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ABSTRACT Microbial tolerance to organic solvents such as ionic liquids (ILs) is a robust
phenotype beneficial for novel biotransformation. While most microbes become inhibited
in 1% to 5% (vol/vol) IL (e.g., 1-ethyl-3-methylimidazolium acetate), we engineered a ro-
bust Yarrowia lipolytica strain (YlCW001) that tolerates a record high of 18% (vol/vol) IL
via adaptive laboratory evolution. Yet, genotypes conferring high IL tolerance in YlCW001
remain to be discovered. In this study, we shed light on the underlying cellular processes
that enable robust Y. lipolytica to thrive in inhibitory ILs. By using dynamic transcriptome
sequencing (RNA-Seq) data, we introduced Gene Coexpression Connectivity (GeCCo) as a
metric to discover genotypes conferring desirable phenotypes that might not be found
by the conventional differential expression (DE) approaches. GeCCo selects genes based
on their number of coexpressed genes in a subnetwork of upregulated genes by the tar-
get phenotype. We experimentally validated GeCCo by reverse engineering a high-IL-tol-
erance phenotype in wild-type Y. lipolytica. We found that gene targets selected by both
DE and GeCCo exhibited the best statistical chance at increasing IL tolerance when indi-
vidually overexpressed. Remarkably, the best combination of dual-overexpression genes
was genes selected by GeCCo alone. This nonintuitive combination of genes, BRN1 and
OYE2, is involved in guiding/regulating mitotic cell division, chromatin segregation/con-
densation, microtubule and cytoskeletal organization, and Golgi vesicle transport.

IMPORTANCE Cellular robustness to cope with stressors is an important phenotype. Y.
lipolytica is an industrial robust oleaginous yeast that has recently been discovered to
tolerate record high concentrations of ILs, beneficial for novel biotransformation in or-
ganic solvents. However, genotypes that link to IL tolerance in Y. lipolytica are largely
unknown. Due to the complex IL-tolerant phenotype, conventional gene discovery and
validation based on differential gene expression approaches are time-consuming due to
a large search space and might encounter a high false-discovery rate. Here, using the
developed Gene Coexpression Connectivity (GeCCo) method, we identified and validated
a subset of most promising gene targets conferring the IL-tolerant phenotypes and shed
light on their potential mechanisms. We anticipate GeCCo being a useful method to dis-
cover the genotype-to-phenotype link.

KEYWORDS Yarrowia lipolytica, oleaginous yeast, ionic liquid, solvent tolerance,
robustness, dynamic RNA-Seq, gene coexpression connectivity, GeCCo, gene targets

Cellular robustness such as solvent tolerance is an important phenotype in natural
and engineered biological systems. Biocatalysis in organic solvents enables

novel biotransformation with unique strategies for substrate solubilization (1),
enhanced enzymatic activity (2), and product recovery (3). Ionic liquids (ILs) have
recently emerged as green organic solvents to replace the conventional ones in bio-
processing (4). These solvents can provide a novel reaction medium for biotransfor-
mation with superior performance due to their ability to dissolve a broader range of
compounds and their adjustable properties for enzyme stabilization and activation
(e.g., lipases, alcohol dehydrogenases, proteases, and oxidoreductases) (5). Some ILs
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such as 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]) are promising for the cel-
lulosic biomass pretreatment technology that effectively reduces recalcitrance, achieving
efficient dissolution of biomass and permitting enzymatic accessibility to the sugar poly-
mers (i.e., cellulose and hemicellulose) for saccharification (6–8). Fermentative sugars
released from IL-pretreated biomass could be assimilated by microbial cell factories if not
for the toxicity that ILs impose on microorganisms (9, 10). For these reasons, microbial
high solvent tolerance is a desirable phenotype for conversion of renewable cellulosic
biomass to replace petroleum-derived chemicals and fuels.

ILs are toxic to most industrial workhorse microorganisms (e.g., Escherichia coli and
Saccharomyces cerevisiae). Cell growth is inhibited even at low IL concentrations, for
example, 1 to 5% (vol/vol) [EMIM][OAc] (11, 12). These ILs disrupt cell membranes and
intracellular processes (13–15). Efflux pumps have been reported to improve IL toler-
ance in microorganisms (9, 16–19). Currently, knowledge of novel genotypes responsi-
ble for IL tolerance in microorganisms is still very limited. Remarkably, screens for
IL-tolerant microorganisms identified the GRAS (generally regarded as safe) oleaginous
yeast Yarrowia lipolytica as one of the top performers in the benchmark [EMIM][OAc]
(20). Wild-type (WT) Y. lipolytica could achieve 92% of the theoretical yield of alpha-ke-
toglutaric acid (KGA) in 10% (vol/vol) [EMIM][OAc] during simultaneous saccharification
and fermentation of IL-pretreated cellulose (21). Due to its robustness and broad indus-
trial use, Y. lipolytica is a promising model organism to study IL tolerance.

To understand the robustness of Y. lipolytica in ILs, adaptive laboratory evolution (ALE) was
performed to generate a platform strain, YlCW001, with enhanced activity in high concentra-
tions of 18% (vol/vol) [EMIM][OAc] (22). Remarkably, the mutant (MT) also outperformed the
wild-type Y. lipolytica in all imidazolium-based ILs tested. Physiological, metabolic, and genetic
characterization elucidated that sterols are critical for IL tolerance in Y. lipolytica by strengthen-
ing the cell membrane (22). Despite the discovery of the beneficial role of sterols, other novel
genotypes that confer IL tolerance in Y. lipolytica still remain to be discovered. Even though
genome-wide analysis of the wild-type and evolved mutant Y. lipolytica could provide evi-
dence of genotypes that may be involved in the phenotypic variance in IL tolerance, it is very
challenging to identify and validate gene targets and their combinations among a large set of
gene candidates in response to high IL exposure. Since IL tolerance is a complex phenotype,
the most differentially expressed genes identified by omics data (e.g., transcriptome sequenc-
ing [RNA-Seq]) alone might not necessarily be the prime candidates conferring IL tolerance.

In this study, we seek to identify the key genotype(s) conferring IL tolerance in Y. lip-
olytica. Using dynamic transcriptomic data of the wild-type and evolved Y. lipolytica
strains growing with and without IL, we shed light on the underlying cellular processes
that Y. lipolytica uses to respond to IL. We further developed Gene Coexpression
Connectivity (GeCCo) as a metric to identify a small subset of promising gene targets
conferring IL tolerance among a large set of potential gene candidates. Specifically,
GeCCo selects the most connected genes from a coexpression network of upregulated
genes. By performing single- and dual-gene overexpression validation, we demon-
strated that GeCCo could reveal the key genotype(s) behind the complex phenotype(s)
that was reverse engineered to achieve high solvent tolerance in Y. lipolytica.

RESULTS
Modified genotype of the IL-tolerant evolved strain YlCW001. To connect genetic

mutations with enhanced IL tolerance, we resequenced the evolved strain YlCW001
(MT) and analyzed the mutations. Across the entire genome, we detected a total of
648 variants, but only 40 genes contained variants that caused an amino acid change
(Fig. 1A; see also Data Set S1 in the supplemental material). These 40 mutated genes
(MGs) are randomly distributed across the 6 chromosomes of Y. lipolytica and hold a
total of 68 mutations (i.e., variants) including 35 single nucleotide variants (SNV), 12
deletions, 11 multiple nucleotide variants (MNV), 8 insertions, and 2 replacements
(Fig. 1B). The most MGs were in chromosome A (13 MGs) followed by chromosome E
(9 MGs), chromosome F (7 MGs), chromosome C (6 MGs), and chromosomes B and D
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(each with 3 MGs) (Fig. 1A). By performing gene ontology (GO) associations for the 40
MGs using ClueGo, Integrated Microbial Genomes (IMG), and BLASTp against S. cerevi-
siae, we were able to assign the functional annotations for 68% of the MGs (Fig. 1C).
Kinases represent the most abundant GO terms, containing 3 MGs, followed by trans-
porters, transcription factors, mRNA processing, regulation, nuclear pore complex, and
membrane components (2 MGs each; see Data Set S1 for gene identifiers [IDs]).

Basal gene expression differences between the WT and MT strains without IL
exposure. We first examined the basal changes in gene expression between the WT
and MT strains growing in medium without IL (Fig. 2A). Temporal RNA-Seq data for
both the WT and MT strains were collected at the early and mid-exponential growth
phases and subjected to the gene classification analysis (Data Set S2, tab 1). We identi-
fied 470 “upregulated” genes and 88 “increasing” genes in the MT strain relative to the
WT strain cultured without IL (Fig. 2E). Here, upregulated genes were overexpressed at
both early and mid-exponential phases while increasing genes were overexpressed at
mid-exponential phase but do not exhibit significant change at early exponential
phase (see Materials and Methods). These genes with greater expression in the MT
strain were annotated for mitochondrion, nucleus, chromosome, membrane protein
complex, microbody, respirasome, and transmembrane signal receptors (Fig. 2I). For
the WT strain, we found 329 upregulated genes and 167 increasing genes relative to
the MT strain cultured without IL. These genes were involved in cell periphery, cell cor-
tex, cell wall organization/biogenesis, endoplasmic reticulum, and the Golgi apparatus
(Fig. 2I). Five of the MGs were differentially expressed between the MT and WT cultured
without IL. The MT upregulated 3 of these MGs including an RNA metabolic protein
(REH1, YALI0B08734g), an RNA splicing factor (WHI1, YALI0F12375g), and an uncharac-
terized protein (YALI0C13002g). Meanwhile, the MT downregulated 2 of these MGs, an
expansin-like protein (YALI0E17941g) and a nonreceptor serine/threonine protein ki-
nase (SKY1, YALI0A18590g).

FIG 1 Mutated genes of IL-tolerant mutant Y. lipolytica (MT, YlCW001), which include 68 variants across 40 genes that
change amino acid residues. (A) Chromosomal location of mutated genes depicting log2 fold changes at the mid-
exponential RNA-seq sample between the MT in 8% [EMIM][OAc] and WT in 0% IL (purple), WT in 8% IL (blue), and
MT in 0% IL (green). (B) Types of variants in the mutated genes. (C) Gene ontology of the mutated genes.
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FIG 2 (A to D) Growth profiles of MT and WT in 0% IL (A), WT in 0% IL and WT in 8% (vol/vol) IL (B), MT in 0% IL and MT in 8% (vol/
vol) IL (C), and growth of WT and MT in 8% (vol/vol) IL (D). (E to H) Number and distribution of classified genes for MT in 0% IL
versus WT in 0% IL (E), WT in 8% IL versus WT in 0% IL (F), MT in 8% IL versus MT in 0% IL (G), and MT in 8% IL versus WT in 8% IL
(H). In these pie charts, black and gray pies refer to “changed regulation” and “no change” genes, respectively. (I to L) Classified gene
ontology associations for basal differences in gene expression between the MT and WT in 0% IL (I), IL-responsive gene expression of
the WT strain (J), IL-responsive gene expression of the MT strain (K), and enhanced IL-responsive gene expression of the MT strain
versus the WT strain in 8% IL (L). Stars represent ontology terms where the sum of upregulated and increasing genes under a
biological condition is at least twice that under the other biological condition.

Discovery of IL-Tolerant Genotypes of Y. lipolytica mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00348-22 4

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00348-22


IL-responsive gene expression. (i) Wild-type response to IL. Next, we aimed to
understand gene expression changes for the WT strain exposed to IL (Fig. 2B) (Data Set S2,
tab 2). This RNA-seq pairwise set exhibited the greatest perturbation of gene expression
relative to all other data sets with only;62% of genes classified as no change (Fig. 2F). We
found 734 upregulated genes and 329 increasing genes for the WT growing in 8% (vol/vol)
IL. These IL-induced genes were enriched for mitochondrion (including mitochondrial
transmembrane transport and respirasome), genetic processing (i.e., nucleus, chromosome,
chromatin binding/regulation, DNA-binding transcription factors, ribosome, and signal
transduction), microtubule processing, and microbody (Fig. 2J). In contrast, we identified
365 upregulated genes and 240 increasing genes for the WT cultured without IL. However,
only 3 annotated processes were enriched more than 2-fold, which included cell cortex,
cell wall organization/biogenesis, and the endoplasmic reticulum (Fig. 2J).

(ii) Mutant response to IL. Likewise, we compared gene expression changes for the
MT strain exposed to IL (Fig. 2C) (Data Set S2, tab 3). The gene classification analysis iden-
tified 564 upregulated genes and 385 increasing genes for the MT strain growing in 8%
(vol/vol) IL relative to the MT strain without IL (Fig. 2G). These IL-induced genes for the
MT strain were enriched for lipid processes (i.e., membrane, cellular lipid metabolic pro-
cess, membrane traffic protein, Golgi apparatus, and endoplasmic reticulum), cell periph-
ery (including cell cortex, cytoskeleton, and microtubule process), intracellular vesicles
(i.e., vacuole, cytoplasmic vesicle, and vesicle-mediated transport), and genetic processes
(i.e., chromosome, chromatin/chromatin binding/regulator, DNA-binding transcription
factor, and signal transduction) (Fig. 2K). The MT strain cultured without IL exhibited 668
upregulated genes and only 50 increasing genes. These gene sets were annotated for
anion and mitochondrial transmembrane transport, respirasome, and the ribosome
(Fig. 2K). We also identified 9 of the MGs among the classified genes. Of these, 5 were
upregulated in IL including an actin cytoskeletal protein (YALI0A18381g), a nonreceptor
serine/threonine protein kinase (CBK1, YALI0B04268g), a cell septum/cytosolic protein
(ZDS2, YALI0F12793g), an exportin transporter (CSE1, YALI0E07139g), and an uncharac-
terized protein (YALI0B18194g). One MG was downregulated in IL, a protein component
of the polarisome (SPA2, YALI0F16665g), and one uncharacterized protein (YALI0F08107g)
was classified with changed regulation in IL.

(iii) Enhanced IL response by the mutant. Our gene classification of time series
RNA-seq data revealed 202 upregulated genes and 319 increasing genes for the MT strain
in IL relative to the WT strain in IL (Fig. 2D and H) (Data Set S2, tab 4). These genes were
associated with lipid processes (i.e., membrane, membrane traffic protein, Golgi apparatus,
and endoplasmic reticulum), cell periphery (including cell cortex, cytoskeleton, cell wall or-
ganization/biogenesis, and microtubule process), intracellular vesicles (i.e., vacuole, cyto-
plasmic vesicle, and vesicle-mediated transport) and genetic processes (i.e., chromosome,
chromatin/chromatin binding/regulator, and signal transduction) (Fig. 2L). In contrast, the
WT exhibited 327 upregulated genes and 223 increasing genes relative to the MT when
both strains were cultured in IL. These genes were associated with mitochondrion, mito-
chondrial transmembrane transport, respirasome, and the ribosome (Fig. 2L). We found
that 8 of the MGs were identified in the classified genes. The MT upregulated an exportin
transporter (CSE1, YALI0E07139g), and 3 genes were classified as increasing, including a
chaperone (YALI0A09108g), a translation initiation factor (RPG1, YALI0C16247g), and a pro-
tein component of the polarisome (SPA2, YALI0F16665g). Four of these MGs were classified
with changed regulation, including an actin cytoskeletal protein (YALI0A18381g), a nonre-
ceptor serine/threonine protein kinase (CDC7, YALI0F23287g), and uncharacterized pro-
teins (YALI0A13233g and YALI0C13002g).

Identifying genotypes conferring IL tolerance. (i) Choice of pairwise data set to
select gene targets conferring IL tolerance. In response to IL, there were 734 genes up-
regulated by the WT (Fig. 2F) and 564 genes upregulated by the MT (Fig. 2G). However,
many of these differentially expressed genes are potentially a consequence of IL toxicity (i.e.,
indirect effect) as opposed to conferring IL tolerance (i.e., direct effect). Therefore, using the
appropriate pairwise data set to select gene targets conferring IL tolerance is critical due to
a large space of candidates and their combinations. Fortunately, the MT selected from ALE
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outperformed the WT when both were cultured in IL. It also possesses superior IL-tolerant
genotypes. Taken altogether, we reasoned that, to identify genotypes conferring IL toler-
ance, the best gene candidates for reverse engineering high solvent tolerance could be
found by comparing WT and MT gene expression in IL (Data Set S2, tab 4).

(ii) Formulation of gene coexpression connectivity (GeCCo) as a metric to select
gene targets for reverse engineering. Conventionally, gene targets are selected based
on greatest fold change between strains or conditions and/or gene ontology if the system
is well understood. Using the pairwise data set of WT and MT in IL, our analysis identified
202 candidate gene targets that were upregulated across 2 time points by the MT (Fig. 2G).
It is laborious to experimentally validate these genes for IL tolerance either in isolation or in
combinations. To reduce the most probable candidate list of gene targets for validation, we
introduced GeCCo, which selects highly connected and classified genes in the coexpression
network.

In the first step of GeCCo, the coexpression network using the Pearson correlation (23) is
built for the genes differentially expressed and regulated between the MT and WT strains in
IL. Each gene in the coexpression network is classified using the gene classification method-
ology (see Materials and Methods and Fig. S1). Figure 3A shows the network topology
where each group of classified genes exhibited tight coexpression. For instance, genes that
were upregulated or increased by the MT in IL were separated from genes that were upreg-
ulated or increased by the WT in IL. These gene clusters were connected by genes classified
as changed regulation. In the second step, GeCCo selects the most connected genes in a
subnetwork (e.g., upregulated gene subnetwork) based on their degree centrality. Here,
degree centrality is the total number of edges connected to a vertex in the coexpression
network. For instance, Fig. 3B showed the most connected genes in the subnetwork of
genes upregulated by the MT in IL.

(iii) Selection of gene targets by GeCCo for experimental validation. To demon-
strate GeCCo, we used the subnetwork of genes upregulated by the MT in IL. For each

FIG 3 (A) Coexpression network of classified genes between the MT and WT in 8% IL. (B) Subnetwork of coexpressed genes upregulated
by the MT in 8% IL, illustrating gene connectivity by degree. (C) Gene targets selected by degree, fold change, overlap by fold change,
overlap by degree, or gene ontology. (D) Maximum cell growth for individual overexpression of gene targets in 11% IL. (E) Box-and-whisker
plot for each group of gene targets depicting all replicate maximum OD600 values for all associated genes contained within each group. *.
P value # 0.05 (n $ 9 for each gene and n = 27 for the empty-vector control).
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of the 202 genes upregulated by the MT, the average fold change between the 2 tran-
scriptomic time points (i.e., X [early] and Y [mid] scores; see Fig. S1) and the degree of
each gene from the coexpression subnetwork were calculated (Fig. 3B). These genes
were divided into 4 quadrants based on the 75th percentile of average fold change
and on the 75th percentile of degree (Fig. 3C). Quadrant 1 represents genes that were
in the 75th percentile of both average fold change and degree, quadrant 2 represents
genes that belong only in the 75th percentile of degree, quadrant 3 represents genes
that were not in the 75th percentile of either degree or average fold change, and
quadrant 4 represents genes that belong in the 75th percentiles of both degree and
average fold change (Fig. 3C). To test GeCCo, we selected the top 5 genes based on
degree (quadrant 2), the top 5 genes based on degree overlapping average fold
change (i.e., overlap by degree, quadrant 1), and the top 5 genes based on average
fold change overlapping degree (i.e., overlap by fold change, quadrant 1). For control,
we chose the top 5 genes based on average fold change (quadrant 4) and 9 genes
based on gene ontology associations related to membrane, transport, kinase, cell wall,
actin cytoskeleton organization, and myosin complex (quadrants 1, 2, and 4) (Fig. 3C
and Table S1).

Validation of gene targets conferring IL tolerance. (i) Single-gene overexpres-
sion. Each of the 29 selected gene targets (Data Set S3) were tested for their efficacy in
conferring IL tolerance by individually overexpressing each gene in the WT strain and
characterizing cell growth in 11% IL (Fig. 3D). In this extremely harsh concentration of
IL, genes chosen from overlap by degree exhibited the best cell growth in IL among all
the other target groups except genes chosen by GO term (Fig. 3E). Of all the target
groups, only 6 of the genes caused a decrease in cell mass, including 3 genes chosen
by overlap by fold change (#1, #2, and #4), 2 genes chosen by GO terms (#21 and #27),
and 1 gene chosen by degree (#19).

Six genes exhibited a statistical increase in cell mass in this high concentration of IL
(#23, #10, #9, #25, #8, and #28). These gene targets were selected from only 2 target groups
of overlap by degree and GO association (Fig. 3D). The 3 genes conferring enhanced IL tol-
erance chosen from overlap by degree included a membrane traffic protein (#8, TRS23,
YALI0B22396g), a kinase activator (#9, CLB5, YALI0B15180g), and a microtubule binding
motor protein (#10, KIP1/CIN8, YALI0F02673g). The 3 genes exhibiting increased IL robust-
ness selected by GO terms were annotated as an integral component of the membrane
(#23, YALI0B12738g), a protein kinase (#25, SPS1, YALI0D19470g), and a myosin heavy
chain (#28, MYO1, YALI0F13343g).

(ii) Dual-gene library enrichment. To identify the most IL-tolerant combination of
genes, we duplicated the 29 gene target overexpression plasmids with a different
selection marker (i.e., leucine and uracil selection markers) and combined the 2 sets of
29 overexpression plasmids into a library cocktail stock at equimolar concentrations
(Fig. 4A). This library was transformed into Y. lipolytica, and 3 biological replicate trans-
formants were cultured in 0%, 12%, and 13% (vol/vol) IL for 2 rounds. While all strains
grew quickly in 0% IL, cell growth was delayed for several days in the high IL concen-
trations (Fig. 4B to D). Nevertheless, the dual-plasmid cocktail replicates grew faster
than the empty-vector control in 12% IL (Fig. 4C), and all replicates were able to grow
in 13% IL while the empty-vector control showed no growth in this high concentration
of IL (Fig. 4D). Each cocktail replicate was sequenced after round 1 and round 2 cul-
tures in 0%, 12%, and 13% IL to identify enriched combinations of genes selected from
the challenging pressure of IL (Data Set S4).

For all replicates cultured in 0% IL, genes were not enriched beyond 24.3% of the total
gene pool in the leucine plasmid and 18% of the total gene pool in the uracil plasmid
(Fig. 4E). Plasmids sequenced from all replicate cultures in 12% and 13% IL revealed
enriched combinations of genes (Fig. 4F and G). We found that replicate 2 cultured in
12% IL was the only replicate that maintained the same combination of genes between
round 1 and round 2 (i.e., gene combination #171#17) (Fig. 4F). However, gene combina-
tion #181#17 was enriched in multiple replicates/rounds (i.e., 12% IL, replicate 1, round 1;
12% IL, replicate 3, round 1; and 13% IL, replicate 1, round 1). From these 9 combinations
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FIG 4 (A) Workflow of dual-gene library enrichment and plasmid sequencing (created with BioRender.com). (B to D) Growth
of empty-vector control and library cocktail replicates in 0% (vol/vol) IL (B), 12% (vol/vol) IL (C), and 13% (vol/vol) IL (D). (E to
G) Plasmid sequencing to identify enriched combinations of genes for library-cocktail replicates in 0% (vol/vol) IL (E), 12%
(vol/vol) IL (F), and 13% (vol/vol) IL (G). (H and I) Frequency of enriched genes from library-cocktail enrichment selected by
fold change (green), GO term (blue), degree (red), overlap by fold change (yellow), and overlap by degree (purple). (J) Plate
spotting characterization of enriched combinations of genes from library-cocktail enrichment on 0%, 4%, 8%, 10%, and 12%
(vol/vol) IL.
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of genes, genes chosen by degree had the highest frequency in both the uracil plasmid
(75% of genes) and leucine plasmid (66.7% of genes) (Fig. 4H and I). Notably, genes cho-
sen by fold change showed the second highest frequency (8.3% of genes in uracil plas-
mid; 25% of genes in leucine plasmid) followed by genes chosen by GO term (8.3% of
genes in both uracil and leucine plasmids) (Fig. 4H and I).

(iii) Characterization of enriched gene combinations for IL tolerance. Seeking to
reverse engineer IL tolerance, we recreated strains individually bearing these 9 combinations
of genes. For positive and negative controls, we generated strains bearing 2 copies of the
best and worst genes from single-overexpression characterization (i.e., #231#23 and
#11#1) along with the empty-vector control. Remarkably, gene combination #181#17
(which was enriched in multiple replicates) demonstrated significantly higher IL tolerance
relative to all strains tested (Fig. 4J). Interestingly, these genes were not directly coexpressed
(i.e., not connected by an edge) but instead highly connected to other genes in the coex-
pression network. Gene ontology enrichment of the gene #17 cluster (genes connected to
#17) and the gene #18 cluster (genes connected to #18), using the GO-slim biological pro-
cess, revealed both gene clusters were enriched in mitotic nuclear division (Fig. 5A). The
gene #17 cluster was also enriched for chromosome separation and mitotic chromosome
condensation, microtubule cytoskeletal organization and microtubule-based movement,
regulation of cyclin-dependent protein serine/threonine kinase activity, and protein phos-
phorylation (Fig. 5A). For the gene #18 cluster, the only uniquely enriched term was Golgi
vesicle transport (Fig. 5A). The second-best strain contained the gene combination
#171#17, which was enriched in both rounds of 12% IL for replicate 2 (Fig. 4F and J). Gene
combination #11#1, which showed increased sensitivity to IL in single-overexpression char-
acterization, was the worst-performing strain excluding gene combination #161#17, which
exhibited defective growth even when cultured without IL (Fig. 4J). Taken together, dual-
plasmid library enrichment revealed genes #18 and #17, both chosen by degree (i.e., con-
nectivity), which conferred high IL tolerance when overexpressed simultaneously.

DISCUSSION

ILs inhibit microbial catalytic activity by affecting numerous cellular processes and
components, which makes IL tolerance a difficult phenotype to engineer. Currently,
reverse engineering complex phenotypes requires extensive characterization to under-
stand key mechanisms and often leads to numerous gene targets for further experi-
mentation (24–26). Here, we developed GeCCo to identify a subset of promising gene
targets for reverse engineering IL tolerance by exploiting a superior IL-tolerant MT
strain’s gene coexpression connectivity. From the pool of genes upregulated by the
MT in IL (relative to the WT in IL at both exponential time points), we discovered that
the best single-gene targets (i.e., single-gene overexpression) were predicted by gene
connectivity overlapping in the 75th percentile of fold change (i.e., overlap by degree)
and the best combination of gene targets (i.e., dual-gene overexpression) was pre-
dicted by coexpression connectivity alone (i.e., by degree).

Upon exposure to IL, our result shows that only the WT increased expression of
genes associated with mitochondrion processes (i.e., respirasome and mitochondrial
transmembrane transport) (Fig. 2J and Fig. 5B), suggesting ILs hinder mitochondrial
function and oxidative phosphorylation. This result is consistent with a previously
reported observation that ILs interfered with ion transport across the mitochondrial
membrane, negatively affecting mitochondrial function and membrane potential in S.
cerevisiae (27). In contrast, the WT repressed genes involved in cell wall organization/
biogenesis (Fig. 2J), which vindicates the reduced cell wall chitin content when Y. lipo-
lytica is exposed to IL (22).

The MT strain, however, induced expression of genes associated with lipid metabolism
in IL (e.g., membrane, endoplasmic reticulum, Golgi apparatus, membrane traffic proteins,
cytoplasmic vesicle, etc.) (Fig. 2K and Fig. 5C), which is supported by our previous discov-
ery that biogenesis of sterols is critical for IL tolerance in Y. lipolytica (22). These results pos-
tulate other lipid metabolic processes (e.g., vesicle-mediated transport) underlying the
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superior IL tolerance of the MT strain as seen from the drastic remodeling of lipid composi-
tion in IL (22). Both WT and MT strains responded to IL by increasing expression of genes
associated with genetic processing (i.e., chromatin binding/regulation, chromosome, tran-
scription factors, and signal transduction) (Fig. 2J and K and Fig. 5B and C), indicating ILs
severely influence gene regulation and signal transduction.

Aiming to understand the genotype(s) conferring high solvent tolerance, we rea-
soned that the best gene candidates would be genes upregulated by the MT relative
to the WT when cultured in IL. Most of the gene targets, when individually overex-
pressed, increased cell mass in IL, indicating that our strategy of exploiting genes
expressed more by the MT strain in this comparison was successful (Fig. 2L), though
we did not test genes from other pairwise comparisons (e.g., WT in 8% IL versus WT in
0% IL). Strikingly, coexpression connectivity in conjunction with fold change (i.e., over-
lap by degree) had the highest statistical prediction of IL-tolerant genes when overex-
pressed individually (Fig. 3E).

Even though the 6 top-performing single-gene targets have not previously been
characterized in Y. lipolytica, these genes have orthologs in the model yeast S. cerevisiae
except for gene #23. Gene #8 (TRS23, YALI0B22396g) is associated with regulation of

FIG 5 (A) Gene coexpression clusters for the top performing genes #17 and #18. (B and C) Cell model diagrams for top-performing genes when
overexpressed individually (#8, #9, #10, #23, #25, and #28) and simultaneously (#171#18) (A) for (A) WT and (B) MT in presence of IL. Panels B and C were
created with BioRender.com.
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traffic from the endoplasmic reticulum to the Golgi apparatus and autophagy (28). Gene
#9 (CLB5, YALI0B15180g) is a nonessential B-type cyclin involved in replication of DNA
(29) whereby deletion increases sensitivity to rapamycin, caffeine, hydroxyurea, doxoru-
bicin, and many other chemicals (30–32). Gene #10 (CIN8, YALI0F02673g) is a nonessen-
tial kinesin motor protein with involvement in chromosome segregation and in mitotic
spindle assembly (33). Notably, CIN8-deleted S. cerevisiae exhibited abnormally large cell
size, poor growth, increased mitophagy, and increased sensitivity to heat and various
chemicals (34). Gene #25 (SPS1, YALI0D19470g) is a kinase regulator essential for pro-
spore membrane closure (35). Gene #28 (MYO1, YALI0F13343g) is a class II myosin heavy
chain with a key role in cytokinesis (36). Deletion of MYO1 in S. cerevisiae decreases re-
sistance to nikkomycin Z, an antibiotic that inhibits chitin synthase (37).

The dual-gene overexpression library enrichment revealed combinations of genes that
differed from the top-performing individual overexpression results (Fig. 4F and G). Most of
the enriched gene targets in these dual-gene combinations were those selected by coex-
pression connectivity (i.e., degree) (Fig. 4H and I), indicating interdependency between
highly connected genes. This notion is further supported by the significant increase in IL
tolerance when #17 and #18 were simultaneously overexpressed (Fig. 4J) relative to the IL
tolerance of either gene’s individual overexpression (Fig. 3D).

Notably, these genes are not obvious targets to reverse engineer IL tolerance based on
annotations alone. Gene #17 (BRN1, YALI0B03476g) is an essential gene in S. cerevisiae
required for the mitotic chromosome segregation and condensation (38). Gene #18 (OYE2,
YALI0D16247g) is a flavin mononucleotide oxidoreductase that mediates resistance to
small alpha- and beta-unsaturated carbonyls such as acrolein, a product of lipid peroxida-
tion (39), and increases abundance in response to DNA replication stress (40). Further,
OYE2 (gene #18) has been shown to be an antioxidant protein in S. cerevisiae, and overex-
pression of OYE2 (gene #18) rescues cell death induced by Bax, a proapoptotic protein that
causes hyperpolarization of the mitochondrial membrane resulting in liberation of cyto-
chrome c and reactive oxygen species (41). While lacking a strong connection as to how
these two genes confer IL tolerance together, we can deduce that both genes are involved
in the mutual process of mitotic cell cycle phase transition based on their coexpression
gene clusters (Fig. 5A). Further, we can reason that IL toxicity is negatively affecting chro-
matin segregation during mitosis and that proteins responsible for guiding and regulating
these processes (i.e., microtubule and cytoskeletal organization, kinases, and Golgi vesicle
transport) are critical (Fig. 5A).

While coexpression networks have been used to infer gene function, gene associa-
tion, and gene regulation, this is the first study to our knowledge where coexpression
was used as a metric to select gene targets for reverse engineering. Though limited by
the number of genes, phenotypes, and organisms tested in our study, these results
highlight GeCCo as a promising selection tool to predict gene targets for reverse engi-
neering complex phenotypes.

MATERIALS ANDMETHODS
Strains. The Y. lipolytica strain, ATCC MYA-2613, a thiamine, leucine, and uracil auxotroph, was purchased

from the American Type Culture Collection and used as the parent strain (WT). The evolved strain YlCW001
(MT) was isolated after 200 generations in gradually increased concentrations of [EMIM][OAc] up to 18% (vol/
vol) (22). The TOP10 Escherichia coli strain was used for molecular cloning. IL-gene-overexpressing strains
were generated by transforming constructed plasmids into WT via electroporation (42).

Plasmids. The plasmid pSR001 (21), harboring a leucine selection marker, TEF promoter, and CYC1
terminator, was used as the backbone plasmid for individual IL-gene overexpression cassettes. The plas-
mid pSR008 (43), identical to pSR001 except for the selection marker being replaced with uracil, was
used for dual-gene overexpression. Both pSR001 and pSR008 were linearized by PCR amplification using
primers 2 and 3, and each gene target was amplified from Y. lipolytica genomic DNA using the primers
79 to 136 listed in Table S2 in the supplemental material. Nucleotide sequences of the 29 target genes
can be found in Data Set S3. Plasmids were constructed with Gibson assembly (44) using the linearized
pSR001/pSR008 backbones and each amplified IL gene. The complete list of strains and plasmids is
given in Table S3.

Media and culturing conditions. (i) Growth medium. Defined minimal medium contained 6.7 g/L of
yeast nitrogen base without amino acids (catalog no. Y0626; Sigma-Aldrich, MO, USA), 20 g/L of glucose,
380 mg/L leucine (catalog no. 172130250; Acros Organics, CA, USA), 76 mg/L uracil (catalog no. 157301000;
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Acros Organics, CA, USA), and various concentrations of [EMIM][OAc] (.95% purity) (IoLiTec, AL, USA).
Synthetic complete medium without leucine and uracil (SC-Leu-Ura) was prepared with 6.7 g/L of yeast nitro-
gen base without amino acids; 1.46 g/L of yeast synthetic dropout medium supplement without uracil, leu-
cine, and tryptophan (catalog no. Y1771; Sigma-Aldrich, MO, USA); 76 mg/L tryptophan (catalog no.
172110250; Acros Organics, CA, USA), 20 g/L glucose, and various concentrations of [EMIM][OAc]. SC without
leucine (SC-Leu) was prepared by adding 76 mg/L uracil to SC-Leu-Ura medium.

(ii) Culturing conditions. Seed cultures were conducted by inoculating a single colony from a fresh
petri dish into 2 mL of medium using a 14-mL culture tube and incubated overnight in a MaxQ6000 air
incubator set at 28°C and 250 rpm. Subcultures were conducted by transferring 1 mL of seed cultures
into 10 mL of medium using 50-mL baffled flasks and cultured overnight until mid-exponential growth
phase. The main experiment cultures were performed using 50-mL baffled flasks with 10 mL of medium
in 3 technical replicates per biological condition and repeated to achieve a minimum of 6 replicates.

(iii) Single-gene overexpression characterization. Single-gene overexpression experiments were
conducted using SC-Leu medium containing 11% (vol/vol) [EMIM][OAc] with an inoculum with a value
of optical density at 600 nm (OD600) of 0.25 from subseed cultures.

(iv) Dual-gene enrichment. Equimolar concentrations of all 29 gene overexpression plasmids with a
leucine selection marker and all 29 gene overexpression plasmids with a uracil selection marker were
combined into a library cocktail. The library cocktail was transformed into WT Y. lipolytica, and recovered
transformant colonies were combined and cultured in SC-Leu-Ura medium. Round 1 of the enrichment
experiment was conducted in 50 mL of SC-Leu-Ura medium containing 0%, 12%, or 13% (vol/vol)
[EMIM][OAc] in 3 replicates alongside a strain bearing an empty-vector leucine plasmid and an empty-
vector uracil plasmid (i.e., control). Once cells achieved an OD600 above 3, the culture broth was centri-
fuged, resuspended in water, and used for inoculation in round 2 of enrichment before remaining cells
were stored at 280°C. Once cells achieved an OD600 above 3, round 2 cultures were immediately stored
at 280°C. Plasmids were extracted after thawing cells to room temperature using the Invitrogen
ChargeSwitch plasmid yeast minikit (Fisher catalog no. CS10203).

(v) Dual-gene plate screening. Dual-gene overexpression characterization was performed with SC-
Leu-Ura medium using subseed cultures that were centrifuged and resuspended to achieve an OD600 of 2
and diluted further by 10� and 100�. Two microliters of each dilution was transferred into gridded petri
dishes containing SC-Leu-Ura medium, 20 g/L agar, and 0%, 4%, 8%, 10%, or 12% (vol/vol) [EMIM][OAc] and
incubated at 28°C for 2, 3, 5, 10, and 10 days for each [EMIM][OAc] concentration, respectively. Plate screen-
ing was performed a minimum of 3 times for each construct.

Analytical methods and bioinformatics. (i) Variant detection (mutation analysis). Whole-ge-
nome resequencing reads of WT (GCA_009372015.1) and MT (GCA_009194645.1) strains were quality fil-
tered as previously described (45) and imported to the CLC genomic workbench software version 11.0.1
(https://www.qiagenbioinformatics.com/). For each strain, the Map Reads to Reference tool was used
with default parameters to map reads to reference genome Clib122 (GCA_000002525.1) (46). Variants
for each strain were identified using the InDels and Structural Variants 1.81, Local Realignment 0.41, and
Fixed Ploidy Variant Detection 1.67 tools all set with default parameters. Variants specific to the MT
strain were identified using the Compare Sample Variant Tracks 1.4 tool, and variants causing an amino
acid change were identified using the Amino Acid Changes 2.4 tool. Types of nucleotide changes were
classified in different categories including single nucleotide variants (SNV), multiple nucleotide variants
(MNV), insertions, deletions, and replacements.

(ii) RNA sequencing. Samples were collected in biological triplicates for RNA sequencing from WT and
MT strains at early and mid-exponential growth phases in 0% and 8% (vol/vol) [EMIM][OAc]. Samples were
immediately quenched in liquid nitrogen and stored at 280°C until RNA isolation. Total RNA was purified
using the Qiagen RNeasy minikit (catalog no. 74104; Qiagen, CA, USA) prior to submission at the Joint
Genome Institute (JGI) using Illumina sequencing. Filtered RNA-Seq reads were analyzed within the CLC
genomics workbench version 11.0.1 (https://www.qiagenbioinformatics.com/) using the RNA-Seq analysis
tool to produce transcripts-per-million (TPM) values for each gene/sample that were used for all downstream
transcript analyses (see Table S4 in the supplemental material).

(iii) Plasmid amplification and Oxford Nanopore sequencing. Extracted plasmids were amplified
using random hexamer primers (Thermo Scientific SO181) and f 29 DNA polymerase (NEB M0269L), as
previously described (47), with the exception of using the commercial f 29 reaction buffer from NEB
(B0269L). Amplification products were cleaned and concentrated using the E.Z.N.A. Cycle-Pure kit from
Omega BioTek (D6492-02) and quantified using Nanodrop.

Purified DNA was then sequenced using Oxford Nanopore’s ligation sequencing chemistry (SQK-LSK109)
in conjunction with native barcoding expansions (EXP-NBD104/114) for high throughput, according to the
manufacturer’s recommendations. All samples were sequenced on a MinION device using R9.4.1 flow cells.
Samples were demultiplexed and base called either (i) in real time with MinKNOW v4.3.20 using the fast
base-calling algorithm or (ii) asynchronously with Guppy GPU v5.0.11 on Ubuntu 20.04 LTS using the fast
base-calling algorithm.

(iv) Plasmid sequence mapping. To call reads for certain gene/selection marker combinations in a
sample, the demultiplexed FASTQ files were concatenated into a single file and run through Centrifuge
(v 1.0.3) (48) in two iterations: (i) using the uracil and leucine selection marker sequences as the “genomes”
for alignment and then (ii) using the 29 gene sequences as a basis for alignment (Data Set S3). Centrifuge
then output .tsv files with each unique read ID that matched the sequence provided, using the standard
algorithm alignment cutoff parameters. The two output files were cross-referenced for reads that hit on both
the selection marker and a gene. The number of reads for each combination of gene/selection marker was
tabulated for each sample (Data Set S4). The number of reads for each gene was divided by the total number
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of reads (which mapped to genes and respective selection marker) for each sample’s uracil plasmid and leu-
cine plasmid separately. This value was multiplied by 100 to represent the percentage of individual gene
reads of the total reads for each plasmid in each sample.

(v) Gene ontology enrichment. Gene ontology (GO) for genes containing variants identified from rese-
quencing (i.e., mutated genes) was identified using ClueGo (49), Integrated Microbial Genomes (IMG) (50),
and BLASTp against the model yeast S. cerevisiae with an E value of ,1E210. Annotations were combined
and curated manually to classify mutated gene ontology. GO terms associated with classified genes were
manually retrieved from the Panther database (51) (Table S5) and mapped to classified genes to calculate
the number of genes associated with each annotation term. GO terms were defined as enriched if the sum
of upregulated and increasing genes in an annotation term was equal to or greater than double the sum of
upregulated and increasing genes between the two biological conditions in each pairwise data set. GO
enrichment for gene clusters connected to gene #17 and gene #18 was conducted using the Panther overre-
presentation test (http://geneontology.org/) (52–54) with the GO-slim biological process database and
default settings (Fisher’s exact, calculate false-discovery rate), and parent terms were used for illustration.

(vi) Statistics. One-way analysis of variance (ANOVA) with Holm-Sidak correction was used for all
statistical analyses with the SigmaPlot v.14 software.

Gene coexpression connectivity (GeCCo) analysis. (i) Gene expression classification. Gene TPM
values were floored to a value of 5 and averaged into log2-scaled values to compare biological conditions
(BC) in the following pairwise sets: (i) MT in 0% IL versus WT in 0% IL (BC1), (ii) WT in 8% IL versus WT in
0% IL (BC2), (iii) MT in 8% IL versus MT in 0% IL (BC3), and (iv) MT in 8% IL versus WT in 8% IL (BC4) (see
Fig. S1, step 1). For each pairwise set, X score (i.e., early exponential fold change, equation 1), Y score (i.e.,
mid-exponential fold change, equation 2), and Z score (i.e., genes that are regulated differently during ex-
ponential growth, equation 3) were calculated for each gene as shown below (also see Fig. S1, step 2):

X ¼ BC1early 2 BC2earlyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 1 ðVNÞBC1early 1 ðVNÞBC2early

q (1)

Y ¼ BC1mid 2 BC2midffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 1 ðVNÞBC1mid

1 ðVNÞBC2mid

q (2)

Z ¼ BC1mid 2 BC1early
� �

2 ðBC2mid 2 BC2earlyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 1 ðVNÞBC1mid

1 ðVNÞBC1early 1 ðVNÞBC2mid
1 ðNÞBC2early

q (3)

where BC1 and BC2 are average log2(TPM) values of a gene, subscripts “early” and “mid” refer to early-
and mid-exponential samples, respectively, V is variance, and N (=3) is the number of replicates. For
each equation, the numerator calculates fold changes while the denominator accounts for error by
dividing the fold change by the square root of pseudovariance (0.25) and the summation of variance (V)
divided by respective number of replicates for each sample in the numerator.

Next, genes were categorized into 1 of 6 classes based on the values of X, Y, and Z scores, including
BC1 upregulated (X $ 1 and Y $ 1), BC1 increasing (21 , X , 1, Y $ 1, and Z $ 1.5), BC2 upregulated (X
# 21, Y # 21), BC2 increasing (21 , X , 1, Y # 21, and Z # 21.5), changed regulation (jZj $ 1.5), and
no change (Fig. S1, step 3). The “upregulated” gene class represents genes with greater expression values
at both early- and mid-exponential samples. The “increasing” gene class represents genes without a signifi-
cant change in expression value at the early-exponential sample but a greater expression value at mid-ex-
ponential sample. The “changed regulation” gene class represents genes that are neither upregulated nor
increasing but with a regulation score greater than 1.5. The “no change” gene class represents genes that
fail to meet the requirements of upregulated, increasing, or changed regulation classifications.

(ii) Gene coexpression network construction and gene target selection. Pearson correlation was
conducted on early- and mid-exponential WT 8% IL and MT 8% IL sample-gene TPM values using a strin-
gent cutoff of 0.95. Next, this coexpression network was reduced by removing all genes except those
classified as upregulated by the MT 8% IL in pairwise set iv (i.e., MT 8% IL versus WT 8% IL) and used to
calculate degree centrality. These genes were ranked according to their degree and their average fold
change between the two transcriptomic time points (i.e., average of X and Y scores) and the 75th per-
centiles were calculated for both criteria. Finally, we chose 29 gene targets from the top 5 genes ranked
by fold change, the top 5 genes by degree, the top 5 genes by degree overlapping fold change, the top
5 genes by fold change overlapping degree, and 9 genes with relevant gene ontology terms (e.g., mem-
brane, kinase, transport, cell wall, and myosin complex).

GeCCo can be found at https://github.com/TrinhLab/GeCCo/.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 0.2 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 0.01 MB.
TABLE S3, XLSX file, 0.01 MB.
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TABLE S4, XLSX file, 0.9 MB.
TABLE S5, XLSX file, 0.3 MB.
DATA SET S1, XLSX file, 0.1 MB.
DATA SET S2, XLSX file, 1.4 MB.
DATA SET S3, XLSX file, 0.03 MB.
DATA SET S4, XLSX file, 0.02 MB.
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