method to predict

the future state by analysing the historical data of ship collision conflicts in the Taiwan Strait.

The contribution of the work is the reference value for the administrative department in devel-

oping a maritime management countermeasure to reduce ship collision accidents.

3. Methodology

A hybrid of empirical mode decomposition and a least squares support vector machine model,

named EMD-QPSO-LSSVM method, is proposed to forecast ship collision conflicts. The flow-

chart is shown in Fig 1. In the approach, the original ship collision conflict time series are

decomposed into a collection of IMFs and a residue by EMD. Then, both the IMF components

and the residue are used to establish the corresponding LSSVM models, where the key parame-

ters of each LSSVM models are optimized by quantum-behaved particle swarm optimization

algorithm. Finally, the prediction values of the original ship collision conflict datasets are cal-

culated by summing the forecasting values of every subseries.
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3.1 Empirical mode decomposition

Empirical mode decomposition method was first proposed by Huang [21]. In the prediction of

non-stationary time series, EMD processing is very beneficial. This method can reflect the

physical characteristics of the original time series signal without setting the basis function

beforehand. The basic idea of empirical mode decomposition is that any set of signals consists

of a limited number of intrinsic mode functions. According to the time scale characteristics of

Fig 1. The flowchart of the EMD-QPSO-LSSVM method.

https://doi.org/10.1371/journal.pone.0250948.g001
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the data itself, the time series are decomposed step by step to extract IMF with different charac-

teristic scales. Each IMF represents an intrinsic characteristic vibration form of the signal. The

IMF needs to satisfy the following two basic conditions: i) The number of extrema and the

number of zero-crossings should be equal or differ by one; ii) The average value of the upper

envelope formed by the local maxima and the lower envelope formed by the local minima

point should be zero.

Given an original ship collision conflict time series x(t), the EMD calculation can be

described as follows:

xðtÞ ¼
Xn

k¼1

imfkðtÞþresðtÞ; ð1Þ

where imfk is the kth IMF and res(t) is the residue after the IMFs are derived. The empirical

mode decomposition steps are as following:

Step 1. Find all the maximum and minimum points of original data sequence x(t), and fit all

the maximum points with a cubic spline function. This curve is the upper envelope of data.

All minimum points, similarly, are fitted with a cubic spline function to fit the lower enve-

lope of data. Let m1(t) be the mean of the upper and the lower envelopes. By subtracting the

mean value m1(t) from x(t), a new data sequence h1(t) is achieved.

h1ðtÞ ¼ xðtÞ� m1ðtÞ: ð2Þ

If h1(t) does not satisfy the two basic requirements of IMF, the work above should be

repeated with h1(t) as the original data until hk(t) meets the two requirements after k times. At

this time hk(t) is imf1(t).

Step 2. A new data sequence x2(t) is achieved by subtracting IMF1(t) from the original data x(t).

x2ðtÞ ¼ xðtÞ� imf1ðtÞ: ð3Þ

Step 3. Repeat the above steps n times until the last data sequence xn+1(t) cannot be decom-

posed into IMF. This data sequence xn+1(t) is named the residue res(t) of the original data.

3.2 Quantum-behaved PSO-LSSVM

Least-squares-SVM is a very active artificial intelligence method and is widely applied in model-

ling and control problems [19, 26]. To optimize the LSSVM parameters, different algorithms were

used in literature [20, 27–31]. Quantum-behaved particle swarm optimization algorithm is a kind

of intelligent optimization algorithm developed on particle swarm optimization, and can be used

to solve the nonlinear and complex optimization problems with the features of less control param-

eters, easily to set up, strong search capability and good global search ability [32, 33].

In this work, a modified QPSO algorithm is adopted [20], where the swarm updates the

individuals’ positions in the following way:

mbest½t� ¼
1

N

XN

i¼1

pbesti½t� ¼
1

N

XN

i¼1

pbesti1½t�; � � � ;
1

N

XN

i¼1

pbestiD½t�

 !

;

p½t þ 1� ¼ φ½t� � pbest½t� þ ð1 � φ½t�Þ � gbest½t�;

x½t þ 1� ¼ p½t� � b½t� � jmbest½t� � x½t�jlnð2u½t�Þ;

ð4Þ

where φ[t],u[t] are random numbers in [0,1] at step t, N is the size of the swarm, D is the
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dimension of the particles, gbest(t) is the entire swarm’s best known position, pbesti[t] is the ith
particle’s best known position, and p[t] is called a local attractor.

The inertia weight β[t] takes the following form

b½t� ¼ b0 � b1w½t� þ b2l½t�; ð5Þ

where χ[1] = λ[1] = 0 and

w½t�≜
FITðgbest½t�Þ

FITðgbest½t � 1�Þ
; l½t�≜

FITðgbest½t � 1�Þ

1

N

XN

i¼1

FITðpbest i½t � 1�Þ

; 2 � t � tmax;

and β0,β1,β2 satisfy the constraints β1<β0 and β0+β2<1.78 as it was proved in [33] that as long

as β[t]<1.78, the convergence of QPSO can be guaranteed.

For given a dataset S ¼ fðxi; yiÞg
N
i¼1

, where xi 2 R
m is input data in input space and yi 2 R

is output value for given value of specific input variable, the LSSVM-based prediction model

for the nonlinear function is

yðxÞ ¼
XN

l¼1

al � Kernalðx; xlÞ þ b: ð6Þ

The parameters α = [α1,α2,� � �,αN]T and b can be determined by

b

α

" #

¼
0 LT

L Fþ G� 1

" #� 1
0

Y

" #

; ð7Þ

where Y = [y1,y2,� � �,yN]T, L = [1,1,� � �,1]T, F = (Fij)N×N with general element Fij = φ(xi)
Tφ(xj)

= Kernal(xi,xj) and Γ = (Γij)N×N with general element

Gij ¼
gi≜g0exp

i
N
r

� �

; j ¼ i;

0; j 6¼ i:

8
><

>:
ð8Þ

The kernel function Kernal(�) is chosen as the RBF kernel function, and the parameters γ0,ρ
and σ2 are determined by QPSO algorithm. The flow chart of parameters adjustment QPSO-

based is depicted in Fig 2. The optimization procedure has been repeated several times as

attempts to reach the most probable global optimum of the fitness function.

4. Numerical simulations

4.1 Error measures

To assess the performance of the prediction models, three error measures are used for model

comparison, i.e., the mean absolute error (MAE), the mean relative error (MRE), the mean
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Fig 2. Flow chart of the parameters of the LSSVM model optimization by QPSO algorithm.

https://doi.org/10.1371/journal.pone.0250948.g002
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square error (MSE) and the mean absolute percentage error (MAPE).

eMAE ¼
1

NPred

XNpred

j¼1

zPðjÞ � zðjÞ
�
�

�
�

eMAPE ¼
1

NPred

XNpred

j¼1

zPðjÞ � zðjÞ
zðjÞ

�
�
�
�

�
�
�
�

eMSE ¼
1

NPred

XNPred

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðzpðjÞ � zðjÞÞ2
q

eMAPE ¼
1

NPred

XNPred

i¼1

zpðjÞ � zðjÞ
zðjÞ

�
�
�
�

�
�
�
�

ð9Þ

where NPred is the prediction sample size and z(j) and zp(j) are the actual and forecast values

during a time period, respectively.

4.2 Ship collision conflict datasets

To verify the validity of the proposed hybrid approach, ship collision conflict data from the

Taiwan Strait are employed. The data consist of actual daily ship collision conflicts from 1999

to 2014 [34], and the verification is processed on the data in 2014, as presented in Table 1.

4.3 Data processing

The data processing follows the following steps:

Step 1: EMD of the ship collision conflict time series

Due to the intrinsic complexity of the original ship accident time series, the variation ten-

dency is difficult to predict. To improve the prediction accuracy, EMD is used to decompose

the original ship collision conflict time series z = (z1,z2,� � �,zT) with T = 365, which yields seven

IMF components imfk = (zk1,zk2,� � �,zkT)(k = 1,2,� � �,7) and a residue res = (r1,r2,� � �,rT), as illus-

trated in Fig 3.

Step 2: Data normalization

For the sake of expression, denote imfk by zk (k = 1,2,� � �,6) and res by z7 = {z71,z72,� � �,z7T}.

Then normalize the sequence zk ¼ fzk1; zk2; � � � ; zkTg
7

k¼1
by Min–Max Normalization method

[35] in the following form:

�zki ¼
zki � zkmin

zkmax � zkmin
; i ¼ 1; 2; � � � ;T; k ¼ 1; � � � ; 7:

Step 3: Data phase space reconstruction

To sufficiently extract the useful information from time series �zk ¼ ð�zk1; �zk2; � � � ; �zkTÞ, the

commonly used method is the phase space reconstruction (PSR) method in delay coordinates

proposed by Packard et al. [36]. Theoretically speaking, a time series can sufficiently recon-

struct an original dynamic system according to Takens [37]. From this procedure, time series

�zk ¼ ð�zk1; �zk2; � � � ; �zkTÞ can be reconstructed in a multidimensional phase space as follows:

xki ¼ ð�zki; �zkðiþtÞ; � � � ; �zkðiþðm� 1ÞtÞÞ; yki ¼ �zkðiþmtÞ; i ¼ 1; � � � ;T � mt; k ¼ 1; � � � ; 7 ð10Þ
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Table 1. Ship collision conflicts in the Taiwan Strait in 2014.

No. Count No. Count No. Count No. Count No. Count No. Count No. Count

1 198 54 149 107 241 160 193 213 250 266 240 319 211

2 211 55 139 108 151 161 201 214 169 267 303 320 323

3 246 56 156 109 199 162 193 215 158 268 291 321 241

4 182 57 117 110 220 163 195 216 157 269 262 322 301

5 217 58 115 111 219 164 196 217 226 270 283 323 423

6 206 59 131 112 222 165 198 218 266 271 343 324 376

7 255 60 134 113 172 166 160 219 429 272 271 325 377

8 201 61 177 114 261 167 370 220 386 273 217 326 288

9 233 62 195 115 268 168 212 221 300 274 304 327 286

10 275 63 186 116 270 169 250 222 261 275 276 328 321

11 224 64 108 117 219 170 282 223 394 276 223 329 301

12 222 65 139 118 149 171 238 224 265 277 320 330 302

13 170 66 176 119 168 172 175 225 200 278 201 331 264

14 188 67 186 120 180 173 202 226 193 279 142 332 284

15 258 68 162 121 290 174 248 227 297 280 296 333 264

16 217 69 149 122 246 175 225 228 253 281 295 334 275

17 229 70 163 123 260 176 162 229 230 282 303 335 346

18 185 71 130 124 180 177 227 230 252 283 181 336 250

19 231 72 131 125 176 178 196 231 294 284 384 337 275

20 211 73 149 126 308 179 178 232 221 285 401 338 264

21 152 74 131 127 242 180 152 233 293 286 196 339 249

22 201 75 154 128 285 181 210 234 269 287 301 340 291

23 187 76 135 129 184 182 223 235 271 288 200 341 260

24 163 77 130 130 185 183 225 236 194 289 244 342 320

25 151 78 128 131 181 184 223 237 262 290 317 343 319

26 128 79 146 132 210 185 233 238 299 291 250 344 332

27 163 80 117 133 138 186 240 239 254 292 304 345 276

28 140 81 180 134 143 187 276 240 230 293 266 346 267

29 167 82 191 135 218 188 185 241 261 294 302 347 295

30 159 83 177 136 201 189 228 242 324 295 223 348 278

31 178 84 158 137 111 190 147 243 223 296 260 349 290

32 102 85 140 138 174 191 170 244 215 297 226 350 248

33 128 86 122 139 196 192 283 245 297 298 269 351 309

34 127 87 152 140 175 193 276 246 300 299 268 352 294

35 110 88 131 141 178 194 210 247 264 300 179 353 254

36 135 89 136 142 220 195 233 248 277 301 282 354 230

37 121 90 120 143 143 196 240 249 270 302 222 355 320

38 102 91 128 144 174 197 227 250 267 303 265 356 314

39 111 92 176 145 161 198 163 251 240 304 203 357 348

40 100 93 169 146 156 199 207 252 383 305 299 358 294

41 105 94 241 147 229 200 231 253 302 306 201 359 290

42 101 95 253 148 178 201 292 254 277 307 287 360 298

43 103 96 176 149 186 202 191 255 188 308 444 361 278

44 100 97 255 150 171 203 151 256 230 309 392 362 245

45 100 98 158 151 180 204 130 257 180 310 318 363 257

46 150 99 187 152 201 205 133 258 139 311 242 364 210

47 140 100 212 153 171 206 274 259 282 312 274 365 186

(Continued)
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where τ is the delay parameter and m is the embedding dimension. It is very important to

select a suitable pair of embedding dimensions m and time delay τ when performing PSR [38–

40]. There is no exact way to determine the values of τ and m, the result in [41] indicates that a

larger value for τ than necessary should be selected to prevent system information from being

ignored. Besides, according to the result in Brock et al [42], the appropriate values for embed-

ded dimension m should be between 2 and 5. In the following simulations, the embedded

dimension m is set equal to 4 and the time delay is assumed to be day to day.

4.4 Prediction by QPSO-LSSVM and representation

The data pair fðxki; ykiÞg
T1

i¼1
obtained in Eq (10) is used to train the QPSO-LSSVM and obtain

an optimal parameter pair ðgk0; %k; s
2
kÞ, where T1 is the number of sample data in the training

set. Then, the trained LSSVM is used to make a prediction

�ykj ¼ LSSVMðxkjÞ; j ¼ T1 þ 1; � � � ;T � mt: ð11Þ

The final step is to carry out the reverse normalization on

�zk ¼ ð�zk1; �zk2; � � � ; �zkT1
; �ykðT1þ1Þ; � � � ; �ykðT� mtÞÞ;

which yields the sequence z0k ¼ ðz
0
k1
; z0k2

; � � � ; z0kTÞ and the prediction result is

zpj ¼
X7

k¼1

z0kj; j ¼ T1 þ 1; � � � ;T: ð12Þ

Table 1. (Continued)

No. Count No. Count No. Count No. Count No. Count No. Count No. Count

48 127 101 203 154 192 207 287 260 256 313 291

49 121 102 210 155 196 208 258 261 349 314 359

50 152 103 115 156 150 209 294 262 193 315 352

51 138 104 207 157 250 210 231 263 250 316 234

52 133 105 227 158 229 211 207 264 190 317 239

53 131 106 300 159 208 212 198 265 259 318 243

https://doi.org/10.1371/journal.pone.0250948.t001

Fig 3. Schematic diagram of the EMD components.

https://doi.org/10.1371/journal.pone.0250948.g003
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4.5 Analysis of prediction results

To evaluate the prediction accuracy, the dataset is partitioned into a training dataset (90%)

and a validation dataset (10%). The training dataset can be applied to establish the prediction

model, and the validation dataset can be applied to validate the effectiveness of the model.

Grey model is easily set up, and the prediction result is presented in Fig 4. It can be

observed that the prediction of GM is unsatisfied, and most of predictions are higher than the

actual data. When LSSVM with key parameters γ0 = 10,ρ= 0,σ = 2 is applied, the prediction

results for training dataset and testing dataset are shown in Fig 4. It is obvious that the perfor-

mance of the LSSVM is better than that of the GM. The maximum error is about 24% and the

mean square error is about 5, it is still not suitable for real applications.

In order to improve the prediction accuracy, QPSO algorithm is applied to search an opti-

mal key parameters (γ0,%,σ2). Here, the K-fold cross-validation is adopted to prevent the over-

fitting issue, and the training dataset is divided randomly into 9 folds, one of which was

selected as the validation set each time for model selection, and the rest was used for model

training. Table 2 illustrates the performance of LSSVM with 9-fold cross-validation.

Besides, due to the intrinsic complexity of ship collision, the regularity of the conflict time

series is unobvious, and the prediction results directly from the original dataset is unsatisfied.

Since a ship accident depends on the climate, which has specific cycles such as year, month,

and week, the ship collision conflict time series can be considered as a combination of subse-

ries characterized by different frequencies. Each subseries corresponds to a range of frequen-

cies, shows much more regularities and is predicted more accurately than the original ship

collision conflict series. The IMF components and residue by EMD is shown in Fig 3. The reg-

ularity of the latter five IMFs and residue is obviously stronger than the first two IMFs. By

establishing different LSSVMs to the IMF components and residue, it can obtain a satisfied

prediction results. The parameters of each LSSVM can be achieved by the flow chart of Fig 2.

Fig 4. The prediction results of the GM and LSSVM for the ship collision conflicts dataset.

https://doi.org/10.1371/journal.pone.0250948.g004

Table 2. The result of 9-fold cross-validation.

Models MSE on fold k MSE on validation dataset

LSSVM1 4.68 4.62

LSSVM2 4.79

LSSVM3 4.46

LSSVM4 4.32

LSSVM5 4.58

LSSVM6 4.63

LSSVM7 4.72

LSSVM8 4.83

LSSVM9 4.57

https://doi.org/10.1371/journal.pone.0250948.t002
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The prediction of the quantum-behaved PSO-LSSVM for each IMF component and residue

are shown in Fig 5.

The final prediction of the original ship collision conflict numbers are calculated by the

sum of the prediction of each subseries, as shown in Fig 6. It can be seen that the prediction

accuracy has been greatly improved. This indicates that the proposed method can be used for

the prediction of ship collision conflicts as a substitute for ship collision accidents in character-

izing the maritime traffic safety situation.

To evaluate the performance of the proposed method, the statistical test is carried out on

the real data and the prediction result of EMD-QPSO-LSSVM, as shown in Table 3. The sig. is

0.212, which is greater than 0.05. Thus, the proposed method is suitable in predicting the ship

collision conflict numbers.

To verify the efficiency of the proposed method, it is compared with GM, Lasso Regression,

Bayes Regression, LSSVR and EMD-ENN. The comparison results is shown in Fig 7 and

Table 4, where ENN contains 15 neurons. It can be seen that the performance of EMD-QP-

SO-LSSVM is better than other methods. But it should also be pointed that EMD-ENN is also

a suitable method for ship collision conflicts predication.

Since there is no exact way to determine the choice of the embedded dimension, according

to Brock et al [38], different simulations are carried out to show the influence of embedded

dimension m, as shown in Table 5. For the ship collision conflicts, the embedded dimension

can be set equal to 4 or 5 when the time delay is one.

Fig 5. The prediction of the LSSVM for each IMF component.

https://doi.org/10.1371/journal.pone.0250948.g005

Fig 6. The final prediction of the EMD-LSSVM for the original ship collision conflict numbers.

https://doi.org/10.1371/journal.pone.0250948.g006
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5 Conclusion

The Taiwan Strait is a large channel between northern and southern China and is an important

maritime passage connecting the Korean Peninsula, Japan, Southeast Asian countries, Hong

Kong and Macao. The ship traffic flow is large, the navigation risk is high, and the daily

Table 3. Statistical analysis on the performance of the proposed method.

Paired Samples Test

95% Confidence Interval of

the Difference

Mean Std. Deviation Std. Error Mean Low Upper t df Sig. (2-tailed)

Real-Prediction -1.512 23.128 1.211 -3.893 0.868 -1.249 364 0.212

https://doi.org/10.1371/journal.pone.0250948.t003

Fig 7. Comparison between EMD-QPSO -LSSVM and EMD-ENN for the original ship collision conflict numbers.

https://doi.org/10.1371/journal.pone.0250948.g007

Table 4. Comparison between different methods.

error

method

eMAE eMAPE eMSE eMSPE eMax

GM(1,1) 39.8732 19.9898 8.3172 131.6 74.642

Lasso Regression 31.0324 11.7076 6.4043 91.9915 48.8811

Bayes Regression 30.5444 11.4899 6.346 90.4829 47.9449

LSSVR 24.0912 8.6409 5.1562 66.2941 26.794

EMD-ENN 13.6143 5.0842 2.8862 39.1503 13.7046

EMD-QPSO-LSSVM 12.2919 4.6141 2.4832 34.1591 11.5604

https://doi.org/10.1371/journal.pone.0250948.t004

Table 5. Influence of the embedded dimension on the error measures.

error

m

eMAE eMAPE eMSE eMSPE eMax

3 16.7773 6.1433 3.5215 46.1189 15.6572

4 12.2919 4.6141 2.4832 34.1591 11.5604

5 12.5429 4.7489 2.4701 34.521 11.7386

https://doi.org/10.1371/journal.pone.0250948.t005
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average number of ship collision conflicts is approximately 220. The number of collision acci-

dents per unit time in a certain water area can be used to describe the regional collision risk,

which is the main index for evaluating maritime traffic safety and measuring maritime man-

agement. It is of great significance for maritime administrative authorities to formulate strate-

gies to reduce ship collision accidents by predicting the occurrence of ship collision conflicts

in the Taiwan Strait in a short period of time through historical collision conflicts. By consider-

ing the advantages of the empirical mode decomposition method, quantum-behaved PSO

optimized least squares support vector machine, a hybrid of EMD and QPSO-LSSVM model,

is proposed to forecast the ship collision conflicts. The original ship collision conflict time

series are first decomposed into a collection of IMFs and a residue by EMD method. And then,

both the IMF components and residue are applied to establish the corresponding LSSVM

models, where the key parameters of the LSSVM are optimized by quantum-behaved PSO

algorithm. Each subseries is predicted using the corresponding LSSVM. Finally, the prediction

values of the original ship collision conflict datasets are calculated by the sum of the forecasting

values of every subseries. The prediction results show that the EMD-QPSO-LSSVM is an effi-

cient method and can be used in the forecasting of ship accidents.
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