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Abstract
Magnetic nanoparticles can be used for numerous in vitro and in vivo applications. How-

ever, since uptake by the reticuloendothelial system represents an obstacle for the achieve-

ment of nanoparticle diagnostic and therapeutic goals, the aim of the present study was to

evaluate the uptake of dimercaptosuccinic acid coated magnetic nanoparticles by reticulo-

endothelial system phagocytic cells present in lymph nodes, spleen, and liver tissue and

how the presence of these particles could have an impact on the morphology of these

organs in capuchin monkeys (Sapajus spp.). Animals were intravenously injected with

dimercaptosuccinic acid coated magnetic nanoparticles and euthanized 12 hours and 90

days post-injection. Organs were processed by transmission electron microscopy and histo-

logical techniques. Samples of spleen and lymph nodes showed no morphological

changes. Nevertheless, liver samples collected 90 days post-administration showed slight

morphological alteration in space of Disse. Moreover, morphometrical analysis of hepatic

mitochondria was performed, suggesting a clear positive correlation between mitochondrial

area and dimercaptosuccinic acid coated magnetic nanoparticles administration time. The

present results are directly relevant to current safety considerations in clinical diagnostic

and therapeutic uses of magnetic nanoparticles.
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Introduction
Magnetic nanoparticles (MNPs) can be used for numerous in vitro and in vivo applications,
such as targeted drug delivery [1–4], magnetic resonance imaging (MRI) [5–7], cell sorting [8,
9], and hyperthermia [10–12]. All of these biomedical applications require that the nanoparti-
cles present high magnetization values, a narrow particle size distribution, and proper surface
coating, which must be non-toxic and biocompatible and also allow for a targetable delivery
[13]. Although various physical and chemical properties may influence the pharmacokinetics
and cellular distribution of MNPs, proteins adsorbed on the surface of the nanoparticle pro-
mote its opsonization, leading to aggregation and rapid clearance from the bloodstream [14,
15]. The resultant uptake is due to phagocytosis by the reticuloendothelial system (RES) of the
liver, spleen, lymph nodes, and bone marrow [16–19]. Typically, the majority of opsonized par-
ticles are cleared in a few minutes by a receptor-mediated mechanism or they are excreted [14].
Thus, the uptake of nanoparticles (NPs) by the RES represents a considerable obstacle for the
achievement of MNP diagnostic and therapeutic goals [15].

Previous studies have shown biocompatibility and non-toxicity of magnetic fluids (MF)
containing maghemite (gamma-Fe2O3) core magnetic nanoparticles coated with DMSA
(meso-2,3-dimercaptosuccinic acid) (DMSA-MNPs) in vitro [20–23] and in vivo [24–27].
DMSA was chosen as coating agent due to several reasons: 1) acts as a heavy metal chelant
forming strong complexes with the surface layer of the nanoparticles [28, 29]; 2) easy elimina-
tion by the urinary system [30]; and 3) its free –SH chemical group is able to bound to several
biomolecules, increasing MNP and cell interaction [31]. In addition, DMSA is proven to be a
smaller complex when compared with dextran, facilitating its stability in vivo, its diffusion, and
circulatory processes, decreasing chances of being uptaken by RES phagocytic cells [32].

Considering the potential future use of maghemite core DMSA-MNPs for biomedical appli-
cations in humans, a nonhuman primate experimental model was selected to carry out this
study. As stated by Monge-Fuentes and collaborators [27], nonhuman primates are relevant
preclinical models for human diseases and transplants as they offer an excellent intermediate
screen due to their high level of genetic homology, which underlies physiological, biochemical,
and anatomic similarities with humans in comparison with any other animal model. However,
the drawback related to the use of nonhuman primates as an experimental model is the fact
that it is generally associated with a small number of experimental individuals, since we are
dealing with a noble animal of difficult and controlled access.

The aim of the present study was to better understand the interaction of maghemite core
DMSA-MNPs with the RES phagocytic cells present in the lymph nodes, spleen, and liver tis-
sue of a capuchin monkey experimental model. Also, in view of the accumulation of iron oxide
MNPs in these organs, possible morphological alterations were investigated. Methodology
used permitted us to achieve the proposed objectives of this work.

Material and Methods

Preparation of magnetic nanoparticles
MF containing maghemite (gamma-Fe2O3) core nanoparticles surface coated with DMSA
were utilized. Nanoparticles were synthesized by mixing ferric and ferrous chloride aqueous
solutions (2:1 molar ratio) with concentrated ammonia aqueous solution under vigorous stir-
ring. Five mL of DMSA aqueous solution (0.3 M) were added to 25 mL of magnetic suspension
in a molar ratio DMSA/Fe = 0.11. NaCl was added to the suspension to reach final salinity con-
centration of 0.9% w/v. The pH was adjusted to 7.2.
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Ethics statement
All procedures involving animals were conducted according to guidelines from the Brazilian
Society of Animal Experimentation (COBEA) and the Principles of Laboratory Animal Care
(NIH publication no. 85–23, revised 1996). The authors state that animal care, housing, experi-
mental procedures, and the present study described here were all approved by the Animal Eth-
ics Committee from the Institute of Biology, University of Brasília. All experiments were
conducted at the University of Brasília Primate Research Center, Brazil, a facility authorized by
the Brazilian Institute for the Environment and Natural Resources (IBAMA) (protocol IBAMA
1/53/1999/000006-2). Animals were also pair-housed at the Primate Research Center in cages
with natural substrate, with rope swings and nest boxes, measuring 3 x 3 x 1.8 m, under natural
conditions of light and temperature. Animals were given access to food and water ad libitum.
New supply of food (fruits, fibers, vegetables, worms, and chow) was offered twice daily, in the
early morning and at the end of the afternoon, and water was offered by automatic drinking
fountains. Animals were fasted overnight before euthanasia. Animals constantly participated in
environmental enrichment tasks, as is customarily done in our Primate Research Center.

During the experimental period, animals were observed daily for any behavioral changes or
illnesses. Procedures involving magnetic fluid and saline administration, anesthesia, and eutha-
nasia were properly performed by certified veterinarians from the University of Brasília Veteri-
nary Hospital and all efforts were made to avoid animal suffering.

Study design and experimental animals
A total of three healthy juvenile capuchin monkeys (Sapajus spp), ranging from 16 to 18
months of age, were randomly allocated as subjects for histopathological and ultrastructure
analysis (control with n = 1 and each experimental condition with n = 1). A control animal was
euthanized 12 h after saline injection and two other experimental animals (EA) were intrave-
nously injected with DMSA-MNPs and euthanized 12 hours (EA12h) and 90 days (EA90d) fol-
lowing administration.

Experimental procedures
For DMSA-MF and saline administration, animals were first anesthetized with an intramuscu-
lar injection of ketamine and xylazine applied at a dose of 10 and 1 mg/kg of body weight,
respectively. DMSA-MF was then injected in a concentration of 0.5 mg Fe/kg of body weight.
The total dose injected was calculated based on the above-cited concentration and the weights
of the animals, which correspond to 1.98 kg (EA12h) and 1.78 kg (EA90d). Saline solution
(0.9%) was used as a control substance for control animal. DMSA-MF and saline solution were
administered as a single bolus injection into the femoral vein and all injection volumes were
kept constant at 1 mL. Twelve hours and 90 days after MF administration, animals were anes-
thetized with an intramuscular injection of ketamine and xylazine applied at a dose of 10 and 1
mg/kg of body weight, respectively. Afterwards, they were euthanized by intravenous thiopen-
tal overdose administration. Once the death of the animals was confirmed, necropsy of the
liver, spleen, and lymph nodes was performed.

Preparation of tissue samples for Light Microscopy
Study organs were fixed in Davidson’s fixative (proportion of 1:3:2:3:1, of glycerin, ethanol,
37–40% solution of formaldehyde (v/v), distilled water, and glacial acetic acid) at 7°C for 24
hours. Once the organs were fixed, they were dehydrated in series of ascending ethanol concen-
trations (70–100%), clarified in xylene and embedded in Histosec1 (Merck, Germany). Semi-

Monkey Reticuloendothelial System after Nanoparticle Administration

PLOS ONE | DOI:10.1371/journal.pone.0140233 November 11, 2015 3 / 13



serial sections were cut (5μm each) and stained with hematoxylin and eosin (H&E) (NPs
appear stained in brown) for histopathological analysis and with Perls’ Prussian blue which
stains Fe(III) in bright blue, for iron oxide MNP localization in the tissues. Sections were
mounted on glass slides and covered with cover slips. Slides were visualized and analyzed using
a Leica1 microscope model DM1000 (Leica Microsystems, Switzerland) and digitally photo-
graphed using a Leica1 DFC280 camera and Leica1 Application Suite Version 2.7.0 (Leica
Microsystems, Switzerland).

Preparation of tissue samples for Transmission Electron Microscopy
studies
Spleen, liver, and lymph nodes fragments were rinsed with phosphate buffered saline (PBS)
(pH 7.2) and then cut into small sections of about 1 mm3. Tissues were fixed in a solution con-
taining 2.5% glutaraldehyde, 5 mM CaCl, and 5% sucrose in 0.1 M sodium cacodylate buffer
(pH 7.2) at 4°C overnight. Samples were then post-fixed for 1h in osmium tetroxide. Material
was dehydrated in series of ascending acetone concentrations and embedded in Spurr’s resin.
Ultrathin sections were stained with uranyl acetate and lead citrate. Finally, material was ana-
lyzed using a JEOL1 1011C Transmission Electron Microscope (Jeol, Tokyo, Japan) and digi-
tally photographed using Gatan Digital Micrograph™ 3.11.0.

Hepatocyte Mitochondria Morphometry
Mitochondria morphometry was performed in liver of control and experimental tissue sam-
ples. For each treatment, twenty electron micrographs were used and five mitochondria from
each micrograph were randomly chosen to measure mitochondrial area. For this analysis, the
boundary of each mitochondrion was traced to measure its area using the Digital Image-Pro-
Plus 4.5™ software (Media Cybernetics, Inc., Silver Springs, MD). In order to compare the hepa-
tocyte mitochondrial areas obtained from the different treatment groups, data were
normalized by transforming to Log10(1+value) and subjected to ANOVA and Scheffè’s test
using StatView statistical software for Windows (SAS Institute Inc., USA). Differences were
considered significant when P< 0.05.

Results and Discussion

Magnetic nanoparticles characterization
Aliquots from the same magnetic fluid were used in the present study and also in studies con-
ducted by Valois et al. [26] and Monge-Fuentes et al. [27], members of the same research
group conducting the present study. Both works properly characterized the MNPs used in the
present study, showing that the maghemite based DMSA-MNPs used here are spherically
shaped particles with a narrow diameter range, present the required size boundaries for bio-
medical applications (8.1 nm average diameter), show stability when in suspension and exist as
small aggregates within the MF.

Light microscopy of spleen and lymph nodes
Light microscopy (LM) for experimental animal euthanized 12 hours post-administration of
DMSA-MNP (EA12h) and for experimental animal euthanized 90 days post-injection
(EA90d) showed no alterations on spleen and lymph node tissue, showing structure compara-
ble to control animal samples (Fig 1).
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Spleen samples from experimental animals EA12h and EA90d presented MNPs in connec-
tive tissue near blood vessels, and in both, red and white pulp, being more abundant in EA90d
samples (Fig 1C–1F).

Samples from control lymph node presented typical morphology (Fig 1G and 1H), while
lymph node experimental samples stained with H&E showed few DMSA-MNP agglomerates
in the internal and external cortex (Fig 1I and 1K). When Perls’ Prussian blue method was
used to stain the lymph node tissue samples, few DMSA-MNP agglomerates could be visual-
ized in the subcapsular sinus, peripheral cortex, cortical sinus, and capsule (data not shown).

Electron microscopy of liver
Ultrastructural analyses from EA12h and EA90d liver samples corroborate LM results seen by
Monge-Fuentes and colleagues [27], showing normal and preserved structure in control sam-
ples (Fig 2A and 2B) and DMSA-MNP agglomerates in both, endothelial cell cytoplasm and
internalized in hepatocytes where MNPs were membrane-bound (Fig 2C and 2D). Our results
show MNPs uptaken by Ito cells; however, MNPs were absent in Kuppfer cells. EA90d TEM
analysis showed MNPs agglomerates in hepatocyte cytoplasm, internalized or not in

Fig 1. Magnetic nanoparticles coated with meso-2,3-dimercaptosuccinic acid in capuchinmonkey reticuloendothelial tissue samples. Tissues
were stained with hematoxylin and eosin (H&E) and Perls’ Prussian blue. Spleen and lymph node from control animal (CA) (A, B, G, H,) with typical tissue
morphology. Splenic tissue with discrete (C and D) and intense (F) MNPs accumulation in EA12h and EA90d, respectively. Accumulation of hemosiderin
(arrow) in (E). Lymph node samples show discrete MNP accumulations (arrows) in the cytoplasm of cells (J, K, L). DMSA: dimercaptosuccinic acid; MNP:
magnetic nanoparticle. CA: control animal; EA12h: experimental animal euthanized 12 hours post DMSA-MNP administration; EA90d: experimental animal
euthanized 90 days post DMSA-MNP administration. N = 1 animal for control and for each experimental condition. Scale bars: (A, C & G): 200 µm; (B): 50
µm; (D, F, H-J & L): 20 µm; (E): 100 µm; (K): 10 µm.

doi:10.1371/journal.pone.0140233.g001
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lysosomes, and inside endothelial cells (Fig 2E and 2F). Furthermore, in a few hepatocytes
from EA90d, cell membrane alterations were visible. This caused the loss of cell characteristic
contour, also revealing signs of membrane disintegration (Fig 2E and 2F). As also observed by
Monge-Fuentes and collaborators [27], 90 days-post injection of DMSA-MNPs also caused
slight augmentation of space of Disse (Fig 2D and 2F). Perhaps, this is due to the fact that sinu-
soids act as a filter when particles are carried into the liver. This anatomical barrier limits the
uptake of large-diameter NPs by parenchymal cells, restricting the passage of smaller sized NPs
that are able to leak into the space of Disse from the sinusoidal space through the fenestrations
[33]. In spite of the fact that we have no explanation for this increase of Disse space, one possi-
bility is that iron accumulation in the tissue might have caused an increase in blood flow in the
sinusoids and thus an overflow of plasma volume to the space of Disse, causing a dilated aspect.
However, further studies are necessary to clarify this point.

DMSA-MNP-treated animals showed hepatocyte mitochondria with a swollen appearance.
This lead to a more detailed study in which mitochondrial morphometric analyses were per-
formed (S1 File). Results suggest a positive correlation between mitochondrial area and pres-
ence of DMSA-MF in the hepatic tissue. When comparing mitochondrial area for control and

Fig 2. Electronmicrograph of capuchinmonkey liver tissue. (A and B) Control animal samples with intact hepatocytes. In (B) note the normal
appearance of hepatocyte, sinusoids containing red blood cells and normal space of Disse (arrow). (C and D) Liver from EA12h showing the presence of
MNPs inside hepatocytes (black arrows), either enveloped by a membrane (inset in C) or free in the cell cytoplasm. In (D) also observe a more dilated space
of Disse (white arrowhead). (E and F) Liver from EA90d showing MNPs inside hepatocytes and lysosomes (E). In (F) note the slightly dilated space of Disse
(white arrowhead). MNP agglomerates were also observed in the cytoplasm of endothelial cells (black arrows). Scale bars: (A, C, D & F): 2 µm; (B & E): 5 µm.
Insets: (C): 0.2 µm and (E): 0.5 µm. N = 1 for control and for each experimental condition.

doi:10.1371/journal.pone.0140233.g002
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EA12h samples, no significant difference was observed. However, when comparing the values
obtained for EA90d with control and EA12h samples (Fig 3), significant difference was
observed (P< 0.0001).

Peroxidation of mitochondrial membrane provokes an energy production deficit, decreas-
ing ionic pumps action and increasing intracellular calcium accumulation [34–37]. In this way,
administration of DMSA-MNPs could have caused an increase in free radicals, as it occurs in
iron overloads [38], and consequently, lipid peroxidation related to mitochondrial dysfunction
[36, 39]. According to Elloumi and collaborators [40], mitochondrial dysfunctions might be
correlated to necrotic-inflammatory lesions in liver with non-alcoholic steatose. However, it is
extremely important to note that serum hepatic enzymes levels (bilirrubin, alanine transami-
nase, gamma-glutamyltransferase, alkaline phosphatase, aspartate transaminase and lactate
dehydrogenase) previously studied in Monge-Fuentes and collaborators [27], who worked with
the same animals used in the present study, corroborate, along with the morphological aspects
presented here, that the mitochondrial alteration observed was not sufficient to cause inflam-
matory or necrotic lesions.

Electron microscopy of spleen
MNPs were observed enveloped by vesicles. No DMSA-MF was found inside blood vessels.
Observation by TEM was consistent with results obtained by LM (Fig 4A–4D).

Fig 3. Mitochondrial morphometry of liver samples from control and treated animals. Electron micrographs show hepatocyte mitochondria area (µm2)
in control animal (CA) (n=1) and experimental animals euthanized 12 hours after magnetic nanoparticle administration (EA12h) (n =1) and 90 days after
injection (EA90d) (n =1). Note the swollen appearance of mitochondria in animal EA90d when compared to the other two groups. Graph shows mitochondrial
area (mean ± SD) for the different treatments. (*) indicates differences among treatments, P < 0.0001. Scale bars: 1 µm.

doi:10.1371/journal.pone.0140233.g003
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Electron microscopy of lymph nodes
Samples from control lymph node presented typical morphology (Fig 5A). MNPs observed in
EA12h samples were generally internalized in vesicles (Fig 5B). In lymph nodes of treated ani-
mals, DMSA-MNPs were internalized by lymphocytes (Fig 5B) and macrophages (Fig 5C), and
were not observed inside blood vessels or endothelial cells. Specifically in the case of EA90d
samples, few electron dense material resembling DMSA-MNPs was seen internalized in macro-
phage and lysosomes (Fig 5C).

DMSA-MNP interaction with RES phagocytic cells
Studies have shown that foreign particles are opsonized for clearance by RES phagocytic cells
located mainly in the liver and the spleen [41]. Therefore, the challenge of using nanoparticles

Fig 4. Electronmicrographs of capuchinmonkey spleen tissue. (A) Control animal showing normal ultrastructure morphology of the spleen and
endogenous pigment (arrow). (B and C) EA12h presenting magnetic nanoparticles (arrow) inside a macrophage and endothelial cells, respectively. (D)
EA90d with MNPs in macrophage cytoplasm (arrow). Insets showMNPs enveloped by vesicles. Scale bars: (A & C): 2 µm; (B & D): 0.5 µm. Insets: (B): 100
nm and (C): 200 nm.

doi:10.1371/journal.pone.0140233.g004
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in vivo is to bypass this process to allow targeted drug delivery [15, 42, 43]. The major determi-
nants of clearance kinetics and biodistribution of colloidal particles are factors such as surface
characteristics, size, and zeta potential [19, 44, 45]. Considering surface characteristics, it is
noticeably important to use coatings that reduce opsonization and minimize clearance by RES,
leading to improved pharmacokinetic properties. This approach has been used in a variety of
nanoparticle systems, generally coated with polymers, in order to improve circulation half-life
and enhance drug delivery [41, 46].

Particles with a hydrophobic surface are rapidly opsonized by certain plasma proteins as
soon as they are introduced into the bloodstream and are preferentially taken up by the liver,
followed by the spleen, and lungs [47]. However, our MNPs were coated with DMSA, which
enhances their solubility [48], reducing uptake by macrophages [49–51]. In fact, TEM results
showed few DMSA-MNP agglomerates in spleen and lymph nodes macrophages, and no
DMSA-MNP agglomerates were observed phagocytosed by Kupffer cells, suggesting that
DMSA-MNPs were able to evade the Kupffer cell surveillance.

The fact that MNP agglomerates were observed compartmentalized within the lysosomes of
hepatocytes and RES cells in lymph node for EA90d, support the explanation that some MNP
agglomerates were probably broken down, with the majority of the iron stored as ferritin and/
or hemosiderin, which are antiferromagnetic forms of iron [17, 52–54]. In the same way, Levy
et al. [43] observed that with superparamagnetic maghemite nanoparticles, the biotransforma-
tion of the DMSA-MNP into poorly magnetic iron species over the period of 90 days post-
injection represents an advantage when considering DMSA-MNPs as a potential nanomaterial
for drug delivery purposes. Levy and colleagues (2011) [43] also hypothesized that the bio-
transformation of NPs observed takes place in lysosomes and that NPs are processed depend-
ing on the availability of iron storage proteins, meaning that NP degradation should be limited
by the availability and affinity of iron chelating agents produced intracellularly and the capacity
of ferritin or hemosiderin protein to store the released iron. Probably, the remaining superpar-
amagnetic NPs form a reservoir of non-toxic Fe(III) organized in their ferrimagnetic lattice,
with poor availability as long as they are not degraded by intracellular iron chelates. On the
other hand, the ferritin protein might bind the labile iron species resulting from the dissolution
of the nanoparticles and store them into another non-toxic form. Such a mechanism may offer

Fig 5. Electronmicrograph of capuchinmonkey lymph node tissue. (A) Control animal. Lymphocyte showing normal ultrastructure. (B) EA12h with
DMSA-MNPs internalized in lymphocyte cytoplasm. (C) EA90d sample, showing few electron dense material internalized in macrophage. Scale bars: (A &
C): 2 µm; (B): 1 µm.

doi:10.1371/journal.pone.0140233.g005
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a chance for the cell to regulate the labile iron pool generated by the degradation products of
NPs and thus minimize toxicity [55, 56], consistently with the very good tolerance profile of
iron oxide NPs.

As mentioned above, particle size also plays an important role in RES activity. The general
trend is that smaller particles have a substantially longer lifetime in the blood than larger parti-
cles [45]. DMSA-MNPs used in this study presented an average diameter of 8.1 nm (as deter-
mined by X-ray powder diffraction) and so, it is expected that this characteristic enables rapid
penetration into the cell. However, according to Kulkarin et al. [45], particles with less than
200 nm in diameter, the coating material rather than the mean hydrated particle size, may be
the major factor determining both, biodistribution and blood half-life of iron oxide particles.
Taking into account NP charge, it is well accepted that positively charged nanoparticles have a
higher rate of uptake by RES phagocytic cells when compared to neutral or negatively charged
formulations [44, 45, 57, 58]. Hence, since DMSA grants a negative charge to the MNP this
probably provides a low non-specific internalization rate and long blood half-life.

Conclusions
Overall, our results propose that the coating, size, and charge of the DMSA-MNPs used in the
present study facilitate MNPs ability to reach the organs with reduced uptake by the RES cells.
Thus, even though the RES cleared a small portion of the administered DMSA-MNPs, the rest
was able to reach the organs. The morphology results presented in this study suggest that
DMSA-MNP administered in capuchin monkeys (Sapajus spp.) was well tolerated and, there-
fore, can be considered as a potential and promising nanomaterial platform for future thera-
peutic and diagnostic use in humans.

Supporting Information
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(XLS)
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