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Abstract

Zinc finger nucleases (ZFNs) enable precise genome modification in a variety of organisms and cell types. Commercial ZFNs
were reported to enhance gene targeting directly in mouse zygotes, whereas similar approaches using publicly available
resources have not yet been described. Here we report precise targeted mutagenesis of the mouse genome using
Oligomerized Pool Engineering (OPEN) ZFNs. OPEN ZFN can be constructed using publicly available resources and therefore
provide an attractive alternative for academic researchers. Two ZFN pairs specific to the mouse genomic locus
gt(ROSA26)Sor were generated by OPEN selections and used for gene disruption and homology-mediated gene
replacement in single cell mouse embryos. One specific ZFN pair facilitated non-homologous end joining (NHEJ)-mediated
gene disruption when expressed in mouse zygotes. We also observed a single homologous recombination (HR)-driven gene
replacement event when this ZFN pair was co-injected with a targeting vector. Our experiments demonstrate the feasibility
of achieving both gene ablation through NHEJ and gene replacement by HR by using the OPEN ZFN technology directly in
mouse zygotes.
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Introduction

Mouse lines carrying genes that have been disrupted (knocked-

out) or modified (knocked-in) by homologous recombination (HR)

are important tools that are widely used in biomedical research.

Such lines are generated by gene targeting in mouse embryonic

stem (ES) cells and subsequent morula aggregation or blastocyst

injection of positive clones to generate chimeric animals [1,2].

Despite several improvements aimed at shortening the time frame

of this approach [3] and considerable efforts of consortia such as

EUCOMM, KOMP, or NorCOMM to target all mouse genes

[4,5] engineering the mouse genome remains expensive, time-

consuming and is often plagued by technical problems such as

genomic stability of ES cells and subsequent difficulties in

obtaining germline competent chimeras.

Zinc finger nucleases (ZFNs) have been conceived as an

alternative means of selectively altering the eukaryotic genome

[6]. ZFNs are custom endonucleases that generate double-strand

breaks (DSBs) in their target DNA sequence. Each monomer

consists of 3 to 6 DNA-binding zinc finger modules and the

endonuclease domain of FokI [7]. The zinc finger modules specify

a binding site of 9 to 18 bps thus allowing the design of ZFN pairs

specific for ‘‘half-sites’’ with a total potential specificity of up to

36 bp in length. ZFN pairs can be produced by modular assembly

of one-finger [8,9] or two-finger modules [10,11] with predefined

binding characteristics or by selection-based methods such as the

Oligomerized Pool Engineering (OPEN) protocol developed by

the Zinc Finger Consortium (http://www.zincfingers.org) [12,13].

OPEN relies on a bacterial two-hybrid selection system [12] to

identify ZFNs from combinatorial zinc finger libraries, which

exhibit high activities and specificities for their intended target

sites. OPEN ZFNs have been used to efficiently modify

endogenous genes in zebrafish [14], plants [15,16], and human

somatic [12] and pluripotent stem cells [17,18]. Using the

sequences of a large number of OPEN ZFNs, a selection-free

approach known as Context-Dependent Assembly (CoDA) was

also recently described that yielded active ZFNs in zebrafish and

plants with a success rate of approximately 50% [19,20].

DSBs caused by ZFN activity can be repaired by either error-

prone non-homologous end joining (NHEJ), the dominating DNA

repair mechanism in most eukaryotes [21], or by high fidelity HR

[22]. ZFN-induced mutations caused by mutagenic NHEJ have
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been used to generate knockout zebrafish through microinjection

of ZFN mRNAs or ZFN expression constructs directly into

embryos [11,14,23] and similar approaches were also used to

manipulate the genomes of rat [24–26] and mouse [27] following

microinjection of zygotes. In a further refinement, HR-mediated

gene targeting was achieved by co-injection of ZFN mRNAs

together with targeting constructs into mouse and rat zygotes

[28,29]. Most of these experiments were carried out with ZFNs

generated by proprietary technology of Sigma-Aldrich/Sangamo

BioSciences Inc.. By contrast, ZFNs generated using the OPEN

platform and other publicly available assembly kits [30,31] can be

constructed directly by the end user.

Here, we tested two OPEN ZFNs designed to target the mouse

gt(ROSA26)Sor (ROSA26) locus. Our findings demonstrate that

OPEN ZFNs can be used to achieve gene ablation through NHEJ

and gene targeting by HR directly in mouse zygotes.

Results

The mouse ROSA26 locus is a ‘‘safe harbour’’ frequently used

for site-specific insertion of transgenes by HR. Previous studies

have demonstrated the feasibility of gene targeting in the ROSA26

locus by use of commercially available ZFNs [28]. In a

complementary approach we wanted to investigate whether

OPEN ZFNs also allow modification of the ROSA26 locus. Due

to constraints in the targeting range of the OPEN system it was,

however, not possible to target a ZFN pair directly to the XbaI site

in the ROSA26 locus that is frequently used to insert transgenes.

Instead, two ZFN pairs were used in our experiments that could

mediate DNA cuts in proximity of this XbaI site. These ZFN pairs,

90/91 and 204/205, target the ROSA26 sequence 75 and 403 bp

upstream of the XbaI site, respectively (Figure 1A, Table S1).

Initially, we injected ZFN pairs as in vitro synthesised mRNA

into the cytoplasm of zygotes. Specific ZFN activity was estimated

by the number of imprecise NHEJ events in the genome of the

resulting offspring. Cytoplasmic microinjection of mRNAs encod-

ing the 90/91 heterodimeric pair did not result in any discernable

ZFN activity either in the form of mutagenic NHEJ or through

HR upon co-injecting the pRosa26.8 donor construct [28]

(Table 1) that induces alterations at the XbaI site 75 bp

downstream of the 90/91 cleavage site. Also cytoplasmic

microinjection of mRNAs encoding the 204/205 homodimeric

ZFN pair at a concentration of 10 ng/ml appeared to be toxic and

did not result in genome modification through NHEJ. In addition,

we observed high toxicity but no NHEJ or HR after co-injections

of the same mRNAs with targeting vector gtR26_EGFP contain-

ing an EGFP expression cassette sized 3.5 kb and equipped with

1.4 and 1.8 kb long homology arms flanking the ZFN recognition

site (data not shown). This toxicity also persisted upon co-injecting

reduced concentrations (2 ng/ml) of 204/205 homodimeric

mRNAs. Thus, none of the experiments performed with the

heterodimeric pair 90/91 and homodimeric pair 204/205 led to

any discernable activity in mouse zygotes.

Failing to observe any activity with ZFN configurations

described above we proceeded by using heterodimeric versions

of the 204/205 ZFN pair. Cytoplasmic injection of mRNAs

encoding heterodimeric 204/205 ZFNs was well tolerated by the

embryos and led to efficient disruption of the ZFN 204/205 target

sequence in a total of 12 founder animals as detected by FspI

digestion and confirmed through sequence analysis (Figure 1B,C).

Founders carrying NHEJ-mediated disruption were consistently

obtained across several injection sessions (Table 1). One of the

injection series yielded a founder in which both alleles of the

ROSA26 locus had been mutated. These alleles, which could be

discriminated by a C/T SNP 33 bp upstream of the ZFN cleavage

site, contained identical 23 bp deletions (Figure 1A,B, Figure S1B).

To investigate the possibility of using the 204/205 ZFN pair to

induce HR at the ZFN cleavage site, we co-injected the ZFN

mRNAs with a linear DNA fragment of the targeting vector

gtR26_EGFP. We identified 16 fluorescent founder animals and

could confirm that one of them carried the gtR26_EGFP cassette

correctly integrated into the ZFN target site as confirmed by

Southern blot analysis (Figure 2B) as well as by junction PCR and

sequencing (Figure 2B, S2). The integrated EGFP transgene could

be passed to the next generation and remained active in F1

offspring (Figure 2C,D). In further experiments we co-injected the

full-length super-coiled gtR26_EGFP targeting vector, since

vectors with super-coiled topology served as efficient donors in

previous studies [28,29]. We failed, however, to observe HR in this

particular experiment (Table 1).

To test whether integration at the ZFN 204/205 cleavage site

would allow transgene expression under the same transcriptional

control as has been reported before for ROSA26 insertion

transgenes, we co-injected the linear targeting construct

gtR26_tdT carrying a 2.5 kb splice-acceptor tdTomato cassette.

Despite identifying 12 pups that expressed tdTomato and several

others carrying independent NHEJ events, we could not identify

any animals with homologous integration of the gtR26_tdT vector

as determined by Southern blot and junction PCR even though

NHEJ events were present (table 1, data not shown). This result

shows that despite ZFN activity, the gtR26_tdT expression cassette

did not integrate into the ROSA26 locus. This observation was

surprising because the gtR26_tdT vector included identical

homology arms and a smaller insert compared to gtR26_EGFP.

Therefore, we conclude that the 12 tdTomato expressing mice are

most likely the result of random transgene integration and a

partially active ROSA26 promoter that was included in the left

homology arm of the gtR26_tdT construct.

Discussion

Nuclease-assisted gene targeting in zygotes offers a more

expeditious alternative when compared to standard gene targeting

in mouse ES cells. This becomes particularly important for

frequently targeted loci such as ROSA26. An additional advantage

comes with the species and strain-independent cleavage mecha-

nism of ZFNs, which allows generation of germline-competent

founders in all organisms accessible to embryo manipulation [32].

We explored the potential of OPEN ZFNs as an alternative for

targeted transgenesis in mouse embryos and conclude that OPEN

ZFN mRNAs can be used to engineer the mouse genome by direct

zygote injection.

Injection statistics compiled in Table 1 clearly show that in the

case of zygotes expressing the ROSA26 ZFN 204/205 heterodimer

pair NHEJ repair occurs more frequently than HR as described in

earlier studies [28,29]. NHEJ events observed in 4 to 9% of

offspring with this single pair are well within the range of NHEJ

frequencies observed in other studies using ZFNs from OPEN

selection or the CoDA pool in human cells, zebrafish embryos or

plants [12,15,19]. However, in rodent zygotes NHEJ modification

rates above 20% were reported after microinjection of ZFNs

obtained through the Sigma-Aldrich CompoZr service [27–29].

Mosaicism and the presence of two or more modified alleles in a

single animal were frequently observed in these studies. We

identified one founder, ZGFP112, carrying an identical deletion in

both ROSA26 alleles. This genotype could be the result of a

primary NHEJ deletion in one allele which served as a

homologous donor in the subsequent repair of the second DSB

OPEN ZFNs for Gene Targeting in the Mouse Embryo
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by HR. Alternatively, microhomology domains (Figure S1B) in

proximity to a DSB could have triggered a preferential mode of

end-joining leading to identical outcomes of individual repair

events [27]. Whether the lower ZFN activity rates in our study as

compared to previous studies are the result of locus-dependent

effects, differences in ZFN binding activity, variations in injection

procedures, or lack of codon optimization in our ZFN expression

vectors for expression in mammalian cells will only be revealed by

further comparative studies. Also, a recent study showed that, at

least in cultured cells, the cleavage activity of ROSA26-specific

ZFNs generated by modular assembly [33] increased significantly

upon incorporation of additional ZF modules. However, we note

that this strategy does not always increase activity and care must

be taken with the choice of linkers used to add more fingers

because these more extended ZFNs can potentially bind to a

greater range of off-target sites using subsets of fingers [10].

Meyer and colleagues reported successful vector integration into

ROSA26 in 1.7% to 4.5% of pups born. In our study, HR-

mediated modification of the ROSA26 was observed in a single

germline-competent founder out of 51 mice born after co-injecting

585 zygotes with ZFN 204/205 mRNA and the linear

gtR26_EGFP donor construct. Surprisingly, no targeted integra-

tion was detected when supercoiled gtR26_EGFP, the preferred

donor topology used in earlier studies [28,29], or linear

gtR26_tdT, a targeting vector with identical homology arms,

were co-injected with ZFNs 204/205. Thus, a total of 1500

zygotes were injected with ZFNs 204/205 together with donor

constructs to yield a single targeted founder. While we cannot

formally exclude that the observed targeted integration event

results from the resolution of a spontaneously occurring DSB and

is unrelated to ZFN activity, this scenario seems rather unlikely in

light of previously published data. To date, only one study has ever

Figure 1. Non-homologous end joining repair of ZFN-generated double-strand breaks within the ROSA26 locus. (A) Schematic of ZFN
90/91 and 204/205 target sites within ROSA26 intron 1. ZFN pairs 90/91 and 204/205 target sites 75 bp and 403 bp upstream of the XbaI site (white
arrows), which is routinely used in ROSA26 targeting, respectively. ZFNs 204/205 target a partial FspI recognition sequence. RF and RR, ROSA26
forward and reverse primers used for NHEJ analysis generating a 474 bp fragment (black arrows). (B) Screening for NHEJ repair at the ZFN204/205
cleavage site. Genomic DNA extracted from fetuses or pups developing from ZFN-injected zygotes was amplified with primers RF and RR and
subjected to FspI restriction digest. Most error-prone NHEJ repair events eliminate the FspI recognition sequence (underlined in C) resulting in an
indigestible band at 474 bp. In the majority of founders such as Z20 both modified and wt alleles were detected, however only mutated alleles were
present in founder ZGFP112. (C) Cloning and sequencing of undigested PCR products reveals mutations around the ZFN204/205 cleavage site.
Founder ZGFP112 carried an identical D23 deletion in both ROSA26 alleles. ZFN 204/205 recognition sites highlighted in bold and the spacer region in
grey color.
doi:10.1371/journal.pone.0041796.g001

OPEN ZFNs for Gene Targeting in the Mouse Embryo

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e41796



reported spontaneous homologous integration of a targeting

construct into the genome of microinjected zygotes and more

than 10,000 zygotes were injected to obtain a single targeting

event in that report [34].

The issue of ZFN toxicity has often been raised as an indicator

for off-target ZFN activity and thus a potential limitation of the

technology. Although the mice generated in this study were not

tested for off-target cleavage events, we have not observed a

marked increase in embryo lethality upon injection of any

heterodimeric ZFNs as compared to conventional pronuclear

injections routinely performed in our laboratory. This is in stark

contrast to microinjections of homodimeric ZFNs, which caused

significant embryo lethality most likely due to more frequent off-

target cleavage events [35].

Thus far, the influence of ZFN activity on gene targeting

efficiency has not been studied comprehensively in microinjected

embryos. However, earlier studies [28,29] suggest a positive

correlation between the number of NHEJ repair events and HR-

mediated targeting events, which both depend on the frequency of

DSBs and ultimately on ZFN activity. The size of the desired

modification is clearly another factor influencing targeting

efficiency with small modifications such as adding or replacing a

small number of nucleotides clearly faring better than experiments

requiring integration of large inserts at the same locus [29].

In our hands only one out of the two ROSA26 OPEN ZFN pairs

showed both NHEJ and HR activities in mouse zygotes. Recently

described novel reporter systems translating nuclease-induced

frameshift events into a switch between two discrete fluorescent

signals [36,37] may be useful to quickly identify active ZFNs in

cultured cells prior to commencing the actual gene targeting

experiments in zygotes. In addition to ZFNs, the recently

described TAL Effector Nucleases (TALENs) show promise as

an alternative method for rapid assembly of site-specific nucleases

[38–42], but have to still prove their potential for use in mouse

oocytes.

Based on the experiments presented here, OPEN ZFNs

represent viable tools for achieving NHEJ-mediated gene knock-

out in mouse zygotes. Since we observed only one event, we

cannot estimate the efficiency of OPEN 204/205 ZFN heterodi-

mers for achieving integration of a targeting vector into the

ROSA26 locus. Only further experiments will reveal how OPEN

ZFNs compare in general with other systems in supporting HR in

mouse zygotes.

Materials and Methods

Animals
Females and males of BDF1 (B57BL/66DBA/2), C57BL/6,

and CD1 mice were purchased from a commercial breeder

(Charles River, Germany). All animals were maintained in

temperature- and light-controlled rooms (12 light/12 dark, light

on from 6:00 a.m.) with food and water ad libidum. All experiments

including laboratory animals were approved by the Cantonal

Veterinary Office of Zurich. The protocol of animal handling and

treatment was in accordance with Swiss Federal and Cantonal

regulations as well as the internal guidelines of the University of

Zurich.

Embryo Collection, Culture and Manipulation
B6D2F1 or C57BL/6 female mice underwent ovulation

induction by intra peritoneal (i.p.) injection of 5 IU pregnant

mare’s serum gonadotrophin (PMSG; Folligon – InterVet,

Switzerland), followed by i.p. injection of 5 IU human chorionic

gonadotropin (hCG; Pregnyl – Essex Chemie, Switzerland) 48 h
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later. For the recovery of zygotes, the B6D2F1 and C57BL/6

females were mated with the males of the same strain immediately

after the administration of hCG. All zygotes were collected from

oviducts 24 h after the hCG injection and were then freed from

any remaining cumulus cells by a 1–2 min treatment of 0.1%

hyaluronidase (Sigma) dissolved in M2 medium.

Mouse embryos were cultured in M16 (Sigma) medium at 37uC
and 5% CO2. For micromanipulation the embryos were

transferred into M2 medium (Sigma).

Cytoplasmic and pronuclear microinjections
All microinjections were performed using a microinjection

system comprised of an inverted microscope equipped with

Nomarski optics (Nikon, Japan), set of micromanipulators (Nar-

ashige, Japan) and a FemtoJet microinjection unit (Eppendorf,

Germany). ZFN mRNAs were injected into the cytoplasm whereas

the DNA expression constructs and DNA targeting fragments

were injected into the male pronuclei; in experiments where

mRNA and DNA were co-injected the RNA DNA mixture was

first injected into the male pronucleus and subsequently into the

cytoplasm upon the withdrawal of the microinjection capillary.

Specific concentrations of injected mRNAs and DNA constructs

are compiled in Table 1.

Embryo Transfer
Embryos that survived the microinjection were transferred on

the same day into the oviducts of 8–16 weeks old pseudopregnant

CD-1 females (0.5 days post coitus) that have been mated with

sterile TgV males [43] on the day before embryo transfer.

Pregnant females were allowed to deliver and raise their pups or

were sacrificed at 14–16 days post embryo transfer so that the

developing foetuses could be removed for analysis.

Construction of ZFN expression vectors and mRNA
preparation

Zinc finger proteins binding target sites 75 and 403 bp

upstream of the XbaI site within the ROSA26 intron 1 were

selected using the previously described OPEN method [12].

Selected zinc fingers (Text S1) were cloned as XbaI-BamHI

fragment into either the expression vectors pST1374 or

pMLM290/pMLM292 that express homo- or heterodimeric

ZFNs, respectively [35]. In both ZFN expression vectors, the

CMV promoter was replaced by a CMV early enhancer element/

chicken beta-actin promoter (CAG) promoter [44].

In vitro mRNA transcription, capping and polyadenylation, was

performed using the mMESSAGE mMACHINE T7 Ultra Kit.

Prior to injection the mRNAs were purified using the NucAway

Figure 2. ZFN 204/205 promote ROSA26 targeting by homologous recombination in mouse zygotes. (A) HR targeting strategy for the
insertion of the targeting vector gtR26_EGFP carrying EGFP driven by a CAG promoter into the ROSA26 locus. (B) Southern blot analyses of EcoRI
digested genomic DNA from a GFP-fluorescent animal showing site-specific integration into the ROSA26 locus. Both 59 and 39 probes detect only one
expected fragment in the DNA of wild-type (wt) animal. Additional fragments detected in the DNA of targeted animal (ti) are consistent with the
integration of the CAG-EGFP cassette into one of the ROSA26 alleles. (C) Germline transmission of the ROSA26-CAG-EGFP allele was confirmed by
junction PCR in two F1 mice, one of which is depicted in (D). Primers RF, GF, and RR2 generate a 2.5 kb fragment from ROSA26 wt alleles, while an
additional 3.2 kb fragment is amplified from a gtR26_EGFP targeted allele.
doi:10.1371/journal.pone.0041796.g002
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Spin Columns (Ambion). mRNA quality was verified by denatur-

ing gel electrophoresis and concentration was quantified using

spectrophotometry.

Construction of targeting vectors
Targeting vector GTR26 includes a 1.4 kb 59 ROSA26

homology arm and a 1.8 kb 39 ROSA26 homology arm flanking

a central SwaI restriction site. An expression cassette consisting of a

1.6 kb CAG promoter/enhancer followed by the 720 bp EGFP

coding region and the 531 bp rabbit beta-globin polyadenylation

site (3.5 kb in total, including 59 and 39 flanking sequences) was

inserted by blunt cloning into the SwaI site to generate targeting

vector GTR26-EGFP. To generate targeting vector GTR26-tdT a

cassette including the 104 bp Ad2 splice-acceptor followed by a

590 bp triple-STOP-pCMV-IRES fragment, the 1.4 kb tdTomato

coding region and the 256 bp TK polyadenylation signal (2.5 kb

in total, including 59 and 39 flanking sequences) was PCR-

amplified from pXLBluescriptII PTS tdTomato (gift of J. Ruiz and

K. Rector) using primers AGG GCG CAG TAG TCC AGG

GTT TCC and GGC TAT GGC AGG GCT TGC CGC C with

Pfu polymerase and cloned into the SwaI site of the GTR26

targeting vector. To generate a linear fragment all GTR262based

targeting vectors were PacI digestion prior to microinjection.

NHEJ and Targeted integration detection assays
Genomic DNA was extracted from mouse biopsies or fetal tissue

using a buffer containing 10 mM Tris-HCl pH 9, 50 mM KCl,

0.45% Nonident p40, 0.45% Tween 20 and Proteinase K.

Extracts were subjected to Phenol/Chloroform/Isoamyl alcohol

purification, precipitated with Isopropanol, and dissolved in EB

buffer (Qiagen).

For detecting NHEJ repair at the ROSA26 locus, primers RF

(GCC GCC CAC CCT CCC CTT CCT C) and RR (CGC CTA

CT CCA CTG CAG CTC CC) were used to amplify a 474 bp

fragment surrounding the ZFN204/205 target site. 25 ml of each

PCR product were digested with FspI and subsequently resolved

on a 2% agarose gel. Samples including undigested PCR

fragments were cloned into pGEM-T easy (Promega) for Sanger

sequencing.

Targeted integration of donor vectors was assessed by junction

PCR and Southern blotting. In case of ZFN204/205 –mediated

ROSA26 targeting primers GF (GCC GGG ATC ACT CTC

GGC ATG) and RR2 (CAC CAC TGG CTG GCT AAA CTC

TGG) amplified the 39 junction that is specific for the integration

of GTR26-204/205-CAG-EGFP into the mouse ROSA26 locus.

For Southern Blot analysis 10 mg of genomic DNA were digested

overnight at 37uC with EcoRI, resolved on a 0.7% agarose gel, and

transferred to nylon membranes. Membranes were heat-fixated at

65uC for 1 h and incubated with prehybdrization solution as

described [45] over night at 65uC. The Rosa 26 59 probe, a

695 bp EcoRI/PacI fragment, was generated from the ‘‘Orkin’’

plasmid. The ROSA26 39 probe, a 615 bp, EcoRI fragment, was

generated from plasmid pCRII-Rosa 39. Hybridization probes

were heat denatured, labeled with P32 marked dCTP (Perkin

Elmer) using the Ladderman Labelling Kit (Takara). The labeled

probe was purified with illustra MicroSpin S-200 HRcolumns (GE

Healthcare) and heat-denatured probe in hybridization buffer was

added to the membranes for overnight rotation at 65uC.

Membranes were washed three times (5 min) using 26 SSC.

The membranes were exposed at room temperature for 1–3 days

and imaged using a Storm 840 phospho-imager (Molecular

Dynamics). Digital images of Southern Blots were processed with

ImageJ.

Supporting Information

Figure S1 Sequencing of ZFN204/205 cleavage site
within ROSA26 locus. (A) Sequencing traces for NHEJ-

modified ROSA26 alleles. One representative trace per founder is

shown. (B) NHEJ-modified alleles in founder ZGFP112. A deletion

of 23 bp around the ZFN204/205 cleavage site could be identified

in both ROSA26 alleles in founder ZGFP112. The presence of a

C/T SNP (red arrow) 33 bp upstream of the ZFN cleavage site

(underlined in red) in this founder enabled the identification of

individual ROSA26 alleles. Possible regions of microhomology,

which can attract NHEJ repair and increase the likelihood of

certain NHEJ repair outcomes are underlined in black.

(TIF)

Figure S2 Sequencing of junction PCR product ampli-
fied from a founder carrying a targeted ROSA26 allele.
The upper panel shows the parts being sequenced with (1)

covering parts of the EGFP open reading frame and the

polyadenylation signal and (2) covering the junction of ROSA26

genomic DNA and the 39 homology arm of integrated targeting

construct GTR26_EGFP.

(TIF)

Table S1 Sequences of ZFN target sites. Capital letters

denote Zinc finger module binding sequences, bold letters

highlight binding to the parallel or antiparallel strand, respectively.

(PDF)

Text S1 Sequences of OPEN Zinc Finger modules used
in this study.

(PDF)
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