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Abstract: Microglia, the innate immune sentinels of the central nervous system, are the most dynamic
cells in the brain parenchyma. They are the first responders to insult and mediate neuroinflammation.
Following cellular damage, microglia extend their processes towards the lesion, modify their
morphology, release cytokines and other mediators, and eventually migrate towards the damaged
area and remove cellular debris by phagocytosis. Intracellular Ca2+ signaling plays important roles
in many of these functions. However, Ca2+ in microglia has not been systematically studied in vivo.
Here we review recent findings using genetically encoded Ca2+ indicators and two-photon imaging,
which have enabled new insights into Ca2+ dynamics and signaling pathways in large populations
of microglia in vivo. These new approaches will help to evaluate pre-clinical interventions and
immunomodulation for pathological brain conditions such as stroke and neurodegenerative diseases.

Keywords: microglia; calcium signaling; in vivo imaging; two-photon; GECI; PC::G5-tdT;
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1. Introduction

Microglia are the principal innate immune cells of the brain parenchyma. Their distinctive
developmental origin differentiates them from other myeloid cells of the central nervous system.
Since Pio del Rio-Hortega systematically characterized microglial appearance and distribution [1],
their mesodermal origin has been generally accepted. However, traditional belief maintains that
microglia are descendants of circulating monocytes originating from bone marrow. This concept
was first formally questioned by Alliot et al., who demonstrated that the origin of microglia can
be traced developmentally to primitive hematopoiesis in the yolk sac [2]. More recently, new genetic
tools have been developed in mouse models using gene targeting. Manipulation of loci specifically
expressed in primitive hematopoietic cells, such as tagging the Runx1 gene with CreER recombinase,
allowed fate-mapping of primitive hematopoietic stem cells from the yolk sac. Precise timing of
reporter labeling was enabled by inducing CreER-mediated recombination with injections of a selective
estrogen receptor (ER) modulator, 4-hydroxytamoxifen [3]. These experiments provided unequivocal
evidence that resident microglia in the brain are born in the yolk sac from primitive myeloid
progenitors before embryonic day eight and populate the neural tube soon after [4]. Strong evidence
for relatively independent postnatal development of cortical microglia was gained from parabiotic
experiments, in which normal and GFP-labeled mice were surgically conjoined to share the same blood
circulation. Among peripheral myeloid cells, 30% of the monocytes and tissue macrophages were GFP
donor-derived after one month of parabiosis. However, less than 5% of microglia in parabiotic animals
were found to be donor-derived [4]. These findings were corroborated by early neonatal bone marrow
transplantations which yielded similar outcomes; although 30% of circulating leukocytes and tissue
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macrophages were of donor origin, 95% of adult microglia remained of host origin [4]. In support
of these findings, Saederup et al. showed that bone marrow-derived RFP-labeled monocytes make
little or no contribution to the parenchymal microglia in healthy animals [5]. Thus, the primitive
microglial population can be self-renewing within the immune-privileged parenchyma throughout
life, with a very slow turnover. In fact, human microglia can persist for more than two decades in the
brain [6]. However, when the blood-brain barrier is compromised due to infection or injury, an influx
of monocytes can occur from the peripheral myeloid population, giving rise to microglia that appear
distinct from the primitive population [7]. Varvel et al. also showed that reduction of the resident
microglial population with a conditional ablation system (herpes virus thymidine kinase and the
pro-toxin ganciclovir) can facilitate microglial repopulation by monocyte infiltration [7]. In contrast,
another study achieved microglial depletion with selective inhibitors of the colony stimulating factor 1
receptor (Csf1r) pathway which is necessary for microglial survival. In this model, the blood-brain
barrier remains intact and the microglial population is replenished from putative stem-like microglia
precursors within in the brain, not from circulating monocytes [8]. The complexity of the developmental
origins of microglia has significance for aging and neurodegenerative disorders such as Alzheimer’s
disease. It has been shown, for example, that different microglial populations originating from the
primitive and bone marrow-derived pools can have different impacts on plaque formation [9].

During early postnatal development, microglia acquire ramified morphology with small cell
bodies and elongated processes covering an area of approximately 50 µm in diameter in both mouse
and human brains [10]. Davalos, along with others, discovered that differentiated microglial processes
are constantly in motion [11,12]. They measured the turnover of protrusions and retractions of the
processes and found velocities of up to 4.1 mm/min [12]. Although seemingly random in direction,
microglial processes have been shown to protrude towards, and make connections with, neuronal
synapses. Remarkably, the frequency and duration of these connections appear to be related to basal
neuronal activity [13,14]. Following targeted injury, such as disruption of the blood-brain barrier
or laser injury, the multidirectional movement of the microglial processes is switched to movement
directed toward the injured site at similar speeds [11,15,16]. This level of activity qualifies microglia as
the most motile cells within the brain parenchyma. Microglial surveillance behavior is energetically
costly and deeper mechanistic insight into this intriguing phenomenon is still lacking. Nonetheless,
extracellular nucleotides appear to be involved in regulating baseline motility and ramification
because microglial scouting behavior is lost after infusion of apyrase, an ATP/ADP-degrading
enzyme [11,17]. The principal receptors controlling the directional response are purinergic P2 receptors,
primarily P2ry12, a Gi-coupled metabotropic P2 receptor which is highly expressed on microglial
processes. This signaling pathway eventually leads to activation of protein kinase B (PKB) and
reorganization of the actin cytoskeleton, leading to cell growth and chemotaxis [18]. The complete
set of microglial signal receptors, termed the ‘sensome’, has been determined by direct sequencing
of the transcriptome [19]. Gene ontology analysis has revealed that purinergic receptors account for
8% of the sensome. Other receptor groups include chemokine receptors (10%), cytokine receptors
(10%), receptors for extracellular matrix proteins (6%), receptors involved in cell-cell interaction (10%),
Fc receptors (7%), and other less-well characterized and orphan receptors (24%). A substantial part of
the sensome is accounted for by pattern recognition receptors (25%), such as the Toll-like receptors
(TLRs) which recognize conserved motifs of pathogen-associated molecular patterns (PAMPs) or
damage-associated molecular patterns (DAMPs), molecular fragments released from necrotic or dying
cells. Stimulation of TLRs causes induction of AP-1 and NF-κB and subsequent activation of multiple
pro-inflammatory genes, as well as profound changes in morphology and migratory behavior [20].

The malleable properties of microglia present investigators with significant challenges. First of
all, studies of ramified microglia are impeded by any damage to the meninges and blood-brain
barrier which leads to rapid activation of the sensome. The distinct developmental origin of microglia
complicates genetic manipulation of these cells, and commonly used techniques such as in utero
electroporation or infection with viral vectors, are ineffective. The phagocytic nature of these cells
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also compromises the expression and affects the turnover of indicator dyes and reporters, such as
microbial β-galactosidases. Above all, two technologies have spurred the advancement of microglial
research in vivo, namely genetic manipulations of the mouse genome and two-photon in vivo imaging.
Two-photon laser scanning fluorescence microscopy, pioneered by Winfried Denk and others [21],
uses tunable femtosecond infrared laser pulses (~700–1100 nm) concentrated into a tiny focal volume
(~1 cubic micron) with appropriate lenses and scanning galvanometers [22]. At this high density,
infrared photons combine to excite commonly used green and red fluorescent proteins [23] and emit
visible photons that can be efficiently detected using non-descanned photomultiplier tubes (PMTs)
deep in the brain [22]. Microglial reporters can be then imaged several hundred microns deep in the
cortex through the thinned-skull method or sealed craniotomy preparations [24]. Genetic knock-in
technology complements the two-photon technique by providing the capability to specifically express
genetically encoded fluorophores in the cells of interest [25]. Very instrumental in this regard was the
generation of the Cx3cr1-GFP allele which enabled in vivo characterization of microglial behavior and
motility [26], opening avenues for further investigation.

2. Early Exploration of Ca2+ Regulation in Cultured Microglia

Intracellular Ca2+ acts as a second messenger in virtually all cell types, including immune
cells [27], and many microglial responses are thought to be mediated by intracellular Ca2+ signals [28].
Until recently, the bulk of information on microglial Ca2+ signaling has been obtained from cultured
cells. The effort began in the early 1990’s by the groups of Carl Cotman and Helmut Kettenmann [29,30].
Since cell culture approaches offer good access and effective loading with synthetic Ca2+-indicating
probes, such as Fura-2, this strategy yielded information on a number of pathways, including purinergic
and complement signaling [31–35]. However, experiments involving cultured microglia have many
caveats. First, microglia cannot be isolated in their resting state, and obtaining differentiated ramified
morphology in culture is challenging. Secondly, the most common culturing procedures use dissociated
cells from early neonatal brains, in which microglia have not yet matured. Therefore, much of the
early literature stems from studies on cell cultures that were in an activated state and do not represent
the resting microglia in the healthy brain. Even in acute brain slices, despite some evidence to
the contrary [36], microglia become activated and their Ca2+ levels are elevated [37]. Also, radical
differences between in vitro cultured primary microglia and microglia isolated immediately ex vivo
were found by gene expression analysis [38,39]. Thus, it has become evident that investigating Ca2+

signaling in vivo is necessary for accurate understanding of microglial behavior in the normal and
diseased brain.

3. Imaging Microglial Ca2+ Activity In Vivo

3.1. Strategies Employing Cell Electroporation

Microglia have been refractory to initial attempts at synthetic dye loading and viral transduction
in vivo. Taking an innovative approach, Eichhof et al. adapted a previously developed single-cell
electroporation method [40] and labeled microglia in vivo by mild electroporation [41]. This opened
the possibility of visualizing microglial Ca2+ in vivo for the first time. The authors targeted microglial
cells, labeled with isolectin B4, with an electroporation pipette filled with 10 mM Oregon green
BAPTA 1 (OGB-1), and applied negative current for 10 ms. This technique allowed labeling of both
microglial somas and processes, and enabled high-resolution two-photon imaging in acute in vivo
experiments. This study demonstrated that the majority of ramified, unchallenged microglia display
no spontaneous Ca2+ transients. However, single-cell damage within a radius of 50 µm caused large
Ca2+ transients, which were dependent on purinergic receptor (P2Y) signaling and intracellular Ca2+

stores [41]. This approach offers flexibility of indicator choices and the ability to target select cells,
but it is laborious and not applicable to longitudinal studies in large cell populations.
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3.2. Viral Strategies for Transducing Microglia

Although partial success in delivering adeno-associated virus (AAV)-encoded gene expression
to microglia has been reported for AAV-5 serotypes and transgenes expressed from F4/80 (Adgre1)
promoters, its specificity in vivo has not been critically evaluated [42]. In neurons and astrocytes,
a frequently used AAV strategy employs mouse strains expressing Cre recombinase in the cells of
interest and subsequent infection with Cre-dependent, flip-excision (FLEX) configured AAV vectors.
As a result, conditional AAV-mediated gene expression in the Cre-expressing cells is achieved [43].
No published data is available on intracerebral transduction efficiency of the AAV-FLEX approach in
microglia, but the initial results are encouraging [44].

In the first report of virally-delivered, genetically encoded Ca2+ indicators (GECIs), Seifert et al.
resorted to labeling microglia with a retrovirus [45]. Since retroviruses only infect dividing cells,
the authors used stab wound injury to trigger microglial proliferation. Consequently, this experimental
paradigm resulted in targeting a heterogeneous population of microglia and macrophages which
could not be differentiated with tomato lectin staining. Nevertheless, this was the first study in
which a GECI was delivered to microglia in vivo. The indicator used was a single-wavelength
GCaMP2 [46], consisting of a circularly permuted GFP (cpGFP), calmodulin, and the M13 fragment
from myosin light chain kinase [47]. Fluorescence intensity of the circularly permuted GFP is
modulated by Ca2+ binding-induced structural changes in the chromophore. Solving the crystal
structure of GCaMP2 [48,49] led to rationally and empirically guided improvements of indicator
properties in GCaMP3, featuring greater protein stability, a larger dynamic range, and higher affinity
for Ca2+. GCaMP3 was the first universally applicable GCaMP reporter for in vivo studies in a variety
of cell types, in organisms ranging from worms to flies and mice [50]. Although it has never been
reported in microglial investigations, we used GCaMP3 with good success in rat astrocytes following
in utero electroporations [51].

Brawek et al. took a different approach for gene expression delivery to microglia [37]. To ensure
specific expression in microglia, they used a lentivirus vector destabilized by including target sites
for microRNA-9 (miR-9), which mediate degradation of the tagged mRNA in cells expressing the
complementary miR-9. In contrast to most brain cells, microglia lack miR-9 expression, and brain
infection with miR-9-regulated lentivirus results in selective labeling of microglial cells [52]. Brawek
and colleagues chose to express a new fluorescence resonance energy transfer (FRET)-based Ca2+

biosensor Twitch-2B [53], comprising mCerulean3 and cpVenusCD as a FRET donor and acceptor [54].
The fluorescent proteins are connected through a high-affinity Ca2+ binding linker from troponin C
isolated from the toadfish. This molecular configuration lends a maximal fluorescence ratio change
of ~800% and a high Ca2+ affinity Kd of 200 nM, but a relatively slow decay time of 2.8 s [53].
The ratiometric FRET imaging is less influenced by excitation laser intensity, indicator expression
level, or by changes in the optical path length, and therefore, it is better suited to detect sustained
elevations in Ca2+ levels. This study confirmed that microglia have very little spontaneous activity
under steady-state conditions. In contrast, ratiometric measurements revealed that in vivo steady-state
Ca2+ levels in microglia are actually higher than those in neurons, suggesting that microglia have a
different set-point of cytosolic Ca2+. In cell cultures or slice preparations, ramified microglial cells
consistently showed significantly higher and very heterogeneous Ca2+ levels [37]. These findings
reveal that ramified microglia often sustain elevated intracellular Ca2+ levels in response to changes in
the environment. However, the miR-9-based viral approach was not consistently cell-type specific.
When viral expression was high, it labeled other cell types. At lower concentrations, it yielded
only spotty microglial labeling, precluding systematic surveys of microglial populations. While the
ratiometric approach is promising, it suffers from inevitable photon loss due to emission splitting,
and requires a specialized configuration of PMT detectors.
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3.3. Endogenous Reporter Systems for Microglial Imaging

Genetically encoded Ca2+ indicators have been improved to the extent that their properties match
or exceed those of synthetic indicators [55,56]. Unfortunately, the development of transgenic models
expressing these genetic tools in microglia has been impeded by the discrepancies of microglial gene
expression. A case in point is the effectiveness of the ROSA26 locus. This gene displayed ubiquitous
expression in all cells of the embryo [57,58] and this observation established ROSA26 as a widely
used insertion site for endogenous reporters and effectors. Although the locus supports expression in
microglia, the expression levels are not nearly as high as in other brain cells. Consequently, Ca2+ sensors
expressed from ROSA26, such as the GCaMP3 indicator, did not perform well in microglia, although it
robustly labeled neuronal populations in the retina, cortex, and cerebellum [59].

Using an alternative strategy, we explored the genomic context of the largest RNA polymerase
II subunit, the Polr2a gene. This gene is essential and ubiquitously expressed, and we reasoned that
this locus could support efficient expression in neurons as well as glia. A Cre-dependent expression
cassette, driven by the strong CAG promoter, was inserted 3′ adjacent to Polr2a, without disturbing the
function of the gene. This arrangement allows efficient breeding of homozygous animals. After Cre
recombination, the reporter (named PC::G5-tdT) expresses the single-wavelength Ca2+ indicator,
GCaMP5G, and the red fluorescent protein tdTomato (Figure 1). This reporter proved to support
strong expression of a wide array of cell types and systems, including microglia and astrocytes [60].
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phenomena observed in astrocytes [62] and/or might be too low to be detected with existing 
technology. 
  

Figure 1. A schematic diagram of the PC::G5-tdT reporter allele in the Polr2a locus. The reporter cassette
was inserted 3′ of the last exon, without disturbing gene function. Following Cre/loxP-mediated
excision of the transcriptional STOP sequence, the CAG promoter drives GCaMP5G and
IRES-tdTomato expression in the Cre-expressing cells (e.g., Aif1(Iba1)-IRES-Cre directs expression
to the myeloid-monocytic lineage). If red fluorescence is not desirable, the IRES-tdTomato reporter can
be independently removed with FLP recombinase using the FRT sites. Modified from [60].

To express the reporter in all microglia, we generated a new Cre driver by inserting the IRES-Cre
cassette in the 3′ untranslated region of the Aif1 gene, encoding the allograft inflammatory factor 1,
also known as ionized Ca2+-binding adapter molecule 1 (Iba1) [16]. Simultaneous expression of
tdTomato in the target cells is very advantageous because basal fluorescence of the new generations
of GCaMP indicators, including GCaMP5G, is low and does not enable visualization of cell bodies
and processes in the off-state. However, this permits GCaMP5G’s great dynamic range of 1085 ± 66%.
This indicator has a rapid decay time of 667 ± 43 ms and an intermediate Ca2+ affinity with
Kd = 447 ± 10 nM [55,61]. Efficient excitation of both markers is achieved with infrared lasers tuned
to 920 nm and detected with common filters for GFP and Tomato emission.

Our genetic system has enabled, for the first time, in vivo imaging of Ca2+ activity in the entire
microglial network. The findings obtained with endogenous genetic indicators converge with findings
obtained with other approaches, including synthetic dyes, showing that spontaneous Ca2+ transients
are very infrequent [16,41]. In our experiments, only 4% of resting microglia exhibited at least one
spontaneous Ca2+ transient during a 20-min recording session [16]. This is in stark contrast to the
remarkable motility of microglial processes, implying that the constant motion in the unchallenged,
‘resting’ state occurs in the absence of detectable Ca2+ fluctuations. Our in vivo results with BAPTA-AM,
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an intracellular Ca2+ chelator, have indicated that basal levels of Ca2+ are necessary for full protrusion
motility [16]. However, these transients may occur in microdomains similar to the phenomena observed
in astrocytes [62] and/or might be too low to be detected with existing technology.

4. Patterns of Microglial Ca2+ Activity in Inflammation

4.1. Microglia Play a Central Role in Brain Inflammation

The innate immunological responses of the nervous system are usually referred to as
neuroinflammation. These processes primarily involve microglia and astrocytes, leading to pathological
states of microgliosis and astrogliosis, which are characterized by pronounced changes in gene
expression, cellular structure, and function [63,64]. In contrast to classical peripheral inflammation,
mobile immune cells including macrophages, monocytes, neutrophilic granulocytes, and lymphocytes,
are not always recruited to the inflamed site, subject to blood-brain barrier integrity [65]. Conversely,
peripheral cytokines may access the brain with an intact blood-brain barrier by passive diffusion
through the choroid plexus or circumventricular organs [66] by active transport through the brain
endothelium [67], or by the activation of vagal, trigeminal, or glossopharyngeal afferent fibers to
indirectly promote cytokine production by astrocytes and other cells within the CNS [68–70].

Another specific of nervous system inflammation is the higher prevalence of sterile
inflammation, typically due to trauma or ischemia-reperfusion injury rather than direct infection
with microorganisms [71,72]. Sterile inflammation can be triggered by a variety of insults, including
cholesterol crystals [73], amyloid-β [74], or cell death [75]. In necrotic cell death, intracellular
molecules are released from the cytoplasm of the ruptured cell and stimulate the pattern recognition
receptors present on myeloid cells, including microglia. The intracellular molecules act as agonists
on the receptors for DAMPs. Prototypical DAMPs include chromatin-associated proteins such as
high-mobility group box 1 (HMGB1), heat shock proteins (HSPs), and purine metabolites such as
ATP and uric acid [71]. Two principal microglial pathways sensing DAMPS involve TLRs and the
nucleotide-binding oligomerization domain-like receptor NLRP3 [71].

Recently, Liddelow and colleagues illuminated the crucial role of microglia in orchestrating brain
responses to neuroinflammatory stimuli [76]. The authors demonstrated that lipopolysaccharide
(LPS)-activated, neuroinflammatory microglia can induce astrocytes into a neurotoxic, reactive form
termed A1. The induction mechanism has been narrowed down to three secreted factors from activated
microglia; Il1α, TNFα, and C1q, and these cytokines and complement molecules have been shown
to be necessary and sufficient to induce A1 astrocytes. As a consequence, the activated astrocytes
secrete a yet-to-be-identified toxin which kills neurons and oligodendrocytes. Habbas et al. studied
the roles of TNFα in a different model of inflammation—experimental autoimmune encephalitis
(EAE) [77]. They found that inflammatory release of TNFα activates astrocyte TNF receptor type-1
(TNFR1), which in turn triggers an astrocyte-neuron signaling cascade resulting in persistent functional
modification of synapses. The authors showed that astrocytic TNFR1 signaling was necessary for the
hippocampal synaptic alteration and contextual learning-memory impairment observed in an animal
model of multiple sclerosis. Together, these findings underscore the pivotal role of microglia along the
microglial-astrocytic-neuronal axis in neurodegenerative diseases and cognitive dysfunctions.

4.2. Frequency and Distribution of Ca2+ Signals in Neuroinflammatory Microglia

While spontaneous microglial Ca2+ transients are infrequent, inflammatory stimuli significantly
elevate the baseline of spontaneous microglial Ca2+ activity. The generation of the PC::G5-tdT
reporter mouse enabled us to assess Ca2+ activity in resident inflammatory microglia after LPS
challenge [16]. LPS was injected subcutaneously in the mandibular lip, as originally described by Lee
and collaborators [78]. Subcutaneous LPS administrations result in peripheral inflammation, without
blood-brain barrier breach, and subsequent indirect activation of microglia by diffusion of cytokines
into the brain parenchyma. Twelve hours after injection, the baseline Ca2+ activity was increased 8-fold
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(Figure 2), escalating the percentage of cells showing any Ca2+ transients during a 20-min period to
more than 30%. Notably, the majority of injury-induced Ca2+ transients (>80%) were localized to the
processes (Figure 3), while the remainder occurred both in the processes and cell bodies.Int. J. Mol. Sci. 2017, 18, 2366  7 of 18 
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We also applied the paradigm of microglial response to laser burn injury to our Ca2+ reporter
system. Co-expression of tdTomato and GCaMP5G allowed tracking of the processes extending
towards the localized lesion and visualization of Ca2+ transients, affording simultaneous measurements
of process motility as well as intracellular activity. When these experiments were performed in
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LPS-primed brains, 67% of microglia responding towards the lesion displayed Ca2+ transients
(Figure 2).

Remarkably, Ca2+ activity considerably decreased at later stages of inflammation, especially after
microglia acquired ameboid morphology, typically 24 h after LPS injection. Moreover, Ca2+ responses
to laser lesions remained low to undetectable for at least one month after a single dose of LPS [16].
This observation is consistent with the view that microglia are capable of retaining long-term memory
of infectious insults via a putative epigenetic mechanism which may contribute to chronic inflammation
in neurological illnesses [79].

4.3. Receptor Pathways and Sources of Microglial Ca2+ Transients

Direct administration of drugs to the brain surface prior to Ca2+ in vivo imaging allows
initial pharmacological characterization of underlying mechanisms. In our hands, application
of pyridoxal-5-phosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS, a non-selective P2 purinergic
antagonist) to the dura reduced the frequency of Ca2+ transients in responding microglia by >75% [16].
While the general involvement of P2 receptors in mediating Ca2+ transients is expected, the relative
roles of P2Y and P2X receptor subtypes expressed by microglia (primarily P2ry13, P2ry12, P2ry6, P2rx7,
and P2rx4) in modulating Ca2+ transients in specific disease states still remains to be characterized
in detail. A more complete investigation of microglial Ca2+ dynamics will have to include the
TRP channels [80,81], adenosine and adrenergic receptors [82,83], and other G-protein coupled
receptors [84,85]. Virtually no data is available on the specific roles of TLRs, and cytokine and
chemokine receptors in modulating microglial Ca2+ signals in vivo.

Another incompletely clarified issue pertains to the mechanism of Ca2+ influx in normal and
inflammatory microglia. Similar to other immune cells, microglia robustly express store-operated
Ca2+ release-activated Ca2+ (CRAC) channels, which mediate elevation of cytosolic Ca2+ levels after
depletion of endoplasmic reticulum Ca2+ [27,86]. All three isoforms of the CRAC channel (Orai1, Orai2,
and Orai3) are highly expressed by microglia [87], mediating Ca2+ influx from the extracellular space.
Michaelis et al. explored the role of Orai1 in cultured microglia [88]. However, additional in vivo
experiments, including conditional genetic ablations of the corresponding genes, will be required
to determine the involvement of specific receptor pathways and CRAC channel isoforms in health
and disease. Given that the CRAC channels mediate a broad array of cellular responses, comprising
secretion, gene expression, cell growth, and proliferation [89], this research will likely identify new
target mechanisms for therapeutic interventions [86].

5. Microglial Ca2+ Activity in Alzheimer’s Disease and Neurodegeneration

Alzheimer’s disease (AD) is a slowly progressing neurodegenerative disease that is associated
with plaque deposits of oligomeric amyloid-β (Aβ) peptides, which are thought to trigger pathological
events leading to cognitive decline. Microglia have long been implicated in the etiology of AD because
of their dramatic responses to the pathophysiology of the disease. Indeed, recent genome-wide
association studies have identified several gene variants selectively expressed in microglia which
present an increased risk for the late-onset form of AD, such as TREM2 or CD33 [90–92]. TREM2
has been shown to regulate the phagocytic ability of myeloid cells. Certain TREM2 variants
compromise the ability of microglia to internalize Aβ, establishing the phagocytic pathway as
one of the key mechanisms in Aβ re-uptake and clearance [93]. In an independent aggravating
mechanism, microglia exposed to Aβ engage in excessive synapse pruning in a complement- and CR3
(CD11b/CD18)-dependent fashion, leading, at least in the mouse model, to synapse loss before plaque
formation [94]. Hence, in addition to chronic microglial activation, a complementary research focus
is also needed on microglia in earlier AD stages when neuronal synapses are already vulnerable to
synaptotoxic Aβ oligomers [95].

Chronic microglia-mediated neuroinflammation exacerbates the condition in later stages of
the disease. When the ability of microglia to clear amyloid plaques fails, prolonged production of
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pro-inflammatory cytokines may become detrimental. In a landmark study, Hickman et al. showed
by quantitative PCR that in PS1-APP mice, an established mouse model of AD, microglia had a
2.5-fold increase in levels of the proinflammatory cytokines interleukin 1β (IL1β) and tumor necrosis
factor TNFα, suggesting that there is an inverse correlation between cytokine production and Aβ

clearance [96]. Sustained exposure to Aβ, cytokines, and other inflammatory mediators appear to cause
permanent impairment of microglial function at the plaque sites [97]. This dysfunction is manifested
by a marked decrease in directed process motility and phagocytic activity in mice with AD-like
pathology [98]. New profiling technologies using massively parallel single-cell RNA sequencing will
be tremendously helpful in further analyses of microglial disease-associated gene expression [99].

However, very few studies looked at the time course of intracellular Ca2+ signaling in AD
microglia. McLarnon et al. examined cultured microglia isolated from the postmortem brains of
AD patients and non-demented controls. They found that AD microglia had significantly higher
basal Ca2+ and diminished amplitudes of CRAC-mediated Ca2+ entry, but prolonged time courses
of ATP responses. Overall, these data indicate that significant abnormalities are present in Ca2+

signal transduction in AD-patient microglia [100]. In cultured mouse cells, Aβ was shown to trigger
increases in intracellular Ca2+, ATP release, IL1β secretion, and plasma membrane permeabilization
in wild-type microglia, but not in microglia from P2rx7-deleted mice, suggesting that Aβ-mediated
activation involves purinergic P2rx7 receptor function [101]. The Garaschuk group investigated Ca2+

signaling in mouse AD models in vivo with optimized imaging protocols [102]. In two different mouse
models of AD, they showed that plaque-associated microglia failed to respond reliably to extracellular
release of ATP [103]. However, these activated microglia had increased incidence of spontaneous
Ca2+ transients; almost 80% of amoeboid microglia in the plaque vicinity exhibited Ca2+ transients.
Conversely, the amplitude of Ca2+ transients was significantly smaller in amoeboid cells compared
to ramified microglia. In ramified microglia located in between amyloid plaques, the amplitude
of spontaneous Ca2+ transients became significantly larger compared to age-matched controls, but
their frequency remained normal. The Ca2+ transients in plaque-associated microglia were reversibly
inhibited by PPADS, a non-selective antagonist of P2 receptors. Thus, the authors revealed substantial
signaling dysfunction in AD microglia, characterized by an increased spontaneous frequency but
reduced amplitude of Ca2+ signals in plaque-associated amoeboid cells [103]. These results appear to
be in general agreement with in vitro data as well as with our analysis of Ca2+ activity in LPS-induced
neuroinflammatory microglia responding to injury [16]. It is plausible that intracellular hyperactivity
in plaque-associated microglia triggers a Ca2+-dependent release of proinflammatory cytokines in the
vicinity of Aβ deposits and further investigation of this phenomenon is warranted.

Long-term in vivo imaging provided additional novel insights into microglial turnover and migration
in mouse AD models. By genetically labeling individual resident microglia, Fuger et al. confirmed that
neocortical resident microglia are long-lived with a median lifespan of 15 months, implying that 50% of
resident microglia persist the entire mouse lifespan under homeostatic conditions [104]. In the mouse
model of AD, however, microglial proliferation was increased threefold. Further analysis indicated
that this increase in proliferation occurred in plaque-free areas and the newly emerged cells then
moved toward the nearby amyloid plaques [104].

It has been recently demonstrated that microglia-like cells can be generated from human
pluripotent stem (iPS) cells or embryonic stem (ES) cells [105,106]. The differentiation protocol
yields microglia that are initially amoeboid, proliferating, and capable of extensive migration and
robust phagocytosis of CNS substrates. Later, these cells adopt first-order ramified morphologies and
when embedded in 3D cultures supplying the neuroglial environment, they project highly branched
ramifications. Muffat at al. showed that these microglia-like cells can respond to localized damage
in 3D cultures by extending a single long process towards the injury center. Later, they migrate
their cell bodies and surround the damaged area, while the microglia farther away from the lesion
do not migrate [106]. Interestingly, Abud and collaborators showed that these induced microglia
also undergo Ca2+ transients and demonstrated that administration of ADP induced Ca2+ rises in a
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P2RY12 receptor-dependent manner [105]. These cells can be also transplanted into transgenic mice
and human brain organoids, and resemble microglia in vivo. This new technology opens avenues for
the generation and genetic manipulation of human microglia to investigate their function and establish
new strategies for therapy of AD and other neurodegenerative conditions.

6. Role of Microglial Ca2+ Transients in Ischemic Stroke

Microglia are part of the neurovascular unit which comprises brain endothelial cells, pericytes,
vascular smooth muscle cells, other glia such as astrocytes and oligodenroglia, and neurons [107].
The neurovascular unit controls the permeability of the blood-brain barrier, cerebral blood flow,
and maintains the cerebral fluid homeostasis required for proper functioning of neuronal circuits.
Inter-cellular interactions in the neurovascular unit are essential for brain function, and dysfunctional
signaling in the neurovascular unit can lead to disease [108]. Aging is a risk factor in neurovascular
unit interactions, and is associated with decreased microvessel integrity and increased cerebral tissue
susceptibility to ischemic injury and post-ischemic inflammation [109].

Ischemia can develop as a consequence of thrombosis in situ, or following embolic occlusion of
a cerebral vessel. Initial events after ischemia result in necrosis of core infarcted tissue and reduced
function of adjacent penumbra tissue. After disruption of ATP generation and consequently the
function of the Na+/K+ transporter, cellular depolarization allows Ca2+ influx. Further, glutamate
accumulation in the extracellular space results in activation of all glutamate receptor subtypes, resulting
in excitotoxicity, activation of the intrinsic apoptosis pathway, and cell death [110]. Evolution of
ischemic injury and cell death continues for minutes, hours, and even days, depending on the
vulnerability of the particular brain region [108].

In addition to excitotoxicity at the cellular level, the release of glutamate and ionic imbalance
impact ischemic injury progression at the tissue level. They trigger cortical spreading depolarization
(CSD), a transient and slowly propagating (2–5 mm per minute) wave of near-complete depolarization
of neurons and astrocytes. This is followed by a period of electrical depression, associated with major
transmembrane ionic and water shifts. This phenomenon is highly evolutionarily conserved among
vertebrates and invertebrates [111]. It has been detected in clinical cases of stroke and traumatic injury,
and it is also associated with migraine auras [112]. Spreading depolarizations accelerate tissue damage
during brain injury by inducing neuronal death in energy-compromised tissue. Further, CSD waves
can propagate from energy-depleted tissue into surrounding, well-nourished tissue, as is often the
case in stroke and brain trauma. Hence, CSD suppression may prove worthwhile for reducing infarct
maturation [108,112–115].

Cerebral ischemia also elicits robust neuroinflammatory responses which involve activation of
microglia and other immune cells. Microglia have a complex role in stroke pathophysiology because
they orchestrate both neuroinflammatory and neuroprotective responses, and much research is focused
on finding the optimal balance between the inflammatory and neurotrophic phenotypes [116,117].
Szalay and colleagues have investigated the effect of selective ablation of microglia during acute
ischemic stroke following transient middle cerebral artery occlusion (MCAo) [118]. They found that
a near-complete ablation of microglia with PLX3397, an inhibitor of the Csf1r pathway, resulted
in a 60% increase in infarct size following MCAo. This effect was reversed when microglia were
allowed to repopulate the brain prior to the ischemic injury. The absence of microglia also disrupted
Ca2+ signaling in neurons and increased neuronal death. Remarkably, microglial ablation also
significantly reduced the incidence of cortical spreading depolarizations induced by MCAo [118].
These results underscore the importance of microglia in neuronal network activity and confirm their
role in the CSD phenomena [119]. As yet, there is no published information available regarding
whether microglial Ca2+ signaling is affected by CSD. Mouse reporters harboring pan-microglial GECI
indicators will afford a distinct advantage in addressing this question. Indeed, we have previously
shown that detecting synchronous waves of Ca2+ activity is feasible with the PC::G5-tdT reporter
(Figure 4) [16], and work is currently underway to characterize microglial Ca2+ signaling following
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MCAo. It is noteworthy that in hemorrhagic strokes, not covered here in detail, new research indicates
that subarachnoid blood per sig may not be sufficient to trigger a CSD in rodents [120]. However,
subarachnoid infusions of fresh blood are sufficient to cause clusters of spreading depolarizations in
the gyrencephalic swine brain [121]. In both models, reciprocal interactions between focal cerebral
ischemia and subarachnoid hemorrhage appear to synergize to facilitate recurrent CSDs, leading to
delayed cerebral ischemia syndrome [120,121].
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It has been shown that CSD stimulates microglial secretion of Il1β [122] and TNFα [123].
TNFα lowers the threshold for CSD induction, promoting perpetuation of CSD induction through
positive feedback [123,124]. Conversely, TNFα can also reduce CSD amplitude in the rat cortex [125].
Insulin-like growth factor IGF1, a neurotrophic factor secreted by microglia, abrogates TNFα induction
by CSD [123], and so does environmental enrichment which promotes neuroprotective phenotypes in
microglia [126]. Evidently, the effects of inflammatory cytokines in stroke progression are significant
and complex, and uncovering the patterns and potential blockers of Ca2+ activity in microglia may
instruct new ways to control cytokine release. Currently, anti-inflammatory mechanisms are being
evaluated in a clinical phase II trial of ischemic stroke which targets the interleukin-1 signaling pathway
via recombinant antagonist IL-1Ra/anakinra [127]. It is plausible to suggest that better understanding
microglial Ca2+ dynamics in the course of ischemic injury and spreading depolarizations will identify
new targets for therapeutic intervention.

7. Future Directions

Future progress in this research field will benefit from improved animal reporters capable of
multiplex data acquisition, enabling new ways to study specific cell-cell interactions. There is a need
for genetic tools that will allow simultaneous imaging of activity in microglia and other glial cells
such as astrocytes, using, for instance, the newly developed red-shifted indicators along with green
light-emitting tools. Systems allowing parallel recordings of glutamate and Ca2+ concentrations are
also very desirable, especially in combination with long-term imaging in awake animals. Furthermore,
expanding the toolbox of fluorescently tagged reporters of key immune effectors will facilitate deeper
mechanistic insights into mouse models of neuroinflammation and neurodegenerative diseases.
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