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Abstract

Adult schistosomes live in the host’s bloodstream where they import nutrients such as glucose across their body surface
(the tegument). The parasite tegument is an unusual structure since it is enclosed not by the typical one but by two closely
apposed lipid bilayers. Within the tegument two glucose importing proteins have been identified; these are schistosome
glucose transporter (SGTP) 1 and 4. SGTP4 is present in the host interactive, apical tegumental membranes, while SGTP1 is
found in the tegumental basal membrane (as well as in internal tissues). The SGTPs act by facilitated diffusion. To examine
the importance of these proteins for the parasites, RNAi was employed to knock down expression of both SGTP genes in the
schistosomula and adult worm life stages. Both qRT-PCR and western blotting analysis confirmed successful gene
suppression. It was found that SGTP1 or SGTP4-suppressed parasites exhibit an impaired ability to import glucose compared
to control worms. In addition, parasites with both SGTP1 and SGTP4 simultaneously suppressed showed a further reduction
in capacity to import glucose compared to parasites with a single suppressed SGTP gene. Despite this debility, all
suppressed parasites exhibited no phenotypic distinction compared to controls when cultured in rich medium. Following
prolonged incubation in glucose-depleted medium however, significantly fewer SGTP-suppressed parasites survived.
Finally, SGTP-suppressed parasites showed decreased viability in vivo following infection of experimental animals. These
findings provide direct evidence for the importance of SGTP1 and SGTP4 for schistosomes in importing exogenous glucose
and show that these proteins are important for normal parasite development in the mammalian host.
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Introduction

Schistosoma mansoni is a parasitic platyhelminth that causes the

chronic, often debilitating disease, schistosomiasis affecting several

hundred million people globally. Infection is initiated following

skin penetration by larval parasites called cercariae which rapidly

adapt to the intra-mammalian environment in a process called

cercarial transformation. These transformed juvenile parasites are

now called schistosomula and they move from the epidermal

tissues into the blood stream where they mature. Adult worms

reside in the mesenteric veins of their mammalian hosts, where

they are generally found as male-female pairs.

The entire worm is surrounded by a continuous cytoplasmic

unit, or syncytium, called the tegument. The host interactive

surface of the tegument is unusual in that it consists of two tightly

apposed, lipid bilayer membranes that are highly invaginated. The

internal, basal membrane of the tegument consists of a normal

(trilaminate) lipid bilayer containing many invaginations. This

bilayer extends periodically beneath the underlying muscle to

enclose areas called ‘‘cell bodies’’ (or cytons) which contain nuclei

and protein synthetic machinery [1].

Adult worms use large quantities of host glucose; they are

reported to consume the equivalent of their dry weight in glucose

every 5 hours [2]. While the adults possess a functional gut, they

have been shown to take up glucose directly across their external

body surface by facilitated diffusion [3,4]. Three glucose

transporter mRNAs were originally identified from Schistosoma

mansoni and these were designated schistosome glucose transporter

protein (SGTP) 1, 2 and 4 [5]. Only SGTP1 and SGTP4

displayed glucose transport activity when expressed in Xenopus

laevis oocytes. In the Xenopus uptake assay, both proteins functioned

as typical facilitated diffusion glucose transporters, exhibiting

glucose stereospecificity, relaxed specificity for other hexoses,

sodium independence and marked inhibition by cytochalasin B

[5].

Immunolocalization of SGTP1 and SGTP4 revealed that both

of these proteins are localized in the tegument of schistosomula

and adult worms [6]. SGTP4 appears to be localized uniquely to
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the tegument, while SGTP1 can also be detected within the body

of the worm, particularly in muscle [6]. The presence of facilitated

diffusion transporters in the tegument implies that schistosomes

have the capacity to take up glucose by passive diffusion.

Localization of the SGTPs by immuno-electron microscopy

reveals that SGTP4 is present predominantly or exclusively within

the apical membranes, while tegumental SGTP1 is found only

within the basal membrane [7,8]. This asymmetrical localization

of the two SGTPs in the tegument suggests that the host

interactive protein (SGTP4), acts to import sugar from the

bloodstream into the tegument and that SGTP1 acts to transport

some portion of this sugar to underlying tissues. The Km for

glucose transport by the apical tegumental membrane transporter

SGTP4 is greater than that of the basal transporter SGTP1 (in

Xenopus oocytes) [5]. This should give an advantage to the basal

membrane transporter to associate with any free glucose that is not

utilized in the tegumental syncytium so that it can be moved more

deeply into the body of the worm.

We have long hypothesized that the SGTPs function to

transport exogenous glucose across the tegumental membranes

and into body of the worms [9]. However, until the advent of

RNAi methods for use with schistosomes, we could not effectively

test this fundamental notion. In this work, we show that

suppressing SGTP gene expression using RNAi does impair

schistosome glucose uptake capabilities and can debilitate the

parasites in vitro and in vivo.

Results

The Schistosoma mansoni genome contains four
facilitated glucose transporter genes

The availability of a nearly complete draft of the S. mansoni

genome [10] permits a careful bioinformatic analysis for facilitated

glucose transport protein genes and this identifies a total of four

SGTP genes. In addition to the three genes previously identified,

another facilitated glucose transporter homolog can now be

identified. The gene, which we designate SGTP3, is currently

identified as hypothetical protein Smp_127200. Searches of

dbEST reveal that ESTs exist for all four SGTP genes

demonstrating that these genes are expressed in mammalian stage

schistosomes. Because SGTP1 and SGTP4 are clearly demon-

strated to be expressed in the adult tegument and appear to be the

predominant facilitated glucose transporters in adult S. mansoni, we

focused our RNAi studies on these two genes [6].

RNAi-induced knockdown of SGTP1 and SGTP4 gene
expression in schistosomula and adult worms

To determine whether SGTP1 and SGTP4 are amenable to

gene silencing in schistosomula via the RNAi pathway, parasites

were treated with two siRNAs spanning distinct positions for each

target. All siRNAs were effective and showed comparable

knockdown for each target (not shown). One of each target-

specific siRNA was then selected for all subsequent experiments:

SGTP1siRNA1 for SGTP1 and SGTP4siRNA1 for SGTP4.

Parasites were electroporated with SGTP1siRNA1, SGTP4siRNA1,

or a mix or both siRNAs. Control parasites were treated with an

irrelevant siRNA or were not exposed to siRNA at all. Parasites

were then cultured for 14 days in Basch medium before being

harvested for gene expression analysis. Figure 1 shows that the

transcript levels of both targets were substantially reduced when

parasites were treated with each siRNA separately or in

combination, compared to controls (Figure 1A). Gene knockdown

is specific; siRNAs targeting SGTP1 have no effect on SGTP4

expression levels and vice versa. The reduction in transcript levels

was more striking for SGTP4 (,85%) than for SGTP1 (,55%).

Schistosomula treated with an siRNA targeting SGTP1 alone or

with a mix of siRNAs targeting both SGTP1 and SGTP4

exhibited a similar decrease in SGTP1 gene expression. Likewise,

parasites treated with an siRNA targeting SGTP4 alone or with a

mix of siRNAs targeting both SGTPs exhibited a similar decrease

in SGTP4 gene expression, as depicted in Figure 1.

To monitor SGTP gene suppression in adults, six week old

worms were recovered from infected mice and electroporated with

SGTP1 plus SGTP4 siRNAs. Transcript levels were measured 14

days after siRNA treatment by qRT-PCR and the results are

shown in Figure 1B. About 70% suppression of SGTP1 and 90%

of SGTP4 was observed in adult parasites following treatment,

compared to control parasites electroporated with an irrelevant

siRNA or parasites electroporated in the absence of siRNA.

Western blotting analysis was undertaken in order to assess the

impact of gene suppression on target protein levels. Figure 1C

shows that the suppression of both targets resulted in a substantial

diminution of SGTP1 (top panel) and SGTP4 (middle panel)

protein levels in these parasites. In contrast, both proteins were

easily detected in extracts of control parasites. In the bottom panel,

the amino acid permease control protein SPRM1hc was detected

in all extracts, demonstrating that comparable levels of protein

were present in each lane.

Effect of SGTP1 and SGTP4 gene suppression on glucose
import

The glucose uptake capacity of SGTP-suppressed schistosomula

versus controls was compared. As shown in Figure 2, parasites

treated with SGTP1 or SGTP4 siRNAs had a significant

(P = 0.0005) and similar (,50%) reduction in glucose uptake

capacity compared to the control group. Parasites treated with a

mix of both SGTP siRNAs showed an even more pronounced

reduction in glucose uptake (to ,70%) and this decrease was

significantly different from the values obtained using single SGTP-

suppressed parasites (P = 0.003). In the presence of cytochalasin B,

Author Summary

Schistosomes are parasitic worms that live in the blood
streams of ,200 million people globally. They import
glucose from host blood directly across their skin (the
tegument). In the tegument the parasites possess glucose
transporter proteins designated SGTP1 and SGTP4. SGTP4
sits on the outermost tegumental membranes while SGTP1
sits in the tegumental basal membrane (and on internal
tissues). We have long hypothesized that SGTPs are
involved in taking in glucose from the host but until the
advent of advanced molecular technologies for use with
schistosomes (notably RNA interference), we could not test
this fundamental notion. In this work we employed RNAi
to suppress expression of both SGTP genes in schisto-
somes. In support of our hypothesis, we find that SGTP1 or
SGTP4-suppressed schistosomes do exhibit an impaired
ability to import glucose compared to control worms and
that this effect is compounded by suppression of both
genes simultaneously. When suppressed parasites are
cultured in glucose-depleted medium fewer of them
survive. In addition, suppressed parasites showed de-
creased viability in experimental animals. These findings
provide direct evidence of the importance of these
tegumental transporters for schistosome feeding and
show that these SGTPs are important for normal parasite
development in the mammalian host.

Glucose Uptake in Schistosomes
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a glucose transporter inhibitor, the intake of glucose by control

parasites was decreased further (to ,80%, P = 0.008) (Figure 2).

Effect of SGTP1 and SGTP4 gene suppression on parasite
viability in vitro and in vivo

To determine whether SGTP suppression and the resulting

decrease in glucose uptake capacity affected the phenotype of

cultured schistosomula, parasite viability in culture was measured

by Hoechst staining 14 days after siRNA treatment. Schistosomula

were maintained either in complete RPMI (containing 10 mM

glucose) or in glucose-depleted RPMI (containing 0.05 mM

glucose). Figure 3 shows that suppressing the SGTP1 and SGTP4

genes did not significantly affect the viability of parasites kept in

medium containing relatively high levels of glucose. However

SGTP-suppressed parasites cultured in RPMI containing low

glucose were significantly less viable (by .40%) than their control

counterparts (P = 0.02). Parasites cultured in RPMI with no

glucose do not survive beyond 48 hours. It is noteworthy that

control parasites experience stress under low glucose conditions

such that 62.4% 65.6 of them remain viable after 14 days in

culture (compared with 93.3% 614.2 of control parasites cultured

under high glucose conditions).

To investigate whether RNAi-mediated gene silencing of

SGTP1 and SGTP4 affects parasite viability in vivo, we infected

groups of 7–8 mice with 1 day old control or SGTP1+ 4-

suppressed schistosomula. Figure 4 shows the number of worms

Figure 1. Schistosome glucose transporter protein (SGTP) gene expression analysis. A. Relative SGTP1 (grey bars) and SGTP4 (black bars)
gene expression (mean 6 SE) in schistosomula 7 days after treatment with control or SGTP siRNA. ‘‘SGTP1+4’’ indicates parasites treated with both
SGTP1 and SGTP4 siRNAs. B. Relative SGTP1 (grey bars) and SGTP4 (black bars) gene expression (mean 6 SE) in adult parasites 14 days after treatment
with the indicated siRNA. C. Protein levels in adult worm extracts obtained 14 days following treatment with the indicated siRNA. Western blot results
are shown for SGTP1 protein (top panel), SGTP4 (middle panel) and a control protein (SPRM1hc, bottom panel). The arrowheads indicate the
diminished level of SGTP proteins seen in the left lanes.
doi:10.1371/journal.ppat.1000932.g001

Glucose Uptake in Schistosomes
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recovered from these mice 28 days after infection. There was a

significant reduction in worm burden in the SGTP-suppressed

group compared to either control group.

SGTP gene expression analysis was undertaken on the worms

recovered from the infected mice and the data were compared to

the gene expression pattern of suppressed and control schistosom-

ula that had been maintained in culture. SGTP-suppressed

parasites cultured for 7 days (white bars, Figure 5) exhibited

,65% suppression of SGTP1 (Figure 5A) and close to 100%

suppression of SGTP4 (figure 5B). After 28 days cultured ex vivo

(grey bars, Figure 5), mRNA levels in the SGTP dsRNA-treated

worms were rising but remained substantially lower than control

levels (,50% for SGTP1 (Figure 5A) and ,70% for SGTP4

(Figure 5B)). In contrast, after 28 days in vivo (black bars, Figure 5),

SGTP-suppressed parasites recovered from infected mice were no

longer suppressed; SGTP transcript levels had returned to normal,

or above normal, levels.

Essentially the same results were observed when schistosomula

were treated with long dsRNAs specific for SGTP1 and SGTP4 by

soaking. The level of gene suppression using this metholology was

comparable to that reported above for parasites exposed to SGTP-

specific siRNA by electroporation. Parasites treated with SGTP-

specific, and control, long dsRNA were used to infect mice and

were recovered by perfusion 28 days later. As for the siRNA work,

significantly fewer worms were recovered from the SGTP-

suppressed group versus controls in this experiment using long

dsRNA (not shown). Finally, as seen with siRNA-treated parasites,

recovered parasites were no longer suppressed (data not shown).

Discussion

In this work we show that two Schistosoma mansoni glucose

transporter (SGTP) genes, SGTP1 and SGTP4, are susceptible to

suppression via RNAi. Of the two SGTPs targeted we find that

SGTP4 is consistently better suppressed than SGTP1 using

different siRNAs, long dsRNA and at two different life stages

tested. This is consistent with the notion that genes expressed in

schistosome tissues that are in direct contact with the environment

(e.g. the tegument or the gut) are more efficiently suppressed by

RNA interference compared to genes expressed in other tissues.

SGTP4 is predominantly and perhaps exclusively expressed in the

tegument [6,7] whereas SGTP1 is additionally expressed in the

internal tissues of the parasite, notably in the muscle [6,8]. In the

past we have noted that genes expressed predominantly or

exclusively in the tegument (e.g. SmAQP) can be potently

suppressed while those expressed both in the tegument and in

internal tissues (e.g. SPRM1hc) are more poorly suppressed using

the same protocols [11,12,13]. This may reflect differences in the

ability of dsRNAs to enter internal tissues or to the differential

expression of RNAi pathway components in different organs.

The level of SGTP4 gene suppression in schistosomula is

,80%. This is the case when parasites are treated with dsRNA

targeting SGTP4 alone or when treated with two siRNAs targeting

SGTP4 and SGTP1. In a similar manner, the level of suppression

of SGTP1 remains essentially the same when SGTP1 alone is

targeted for suppression or when SGTP1 and SGTP4 are both

targeted. These results support previous work [14] showing that

more than one gene can be suppressed at one time in schistosomes.

Our quantitative data show that the RNAi machinery is not

saturated by multiple siRNAs targeting different mRNAs.

The level of inhibition of glucose uptake into SGTP1-

suppressed parasites is comparable to that seen for SGTP4-

suppressed parasites. When SGTP1 alone is suppressed, glucose

should still be able to enter the parasite tegument freely via the

outer tegumental membrane transporter SGTP4. However, the

Figure 2. Glucose uptake analysis in schistosomes treated with
SGTP siRNA. Relative uptake of 2-deoxyglucose (mean 6 SE) into
schistosomula 14 days after treatment with the indicated siRNA. An
additional control group was treated with the glucose transport
inhibitor, cytochalasin B (control +CytB, right bar).
doi:10.1371/journal.ppat.1000932.g002

Figure 3. Relative viability of schistosomes treated with SGTP
siRNA. Schistosomula (mean 6 SD) were treated with the indicated
siRNA and their viability was established following culture for 14 days in
RPMI medium either containing high glucose (10 mM, grey bars) or low
glucose (0.05 mM, white bars).
doi:10.1371/journal.ppat.1000932.g003

Glucose Uptake in Schistosomes
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movement of imported glucose further into the body of the

SGTP1-suppressed parasites would then be impaired since this

transporter is present on the tegumental basal membranes and on

the membranes of other internal tissues. The inability of imported

glucose to be efficiently transported out of the tegument and into

the deeper tissues using SGTP1 would increase tegumental glucose

concentrations and likely impede the further import of glucose by

facilitated diffusion from the external environment. This is

reflected in lower radiolabeled glucose being taken in to the

SGTP1-suppressed parasites compared to controls.

When SGTP4 alone is suppressed, less glucose should enter the

worms across the tegument compared to controls but any glucose

that does enter and that is not utilized within the tegument should

be efficiently transported inward via SGTP1. This would promote

further glucose diffusion into the parasites via residual tegumental

SGTP4 transporters. Parasites with both SGTP1 and SGTP4

genes suppressed exhibit a significantly greater impairment of

radiolabeled glucose uptake compared with parasites that have

had just one of the transporter genes suppressed. This likely

reflects both a lower level of glucose uptake into the tegument via

SGTP4 and an impaired ability to move that glucose into the

internal tissues via SGTP1. Note that the level of glucose uptake in

the doubly suppressed parasites is higher than that seen in

parasites treated with a chemical inhibiter of facilitated glucose

transporter protein function - cytochalasin B. This compound has

been shown to block SGTP1 and SGTP4 function since it inhibits

radiolabeled glucose uptake into Xenopus oocytes that are

expressing SGTP1 or SGTP4 [5]. The double SGTP knockdown

parasites exhibited a higher glucose uptake (of ,30% versus

untreated controls) compared to parasites treated with cytochala-

sin B (whose uptake was ,20% of untreated control parasites).

Likely this reflects the high potency of cytochalasin B in almost

completely shutting down all SGTP function. In contrast, RNAi

leads to SGTP gene knockdown (but not gene knockout) and the

presence of residual functional SGTP protein in the siRNA-treated

groups does permit some label uptake. Residual protein includes

any protein generated before siRNA administration as well as new

protein derived from transcripts that survive the RNAi treatment.

The diminished ability of SGTP-suppressed schistosomes to

import glucose unequivocally demonstrates that these parasites

do use both SGTP1 and SGTP4 to efficiently take in sugar. In a

similar vein, earlier work reported that glucose uptake is impaired

in schistosomes following exposure to SGTP antisense oligonucle-

otides [15]. However, this work noted non-specific effects with

some oligonucleotides and considerable variability between

treatments, making the data equivocal [15]. Previous work has

demonstrated that SGTP1 is important for glucose uptake from

the environment in the sporocyst life stage [16].

In order to establish whether the inability to import glucose by

the SGTP-suppressed parasites had a detrimental impact on the

worms, their viability was compared with that of control parasites

in vitro and in vivo. Parasites in culture whose glucose transporter

genes are suppressed show no significant phenotypic differences

compared with controls, when they are maintained in medium

with a high glucose concentration (10 mM) for up to 14 days.

However, when these parasites are instead cultured in low glucose

medium (0.05 mM) for 14 days, significantly fewer suppressed

parasites survive compared with controls. This suggests that, in the

sugar-poor environment, an impaired ability to import glucose

upsets parasite metabolism and decreases viability. When SGTP-

suppressed parasites infect mice, fewer of them survive to

adulthood relative to controls. This is the case despite the fact

that glucose concentrations in blood are high (,5 mM). These

data suggest that the parasites’ glucose demands in vivo are higher

than in culture and this likely reflects the need for parasites in vivo

to generate more energy (through glucose catabolism) to allow

them migrate through tissues, invade the vasculature and combat

host immune effectors.

The level of RNAi-mediated target gene suppression diminishes

with time in culture. After 4 weeks in vitro the level of suppression

of SGTP1 is ,50% compared with ,65% at day 7 post

treatment. For SGTP4 the suppression level at week 4 in culture

is 70% compared with .95% at day 7. These data demonstrate

that the RNAi effect remains substantial even after a month in

Figure 4. Schistosome survival in vivo in mice following treatment with SGTP siRNA. Schistosomula were treated with the indicated siRNA
and used to infect mice. Worm numbers recovered from individual mice in each group are shown as dots. The lines indicate the mean for each group
and P values are given at top.
doi:10.1371/journal.ppat.1000932.g004

Glucose Uptake in Schistosomes
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culture. In contrast, equivalent parasites recovered from infected

mice 4 weeks after RNAi treatment exhibit no remaining SGTP

gene suppression. Those parasites that have survived in vivo have

SGTP mRNA levels at or even above control levels. Similar

variable outcomes of RNAi in schistosomes ex vivo compared to in

vivo have been reported in other studies [17,18]. One hypothesis is

that RNAi is variably effective in different parasites and/or that

different individuals in the treated parasite population received

different amounts of siRNA. Those in which SGTP knockdown is

least effective, or that received less dsRNA, survive because the

expression of their SGTP genes is minimally impaired. Another

hypothesis is that worms in vivo are more metabolically robust and

this leads to a shorter half life of the dsRNA and/or its

downstream effectors. In mammalian cells the longevity of the

Figure 5. Expression of SGTP1 and SGTP4 (mean ± SE) in schistosomula at different times after treatment with the indicated siRNA.
Parasites were either maintained in culture for 7 days after treatment (white bars) or for 4 week after treatment (grey bars), or were recovered from
infected mice 4 weeks after treatment (black bars). A, SGTP1; B, SGTP4.
doi:10.1371/journal.ppat.1000932.g005

Glucose Uptake in Schistosomes
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RNAi effect can depend on cell type: in non-dividing cells

suppression can persist for several weeks whereas in rapidly

dividing cells the effect may last only from 3 to 7 days. [19].

Schistosomes in culture appear quiescent; they do not develop as

quickly and fully as do parasites in infected animals and this may

contribute to the persistence of gene suppression observed in the

cultured worms.

In summary, this work shows that by demonstrably suppressing

glucose transporter gene expression in schistosomes using RNAi,

parasite feeding is hindered and this can significantly lower

parasite viability. These findings provide direct evidence for the

importance of SGTP1 and SGTP4 for schistosomes in importing

exogenous glucose and show that the proteins are important for

normal parasite development within the mammalian host.

Materials and Methods

Ethics statement
Infection of mice with schistosome parasites was carried out

following review and approval by the Institutional Animal Care

and Use Committee of Tufts University or Instituto René Rachou

- FIOCRUZ. The Tufts animal management program is

accredited by the American Association for the Accreditation of

Laboratory Animal Care, meets the National Institutes of Health

standards as set forth in the ‘‘Guide for the Care and Use of

Laboratory Animals’’ (National Academy Press, Washington DC,

1996), and accepts as mandatory the PHS ‘‘Policy on Humane

Care and Use of Laboratory Animals by Awardee Institutions’’

and NIH ‘‘Principals for the Utilization and Care of Laboratory

Animals Used in Testing, Research and Training’’.

Parasites
Biomphalaria glabrata snails infected with S. mansoni were obtained

from Dr. Fred Lewis (Biomedical Research Institute, Rockville, MD).

In some experiments parasites were obtained from snails infected at

Instituto René Rachou - FIOCRUZ, Belo Horizonte, MG, Brazil.

Schistosomula were prepared from cercariae released from infected

snails and were cultured in Basch medium at 37uC, in an atmosphere

of 5% CO2 as described [20]. Parasite viability was $90% at the

beginning of each experiment as assessed by Hoechst staining [11]. In

some experiments schistosomula were kept in complete RPMI

medium which is RPMI supplemented with 10 mM Hepes, 2 mM

glutamine, 5% fetal calf serum and antibiotics (100 U/ml penicillin

and 100 mg/ml streptomycin). Adult worms were recovered by

vascular perfusion from Balb/c mice that were infected with 125

cercariae, 6 weeks previously. Adult parasites were maintained in

Basch medium for RNAi experiments.

Treatment of parasites with double stranded RNA
(dsRNA)

Schistosomula and adult worms were treated either with

synthetic siRNAs (IDT, Coralville, IA) or with long dsRNAs

specific for SGTP1 or SGTP4 (GenBank accession numbers

L25065 and L25067, respectively). The siRNAs were designed

with the help of the RNAi Design Tool at http://www.idtdna.

com/Scitools/Applications/RNAi/RNAi.aspx. The siRNAs tar-

geting SGTP1 are SGTP1siRNA1: 59-GGAGCATTCAGTTGT-

GGTTGGGTTG-39spanning the coding sequence at positions

229–254 and SGTP1siRNA2: 59-ACATAAAGAAGCTGAGG-

CACGTAAA-39 spanning the coding sequence at positions 647–

672. The siRNAs targeting SGTP4 are SGTP4siRNA1: 59-

GAAATAGCTCCCTTATCTCTTCGTG -39, which cover po-

sitions 447-472 of the coding sequence and SGTP4siRNA2: 59-

GTGACACCAAGTTTCTTATATGCTC-39 which cover posi-

tions 186-211 of the coding sequence. The negative control siRNA

(59-CTTCCTCTCTTTCTCTCCCTTGTGA-39) is the ‘‘DS

Scrambled Neg’’ obtained from IDT, Inc. This sequence does

not match any in the S. mansoni genome. Target-specific siRNA

delivery to the parasites was performed by electroporation as

described previously, using 2.5 mg/50 ml (2.8 mM) of each siRNA

for schistosomula and 5 mg/50 ml (5.6 mM) for adults [21,22].

Long dsRNA was prepared as described previously [21]. The

primer sequences for preparing long dsRNA targeting SGTP1 are

SGTP1-T7, 59-ggtaatacgactcactatagggCTAATCGGATACAA-

TCT-39 and SGTP1-T3, 59-ggaattaaccctcactaaagggAATGAAA-

TACGAGAAA-39 which spans the coding sequence at positions

79–514. The lower case sequences represent T7 or T3 RNA

polymerase promoter sequences. SGTP4 long dsRNA was

prepared as described [17]. A non-schistosome derived long

dsRNA used as an irrelevant control was generated from the yeast

expression plasmid pPIC9K, as described earlier [17]. Long

dsRNA was delivered to the parasites by soaking cultured

schistosomula overnight with 50 mg/ml of irrelevant or SGTP-

specific long dsRNA [21,22]. Gene suppression was assessed post-

treatment by comparing mRNA and protein levels in target versus

control groups.

SGTP gene expression analysis
The levels of expression of SGTP1 and SGTP4 genes in

schistosomula and adult worm pairs treated with gene-specific

dsRNA were measured by quantitative real time PCR (qRT-

PCR), using custom TaqMan gene expression systems from

Applied Biosystems (Foster City, CA). The procedure, involving

total RNA extraction and quantitative real time PCR, has been

described [21]. The following primers and probe were selected to

detect SGTP1: SGTP1 forward, 59-CTGCAGCTTATTCACT-

GAGTCAATC- 39; SGTP1 reverse, 59-CCACCGATGTTT-

TTCTGTATAACAGGAT-39 and SGTP1 probe, 59-FAM- TC-

AATGGTTATCCAATCTAATTGT- 39. To detect SGTP4

expression, the following primers and probe were used: SGTP4

forward 59-AGCCAAGGAGTTAACTTATTATGCAATTTAT-

TG 39-; SGTP4 reverse, 59- TCCAACAGATAATAACGATAAC-

TAAAAATGGTAAGAA-39 and SGTP4 probe, 59-FAM- CAATG-

GCATCATTAATGC- 39. Alpha tubulin was used as the

endogenous control gene for relative quantification employing

the DDCt method [23]. Results were graphed as gene expression

level relative to the group treated with control irrelevant dsRNA.

SGTP expression: western blotting analysis
Parasite lysates were prepared by adding 50 ml of ice cold cell

disruption buffer (PARIS Kit, Ambion, TX) followed by

incubation for 30 minutes on ice. The protein content in each

extract was estimated using the BCA Protein Assay Kit (Pierce, IL)

according to the manufacturer’s instructions. Soluble protein (5 mg

in 20 ml SDS-PAGE sample buffer) was subjected to SDS-PAGE

under reducing conditions, blotted onto PVDF membrane and

blocked using detector block solution (KPL, Inc.) for 1 h at room

temperature. The membrane was then probed overnight at 4uC
with affinity purified rabbit anti-SGTP1 or anti-SGTP4 serum at

1:500 [5] or antibody directed against a control schistosome

protein (SPRM1hc) [13]. Bound primary antibody was detected

using goat anti-rabbit IgG conjugated to horseradish peroxidase

(Invitrogen, Inc.), diluted 1:5000, followed by incubation with the

chemiluminescent substrate LumiGLO (KPL, Inc.) and the

membrane was exposed to X-ray film. The same membrane was

probed three times to detect SGTP1, SGTP4 and the loading

control protein, SPRM1hc. For each re-use, the membrane was

first incubated for 30 min at room temperature with 2% SDS and
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0.7% b-mercaptoethanol to strip bound antibody and was then

washed in phosphate buffered saline twice for 30 min each.

Parasite viability measurement
To evaluate if SGTP1 and SGTP4 gene knockdown affected

parasite survival in culture, viability was assessed by Hoechst staining

[11]. Three day old schistosomula electroporated in the presence of a

mix of SGTP1 and SGTP4 siRNAs at 2.5 mg each, were cultured in

RPMI medium containing either 10 mM or 0.05 mM D-glucose for

14 days. Parasite mortality was determined in samples containing

,100 parasites each, by adding 1 mg/ml Hoechst 33258 to the cultures

at room temperature. After 10 min dead parasites were counted using

a 460 nm reading filter. Viability in each group was calculated as the

average value (+/2 standard deviation) from triplicate experiments

relative to controls treated with irrelevant siRNA.

SGTP function: glucose uptake analysis
Schistosomula treated with siRNA specific for SGTP1, SGTP4,

or a mix of equal amounts of both siRNAs, were compared for

their ability to take up glucose relative to control parasites treated

with an irrelevant siRNA. Schistosomula, 14 days after siRNA

treatment, were washed four times in wash medium (RPMI

without glucose and supplemented with 10 mM Hepes, 2 mM

glutamine, and antibiotics (100 U/ml penicillin and 100 mg/ml

streptomycin)) and resuspended in 30 ml of wash medium

supplemented with 0.1 M D-glucose. Each sample received 1 ml

of [1,2-3H]2-deoxyglucose at 1 mCi/ml (Amersham, Piscataway,

NJ) followed by a 30 min incubation at room temperature.

Parasites were subsequently washed four times in wash medium

before being disrupted in 30 ml of 2% SDS. The parasite lysate

was added to 1 ml Scintiverse scintillation fluid (Fischer) and

subjected to liquid scintillation counting. Radiolabel uptake was

calculated per 1000 schistosomula. Assays were performed in

triplicate for each group and averaged for analysis. Glucose uptake

in control parasites was also measured in the presence of

cytochalasin B (40 mM) which was added to the parasite culture

for 30 min prior to the start of the uptake experiment.

Infection of mice with siRNA-treated schistosomula
One day old cultured schistosomula were electroporated with

SGTP, or control, or no, siRNA and the groups were divided into

three samples each. The first sample was immediately used to

infect female BALB/c mice (,1,000 parasites/mouse) and the

other two samples were kept in culture for 7 days or for 28 days to

determine the efficiency of gene knockdown (at day 7) and to

monitor long-term suppression in vitro (at day 28). Mice were

infected by injecting schistosomula in 100 ml of RPMI without

phenol red into the thigh muscle of the animals using a 1 ml

tuberculin syringe and a 25G-1 needle. Twenty eight days later,

the mice were euthanized and adult worms recovered by portal

vein perfusion. Recovered worms were counted, examined under

a light microscope and subsequently their SGTP gene expression

levels were determined, as described above. The same procedure

was followed in experiments in which schistosomula were exposed

to long dsRNA by soaking, except that mice were infected 24 h

after parasite exposure to long dsRNA.

Statistical analysis
All data were analyzed using GraphPad Prism 4 software. One

Way ANOVA was used to compare median values among three or

more groups. Student’s t-tests were used to compare the means

between a target group and a control group and p values close to

or less than 0.05 were considered significant.

Accession numbers
The following GenBank accession numbers apply to the DNAs

targeted in this work: SGTP1: L25065 and SGTP4: L25067.
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