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Abstract: Pedestrian Navigation System (PNS) is one of the research focuses of indoor positioning
in GNSS-denied environments based on the MEMS Inertial Measurement Unit (MIMU). However,
in the foot-mounted pedestrian navigation system with MIMU or mobile phone as the main carrier,
it is difficult to make the sampling time of gyros and accelerometers completely synchronous. The
gyro-accelerometer asynchronous time affects the positioning of PNS. To solve this problem, a new
error model of gyro-accelerometer asynchronous time is built. The effect of gyro-accelerometer
asynchronous time on pedestrian navigation is analyzed. A filtering model is designed to calibrate
the gyro-accelerometer asynchronous time, and a zero-velocity detection method based on the rate of
attitude change is proposed. The indoor experiment shows that the gyro-accelerometer asynchronous
time is estimated effectively, and the positioning accuracy of PNS is improved by the proposed
method after compensating for the errors caused by gyro-accelerometer asynchronous time.

Keywords: gyro-accelerometer asynchronous time; pedestrians navigation system; calibration
method; error model; zero-velocity detection

1. Introduction

Outdoor pedestrian positioning mainly relies on the Global Navigation Satellite Sys-
tem (GNSS). In indoor GNSS-denied environments, a pedestrian navigation system (PNS)
is an important positioning method to locate a user’s position [1,2]. There are two kinds of
technical schemes for PNS: One is the active positioning method utilizing Ultra-Wideband
(UWB) [3], Bluetooth [4], ZigBee [5], Wireless Fidelity (Wi-Fi) [6], etc. The other one is the
passive positioning method utilizing the Strapdown Inertial Navigation System (SINS)
based on three gyros and three accelerometers [7], which makes it realizable in terms of
locating the user’s position without any other external devices. A common method for the
passive positioning method is to fix the MEMS Inertial Measurement Unit (MIMU) on the
foot, which is also called foot-mounted pedestrian navigation system [8,9].

Limited by the low precision of MEMS inertial devices, the velocity and position of
PNS will diverge rapidly over time [10]. To avoid the accumulation of velocity errors and
position errors, the zero velocity updates (ZUPT) algorithm has been proposed and widely
used. The velocity is approximately equal to zero when the foot touches the ground, which
can be employed in a Kalman filter to correct the errors of PNS. Zero-velocity detection
is one of the main factors affecting the correction effect of the ZUPT algorithm [11]. In
reference [12], Barsocchi analyzed the gait characteristics and succeeded in extracting
temporal gait parameters based on a sensorized footwear which contains a 3-axis gyro, a
3-axis accelerometer, a 3-axis magnetometer and five pressure sensors. References [13–15]
present four commonly used zero-velocity detection methods which are named the stance
hypothesis optimal detector, the acceleration moving variance detector, the acceleration
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magnitude detector, and the angular rate energy detector. The models of the four zero-
velocity detection methods are compared. The experimental results showed that the
detection method which utilizes the synchronous signals of gyros and accelerometers has
the highest performance, and the zero-velocity detection methods perform better at slow or
normal gait speed.

In order to further improve the positioning accuracy of PNS, researchers have stud-
ied the application of other sensors and constraint algorithms in PNS. In reference [16],
Ruiz et al. made use of the zero angular rate updates (ZARU) algorithm assisted by MIMU
and RFID with extended Kalman filter, INS algorithm, and ZUPT algorithm as the frame-
work. The experimental results showed that the positioning error is only 1.5 m in a
long-term working. Xin et al. utilized magnetometers to correct the heading errors [17].
However, it’s unpractical since the magnetic field is complex and changeable in an indoor
environment. Ji et al. proposed an adaptive heading correction algorithm for suppress-
ing magnetic interference in SINS which can correct the heading error effectively in the
environments with magnetic field interference [18]. Borenstein et al. proposed a method
called heuristic drift reduction (HDR), which uses the building orientation to constrain
the user’s trajectory [19]. Abdulrahim et al. proposed an algorithm for generating head-
ing measurements from basic knowledge of the orientation of the building in which the
pedestrian is walking, and the results showed that the absolute position error at the final
position is below 5 m, about 0.1% of the total travelled distance in the 40-min experiment
with a total distance of 3 km [20]. Tanigawa et al. utilized a barometer to achieve the
high-fidelity height tracking. However, in fire and smoke environments, due to the ther-
mal noise and quantization noise, the barometer is no longer credible and useable [21].
Gu et al. proposed an integrated method utilizing gait detection and hidden Markov height
estimation algorithm, to realize the effective correction of height by taking advantage of
the fixed height of floors and stairs without using barometers [22]. Jing et al. proposed
an adaptive collaborative positioning algorithm which selects units for the collaborative
network and integrates ranging measurement to constrain inertial measurement errors. The
experimental results showed that the positioning accuracy is improved by 60% compared
with the traditional method [23]. Ding and Skog et al. utilized MIMU arrays to improve
the positioning accuracy [24,25]. However, these above methods do not consider the effect
of the asynchronization of sampling time between gyros and accelerometers.

The traditional algorithms of SINS have been analyzed under the assumption that the
sampling time between gyros and accelerometers is synchronous. However, in a practical
system, the gyro signals need to pass a lowpass filter, and the frequency characteristics
of gyros and accelerometers are inconsistent in the common case. Particularly, most of
manufacturers which produce gyros or accelerometers seldom consider the compatibility
between gyros and accelerometers. Therefore, the difference in phase-frequency charac-
teristics will lead to the asynchronization of sampling time. In addition, most systems do
not synchronize the sampling time of gyros and accelerometers by using the synchronous
pulse. Therefore, the incompatibility between gyros and accelerometers and the circuit
defect will cause the problem of gyro-accelerometer asynchronous time. If the sampling
time of gyros and accelerometers is not synchronous, the velocity errors and position errors
will be accumulated continuously over time. To solve this problem, Yan et al. analyzed
the effect of gyro-accelerometer asynchronous time in SINS and successfully compensated
for the velocity errors after calculating the parameter of gyro-accelerometer asynchronous
time [26]. Wen et al. built a model of gyro-accelerometer asynchronous time in Dual-axis
RINS, and proposed a calibration method that can improve the navigation velocity ac-
curacy and system stability under long time navigation [27]. These experimental results
showed that the methods proposed by Yan and Wen succeed in calibrating the parameter of
gyro-accelerometer asynchronous time and compensating for the errors in a low-dynamic
environment by making IMU rotate around a single axis or double axes regularly.

Nevertheless, the existing research work of gyro-accelerometer asynchronous time
is not completely applicable in PNS. Compared with SINS, the rotation of MIMU in the
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foot-mounted pedestrian navigation system is more complex and intense. Such a high-
dynamic environment will increase the effect of gyro-accelerometer asynchronous time
on pedestrian navigation. Therefore, the traditional calibration methods and error models
of gyro-accelerometer asynchronous time in SINS cannot be employed in PNS. However,
there are few references of gyro-accelerometer asynchronous time in PNS. In the foot-
mounted pedestrian navigation system with MIMU or mobile phone as the main carrier,
the gyro-accelerometer asynchronous time is likely to reach tens of milliseconds, and the
gyro-accelerometer asynchronous time is changeable each time the system is turned on.
Due to the gyro-accelerometer asynchronous time, the velocity error tends to be nonlinear.
Therefore, the traditional error models of PNS are no longer suitable. Besides, the traditional
zero-velocity detection methods which utilize gyros and accelerometers do not consider the
gyro-accelerometer asynchronous time. If the sampling time of gyros and accelerometers
is asynchronous, the traditional zero-velocity detection methods may lead to missing
detection or false detection.

In order to solve the above problems and improve the positioning accuracy of pedes-
trian navigation, the gyro-accelerometer asynchronous time in PNS is studied in this paper.
Compared with the known and used methodologies, this paper focuses on the calibration
method of gyro-accelerometer asynchronous time in PNS which is never studied before. The
proposed technology intends to provide a new way to improve the positioning accuracy of
foot-mounted pedestrian navigation system in which the communication infrastructure is
damaged when fire, earthquake or other emergency occurs. The main contributions in this
paper can be summarized as follows: (1) A new model of gyro-accelerometer asynchronous
time is built, and the effect of gyro-accelerometer asynchronous time on pedestrian naviga-
tion is analyzed. (2) A calibration method of gyro-accelerometer asynchronous time and a
new zero-velocity detection method based on the rate of attitude change are proposed.

The remainder of this paper is organized as follows: Section 2 introduces the reference
frame definitions. Section 3 builds an error model of gyro-accelerometer asynchronous
time and analyzes the effect of gyro-accelerometer asynchronous time on pedestrian navi-
gation. Section 4 designs a Kalman filter to calibrate the gyro-accelerometer asynchronous
time and proposes a zero-velocity detection method based on the rate of attitude change.
Section 5 shows the experiments and results. The discussion and conclusion are presented
in Section 6.

2. The Reference Frame Definitions

The reference coordinate frames used in this paper are defined as follows:
oixiyizi(i-frame): Earth-Centered Inertially Fixed (ECIF) orthogonal reference frame.
oexeyeze(e-frame): Earth-Centered Earth-Fixed (ECEF) orthogonal reference frame.
obxbybzb(b-frame): Body orthogonal reference frame aligned with Right-Forward-Up

axes of MIMU.
ob′xb′yb′zb′ (b′-frame): Accelerometer orthogonal reference frame aligned with

accelerometer-sensitive axes.
omxmymzm(m-frame): Carrier orthogonal reference frame aligned with Right-Forward-

Up axes of foot .
ohxhyhzh(h-frame): Horizontal orthogonal reference frame with X-axis and Y-axis in

the local horizon.
onxnynzn(n-frame): Navigation orthogonal reference frame aligned with local East-

North-Up geodetic axes.

3. Gyro-Accelerometer Asynchronous Time
3.1. Error Model of Gyro-Accelerometer Asynchronous Time

In the foot-mounted pedestrian navigation system, the MIMU rotates with the move-
ment of foot. In theory, the gyro outputs and accelerometer outputs are both aligned with b-
frame, which is calculated by gyros. However, due to the gyro-accelerometer asynchronous
time, the accelerometer outputs are aligned with b′-frame instead of b-frame. Therefore,
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the coordinate frames aligned with gyro-sensitive axes and accelerometer-sensitive axes
are no longer consistent. The angle errors between b-frame and b′-frame can be written as:

δθ = θ − θ′

δγ = γ− γ′

δψ = ψ− ψ′
(1)

where θ, γ and ψ are the pitch angle, roll angle and yaw angle from b-frame to n-frame, θ′,
γ′ and ψ′ are the pitch angle, roll angle and yaw angle from b′-frame to n-frame.

Figure 1 shows the dynamic inconsistent error of the coordinate frame caused by gyro-
accelerometer asynchronous time. If the gyro-accelerometer asynchronous time of three
axes is different, b′-frame is non-orthogonal. Since the three-axis MEMS accelerometer chip
is used in PNS, it can be assumed that the three gyros and three accelerometers have the
same characteristics of asynchronous time. That is, the three gyros and three accelerometers
have the same asynchronous time.

Figure 1. Dynamic inconsistent error of coordinate frame caused by gyro-accelerometer
asynchronous time.

In this paper, f b′ denotes the accelerometer output vector in b′-frame. f̃ b
denotes

the measured specific force vector. In view of gyro-accelerometer asynchronous time, the
specific force measurements are the accelerometer outputs in b′-frame. Therefore, the
measured specific force vector can be expressed as:

f̃ b
= Cb′

n f n (2)

where f n =
[

f n
E f n

N f n
U
]T is the projection of f b′ onto n-frame, and Cb′

n is the transform
matrix from n-frame to b′-frame.

The measured specific force vector in n-frame can be written as:

f̃ n
= Cn

b f̃ b
(3)

where Cn
b is the transform matrix from b-frame to n-frame.

Therefore, the specific force error vector δ f n caused by gyro-accelerometer asyn-
chronous time is:

δ f n = f̃ n − f n

≈ Cn
b Cb′

n f n − f n

= (Cn
b Cb′

n − I) f n (4)
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where

Cn
b =

 cψcγ − sψsθsγ −sψcθ cψsγ + sψsθcγ

sψcγ + cψsθsγ cψcθ sψsγ − cψsθcγ

−cθsγ sθ cθcγ

,

Cb′
n =

 cψ′cγ′ − sψ′ sθ′sγ′ sψ′cγ′ + cψ′sθ′sγ′ −cθ′ sγ′

−sψ′cθ′ cψ′cθ′ sθ′

cψ′sγ′ + sψ′ sθ′cγ′ sψ′sγ′ − cψ′sθ′cγ′ cθ′cγ′

,

{
sα = sin(α)
cα = cos(α)

(α = θ, γ, ψ, θ′, γ′, ψ′).

In order to analyze the effect of gyro-accelerometer asynchronous time on pedestrian
navigation conveniently and intuitively, the movement of foot is divided into three parts,
including pitch motion, roll motion, and yaw motion. The effect of pitch motion on
pedestrian navigation is analyzed as follows.

The gyro-accelerometer asynchronous time is denoted as τ, and the initial three-axis
attitude vector is denoted as

[
0, 0, ψ0

]T . If the MIMU rotates around the pitch axis,
Equation (2) can be rewritten as:

f̃ b
= Cb′

n f n = (Cψ0 Cθ′)
T f n

=

 1 0 0
0 cθ′ sθ′

0 −sθ′ cθ′

 cψ0 sψ0 0
−sψ0 cψ0 0

0 0 1

 f n
E

f n
N

f n
U


=

 cψ0 sψ0 0
−sψ0cθ′ cψ0cθ′ sθ′

sψ0sθ′ −cψ0sθ′ cθ′

 f n
E

f n
N

f n
U

. (5)

Substituting Equation (5) into Equation (3), f̃ n
can be expressed as:

f̃ n
= Cn

b Cb′
n f n = Cψ0 CθCb′

n f n

=

 cψ0 −sψ0 0
sψ0 cψ0 0
0 0 1

 1 0 0
0 cθ −sθ

0 sθ cθ

Cb′
n f n

≈

 1 0 δθsψ0

0 1 −δθcψ0

−δθsψ0 δθcψ0 1

 f n
E

f n
N

f n
U

. (6)

For the convenience of analysis, it’s assumed that people walk, go upstairs or go
downstairs at normal speed. Then δθ, δγ and δψ can be considered as small angles.
Therefore, δθ, δγ and δψ can be written as:

δα ≈ ωατ ( α = θ, γ, ψ) (7)

where ωθ , ωγ and ωψ are the angular velocities along pitch axis, roll axis, and azimuth
axis respectively.

Substituting Equation (7) into Equation (6), f̃ n
can be rewritten as:

f̃ n
=

 1 0 ωθτsψ0

0 1 −ωθτcψ0

−ωθτsψ0 ωθτcψ0 1

 f n
E

f n
N

f n
U

. (8)
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Compared with f n, the accelerometer measurement errors in n-frame can be expressed as: δ f n
E

δ f n
N

δ f n
U

 =

 ωθτ sin ψ0 f n
U

−ωθτ cos ψ0 f n
U

−ωθτ sin ψ0 f n
E + ωθτ cos ψ0 f n

N

 (9)

where δ f n = [δ f n
E , δ f n

N, δ f n
U]

T denotes the accelerometer measurement error vector in n-frame.
According to [28], the velocity error model is:{

v̇n = f n − (2ωn
ie + ωn

en)× vn + gn

˙̃vn
= f̃ n − (2ωn

ie + ωn
en)× ṽn + gn (10)

where vn =
[

vn
E vn

N vn
U
]T and ṽn =

[
ṽn

E ṽn
N ṽn

U
]T are the ideal velocity vector

and calculated velocity vector in n-frame respectively, gn is the local gravity vector, ωn
ie

is the angular velocity vector of earth rotation and ωn
en is the angular velocity vector of

n-frame relative to earth.
Therefore, the velocity error vector caused by gyro-accelerometer asynchronous time

can be expressed as:

δvn =
∫ t

0
˙̃vndt−

∫ t

0
v̇ndt ≈

∫ t

0
f̃ n − f ndt =

∫ t

0
δ f ndt (11)

where δvn =
[

δvn
E δvn

N δvn
U
]T denotes the velocity error vector.

Substituting Equation (9) into Equation (11), the velocity error vector can be rewritten as:

δvn = τ
∫ t

0
ωθ

 0 0 sin ψ0
0 0 − cos ψ0

− sin ψ0 cos ψ0 0

 f n
E

f n
N

f n
U

dt. (12)

According to Equation (12), the horizontal velocity error is:

δvn
h =

√
(δvn

E)
2 + (δvn

N)
2 = τ

∫ t

0
ωθ f n

Udt (13)

where the oritation is: arctan(−δvn
E
/

δvn
N) = ψ0.

The vertical velocity error is:

δvn
U = τ

∫ t

0
ωθ(− sin ψ0 f n

E + cos ψ0 f n
N)dt = τ

∫ t

0
ωθ f n

//dt (14)

where f n
// is the equivalent velocity along the forward direction of the people’s movement.

Similarly, f n
⊥ denotes the equivalent velocity that is perpendicular to the forward direction

of the people’s movement. f n
⊥ can be expressed as:

f n
⊥ = cos ψ0 f n

E + sin ψ0 f n
N . (15)

Further, the latitude error, longitude error and height error caused by gyro-accelerometer
asynchronous time can be written as follows respectively:

δL =
∫ t

0

˙̃Ldt−
∫ t

0
L̇dt

=
∫ t

0

1
RM + h̃

ṽn
Ndt−

∫ t

0

1
RM + h

vn
Ndt

≈ −τ cos ψ0

RM + h

∫ t

0

∫ t

0
ωθ f n

Udtdt, (16)
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δλ =
∫ t

0

˙̃λdt−
∫ t

0
λ̇dt

=
∫ t

0

sec L
RN + h̃

ṽn
Edt−

∫ t

0

sec L
RN + h

vn
Edt

≈ τ sin ψ0 sec L
RN + h

∫ t

0

∫ t

0
ωθ f n

Udtdt, (17)

δh =
∫ t

0

˙̃hdt−
∫ t

0
ḣdt

=
∫ t

0
ṽn

Udt−
∫ t

0
vn

Udt

= τ
∫ t

0

∫ t

0
ωθ(− sin ψ0 f n

E + cos ψ0 f n
N)dtdt (18)

where L, λ, and h are the ideal latitude, longitude and height respectively, L̃, λ̃, and h̃ are
the calculated latitude, longitude and height respectively, RM is the radius of curvature in
meridian, and RN is the radius of curvature in prime vertical.

3.2. Effects of Gyro-Accelerometer Asynchronous Time on Pedestrian Navigation

According to Equation (12), the north velocity errors can be written as follows under
the assumption of ψ = ψ0 or ψ = ψ0 + π:{

δvn
N
∣∣
ψ=ψ0

= −τ cos ψ0
∫ t

0 ωθ f n
Udt

δvn
N
∣∣
ψ=ψ0+π

= τ cos ψ0
∫ t

0 ωθ f n
Udt.

(19)

Equation (19) shows that the north velocity errors are opposite in opposite directions.
It’s indicated that the north velocity errors caused by gyro-accelerometer asynchronous
time will cancel each other out in opposite directions. Further analysis shows that the
gyro-accelerometer asynchronous time has the same effect on east velocity error.

According to Equation (13), the horizontal velocity error δvn
h is related to τ, ωθ and f n

U .
Roughly, ωθ and f n

U can be regarded as sinusoidal signals approximately with the same
period. Therefore, the horizontal velocity error will be accumulated, resulting in the drift
of horizontal velocity in the forward direction of people’s movement.

Equation (14) shows that the vertical velocity error is related to τ, ωθ and f n
//. Since

f n
// can be regarded as a sinusoidal signal approximately with the same period as ωθ .

Therefore, the vertical velocity error will be accumulated continuously, resulting in the
rapid divergence of height eventually.

Similarly, when the MIMU rotates around the roll axis or azimuth axis, the effect of
gyro-accelerometer asynchronous time on pedestrian navigation is analyzed and summa-
rized respectively, and the results are shown in Table 1.

As shown in Table 1, affected by gyro-accelerometer asynchronous time, when the
MIMU rotates around the roll axis or azimuth axis, the north velocity errors or east velocity
errors are opposite in opposite directions. It means that the horizontal position errors
caused by gyro-accelerometer asynchronous time will cancel each other out in opposite
directions. However, when the MIMU rotates around the roll axis, the vertical velocity
error will be accumulated over time, leading to the rapid divergence of height eventually.
The gyro-accelerometer asynchronous time makes no difference to the vertical velocity and
height if the MIMU rotates around the azimuth axis.

In addition, Table 1 also shows the relationship between velocity errors and gyro-
accelerometer asynchronous time, which provides a simple and convenient way to identify
the parameter of gyro-accelerometer asynchronous time.
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Table 1. The effect of gyro-accelerometer asynchronous time on pedestrian navigation under
different motions.

- Pitch Roll Yaw

δvn
E τ sin ψ0

∫ t
0 ωθ f n

Udt τ cos ψ0
∫ t

0 ωγ f n
Udt −τ

∫ t
0 ωψ f n

Ndt
δvn

N −τ cos ψ0
∫ t

0 ωθ f n
Udt τ sin ψ0

∫ t
0 ωγ f n

Udt τ
∫ t

0 ωψ f n
E dt

δvn
h τ

∫ t
0 ωθ f n

Udt τ
∫ t

0 ωγ f n
Udt τ

√(∫ t
0 ωψ f n

Ndt
)2

+
(∫ t

0 ωψ f n
E dt
)2

δvn
U τ

∫ t
0 ωθ f n

//dt −τ
∫ t

0 ωγ f n
⊥dt 0

δL − τ cos ψ0
RM+h

∫ t
0

∫ t
0 ωθ f n

Udtdt τsin ψ0
RM+h

∫ t
0

∫ t
0 ωγ f n

Udtdt τ
RM+h

∫ t
0

∫ t
0 ωψ f n

E dtdt

δλ
τ sin ψ0 sec L

RN+h

∫ t
0

∫ t
0 ωθ f n

Udtdt τ cos ψ0 sec L
RN+h

∫ t
0

∫ t
0 ωγ f n

Udtdt −τ sec L
RN+h

∫ t
0

∫ t
0 ωψ f n

Ndtdt

δh τ
∫ t

0

∫ t
0 ωθ f n

//dtdt −τ
∫ t

0

∫ t
0 ωγ f n

⊥dtdt 0

Table 2 shows the effect of gyro-accelerometer asynchronous time on velocity errors
when the MIMU rotates around the pitch axis, roll axis, or azimuth axis. In practice, the
MIMU rotates around three axes driven by foot. Therefore, it’s necessary to consider the
effect of pitch motion, roll motion, and yaw motion on pedestrian navigation comprehen-
sively under different gaits. Since the MIMU mainly rotates around the pitch axis, it’s
reasonable to infer that the pitch motion is the main factor affecting velocity errors. Based
on the above analysis, the major characteristics of velocity errors are summarized when
people walk on flat ground, go upstairs, or go downstairs. The results are shown in Table 2.
The horizontal velocity errors caused by gyro-accelerometer asynchronous time will cancel
each other out when people walk on a closed-loop trajectory, while the horizontal velocity
error will be accumulated with time when people walk on an open-loop trajectory, resulting
in decreasing the horizontal positioning accuracy. The vertical velocity and height are
mainly affected by pitch motion and roll motion. Since the MIMU rotates around the pitch
axis and roll axis periodically, the vertical velocity error will be accumulated over time,
leading to the rapid divergence of height eventually.

Table 2. The main characteristics of velocity errors under different motions.

Motion Horizontal Velocity Error Vertical Velocity Error

Pitch motion
The errors will cancel each other out

in opposite directions Increase

Roll motion
The errors will cancel each other out

in opposite directions Increase

Yaw motion
The errors will cancel each other out

in opposite directions Make no difference

Walking on flat ground
The errors will cancel each other out

when walking on a closed-loop trajectory Increase

Going upstairs
The errors will cancel each other out

when walking on a closed-loop trajectory Increase

Going downstairs
The errors will cancel each other out

when walking on a closed-loop trajectory Increase

3.3. Simulation

In order to verify the correctness of the above analyses which are shown in Tables 1 and 2,
a simulated experiment was carried out. The gyro-accelerometer asynchronous time is set to
10ms, and the designed trajectory is divided into three sorts as follows:

1. People go up to the second floor from the start, then take a walk around the hall
counterclockwise. 2. People continue to go up to the third floor from the second floor, then
take a walk around the hall counterclockwise. 3. people continue to go up to the fourth
floor from the third floor, then take a walk around the hall counterclockwise, and go down
to the first floor from point A finally. The simulated trajectory is shown in Figure 2.
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Figure 2. The simulated trajectory.

The yaw motion is modeled as a rotation around azimuth axis with an uniform angular
velocity. The pitch motion and roll motion are modeled as periodic sinusoidal motions in
one gait cycle: {

θ = −θm sin(2π fstept)
γ = γm sin(2π fstept)

(20)

where θm and γm are the amplitudes of sinusoids, fstep is the frequency corresponding to a
gait cycle, and t is the working time.

Figure 3 presents the velocity errors and position errors caused by gyro-accelerometer
asynchronous time, by comparing the ideal velocity (position) with the calculated velocity
(position). It shows that the velocity errors have obvious characteristics in different posi-
tions when people walk, go upstairs, or go downstairs, which meet the main characteristics
described in Table 2. In addition, Figure 3b shows that the gyro-accelerometer asynchronous
time has a great influence on the position, which decreases the positioning accuracy of
PNS. The rapid divergence of height makes it difficult to confirm exactly which floor the
person is on. Therefore, it is of great significance to calibrate the gyro-accelerometer asyn-
chronous time and compensate for the velocity errors and position errors for improving
the positioning accuracy of PNS.

(a) (b)
Figure 3. Velocity errors and position errors caused by gyro-accelerometer asynchronous time.
(a) Velocity errors, (b) Position errors.

4. A Calibration Method for Gyro-Accelerometer Asynchronous Time

Considering that the gyro-accelerometer asynchronous time is changeable, a calibra-
tion method for gyro-accelerometer asynchronous time is proposed in this chapter.

4.1. Error Model of Pedestrian Navigation System Based on Gyro-Accelerometer
Asynchronous Time

In theory, the projection of f b onto n-frame can be written as f n = Cn
b f b. Consid-

ering gyro-accelerometer asynchronous time, misalignment angles, and bias errors of
accelerometers, the measured specific force vector in n-frame can be expressed as:

f̃ n
= C̃n

b f̃ b′
(21)
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where
f̃ b′

= f b′ + δ f b, C̃n
b = [I − (φ×)]Cn

b

where δ f b is the bias error vector of accelerometers,(·×) denotes the operation of skew
symmetric matrix, φ is the attitude error vector.

According to [27], the attitude error model is:

φ̇ = φ× (ωn
ie + ωn

en) + δωn
ie + δωn

en − Cn
b δωb

ib (22)

where δωn
ie,δωn

en and δωb
ib are the error vectors of ωn

ie, ωn
en and ωb

ib respectively, and ωb
ib is

the gyro output vector.
Ignoring the second-order small errors, Equation (21) can be rewritten as:

f̃ n
= [I − (φ×)]Cn

b ( f b′ + δ f b)

= [I − (φ×)]Cn
b f b′ + [I − (φ×)]Cn

b δ f b

≈ [I − (φ×)]Cn
b′C

b′
b f b′ + Cn

b δ f b (23)

where Cb′
b is the transform matrix from b-frame to b′-frame. The equivalent rotation vector

from b-frame to b′-frame is donated as δϑ which can be expressed as:

δϑ ≈ ωb
nbτ ≈ ωb

ibτ (24)

where ωb
nb is the ideal angular velocity vector.

Therefore, Cb′
b can be formed as follows by using Rodrigues rotation formula [29]:

Cb′
b = MRV(δϑ)

= I +
sin(|δϑ|)
|δϑ| (δϑ×) + 1− cos(|δϑ|)

|δϑ|2
(δϑ×)2

≈ I +
sin(

∣∣∣ω̃b
nbτ
∣∣∣)∣∣ω̃b

nbτ
∣∣ [(ω̃b

nbτ)×] +
1− cos(

∣∣∣ω̃b
nbτ
∣∣∣)∣∣ω̃b

nbτ
∣∣2 [(ω̃b

nbτ)×]2

≈ I +
sin(

∣∣∣ωb
ib

∣∣∣τ)∣∣ωb
ib

∣∣ (ωb
ib×) +

1− cos(
∣∣∣ωb

ib

∣∣∣τ)∣∣ωb
ib

∣∣2 (ωb
ib×)

2 (25)

where MRV(·) is the function of equivalent rotation vector.
In a practical walking process, the angular velocity is several hundred degrees per

second, while the gyro-accelerometer asynchronous time is several milliseconds or tens
of milliseconds in most cases. So it’s reasonable to regard δϑ as a small angle vector, and
Cb′

b can be expressed as: Cb′
b ≈ I + (δϑ×). However, if people walk at high speed, such as

running, sprinting, etc. The actual gyro outputs are likely to be more than one thousand
degrees per second, then δϑ is no longer a small angle vector, but a large angle vector.
Therefore, it’s necessary to consider the nonlinear errors caused by gyro-accelerometer
asynchronous time.

According to [30], the traditional velocity error model is:

δv̇n = ( f̃ n − f n)− (2ω̃n
ie + ω̃n

en)× ṽn + (2ωn
ie + ωn

en)× vn + (g̃n − gn). (26)

Let:

A =
sin(

∣∣∣ωb
ib

∣∣∣τ)∣∣ωb
ib

∣∣ (ωb
ib×), (27)
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B =
1− cos(

∣∣∣ωb
ib

∣∣∣τ)∣∣ωb
ib

∣∣2 (ωb
ib×)

2. (28)

Substituting Equations (23), (25), (27) and (28) into Equation (26), the velocity error
model can be rewritten as:

δv̇n = [I − (φ×)]Cn
b′C

b′
b f b′ + Cn

b δ f b − f n

−(2ω̃n
ie + ω̃n

en)× ṽn + (2ωn
ie + ωn

en)× vn + (g̃n − gn)

≈ Cn
b′(I + A + B) f b′ − (φ×)Cn

b′(I + A + B) f b′ + Cn
b δ f b − f n

−(2ω̃n
ie + ω̃n

en)× ṽn + (2ωn
ie + ωn

en)× vn + (g̃n − gn)

≈
[
(Cn

b f b′)×
]
φ + Cn

b (A + B) f b′ + [Cn
b (A + B) f b′×]φ

−(2δωn
ie + δωn

en)× vn − (2ωn
ie + ωn

en)× δvn + Cn
b δ f b + δgn (29)

where:
ω̃n

ie = ωn
ie + δωn

ie, ω̃n
en = ωn

en + δωn
en,

g̃n = gn + δgn, ṽn = vn + δvn

where δgn is the error vector of gn.
Equation (29) denotes the velocity error equation of PNS. The position errors can be

modeled as:

δL̇ = ˙̃L− L =
1

R̃M + h̃
ṽn

N −
1

RM + h
vn

N

≈
(vn

N + δvn
N)

(RM + δRM) + (h + δh)
− 1

RM + h
vn

N , (30)

δλ̇ = ˙̃λ− λ̇ =
sec L̃

R̃N + h̃
ṽn

E −
sec L

RN + h
vn

E

≈
sec(L + δL)(vn

E + δvn
E)

(RN + δRN) + (h + δh)
− sec L

RN + h
vn

E, (31)

δḣ = ˙̃h− ḣ = ṽn
U − vn

U = δvn
U (32)

where δRM and δRN are the errors of RM and RN .
Since RM >> δL, δλ, δh, and RN >> δL, δλ, δh, Equations (30) and (31) can be rewrit-

ten as:

δL̇ ≈ 1
RM + h

δvn
N −

vn
N

(RM + h)2 δh, (33)

δλ̇ ≈ sec L
RN + h

δvn
E +

vn
E sec L tan L

RN + h
δL−

vn
E sec L

(RN + h)2 δh. (34)

4.2. Zero-Velocity Detection

Figure 4 presents the details of foot movement in a complete gait cycle, including four
stages, named push-off phase, swing phase, hell strike phase, and stance phase [30]. The
velocity is approximately equal to zero during the sole of foot touches the ground at the
stance phase.
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Figure 4. One complete gait cycle.

Reference [30] presents a zero-velocity detection method named Generalized Likeli-
hood Ratio Test (GLRT) utilizing gyros and accelerometers comprehensively. However,
GLRT is utilized under the assumption that there is no gyro-accelerometer asynchronous
time. If people walk, especially at high speed, although the gyros measure the angular
velocities at the stance phase, the accelerometers measure the specific force before it. Thus,
it will lead to missing detection or false detection if gyro-accelerometer asynchronous time
is ignored. GLRT performs better when people walk at slow or normal speed. However, if
people walk at high speed, the performance of GLRT seems to be not enough. Considering
the effect of gyro-accelerometer asynchronous time on zero-velocity detection, this paper
proposes a zero-velocity detection method based on the rate of attitude change relying on
gyros only, which is applicable under various gaits.

Compared with accelerometers, the gyro sampling signals hold the most reliable
information for zero-velocity detection [12]. Therefore, the detection methods utilizing
gyros only perform better than the detection methods utilizing accelerometers only. As
shown in Figure 4, the pitch angle and roll angle are approximately equal to zero when
the sole of foot touches the ground at the stance phase. Due to the low precision of MEMS
inertial devices, the attitude errors will increase gradually with time. Therefore, it’s difficult
to detect the zero-velocity based on attitudes. Since the change of pitch angle or roll angle
is reliable in a short term, it’s an ideal way to detect the zero-velocity by utilizing the rates
of change of pitch angle and roll angle.

Considering that there are installation angle errors when the MIMU is fixed on the
foot, it is necessary to compensate for the installation errors in advance. Reference [31]
presents a method to calibrate the pitch installation angle error and roll installation angle
error by utilizing accelerometers. A self-calibration method of yaw installation angle error
is shown as follows.

The installation angle error vector is denoted as
[
φx, φy, φz

]T . Using the chain rule of
Direction Cosine Matrix (DCM) production, Cn

h can be written as:

Cn
h= Cn

mCm
h . (35)

Rewrite Equation (35) as:
Ch

m=[(Cn
m)

TCn
h ]

T (36)

where Cn
m is the transform matrix from m-frame to n-frame, Cn

h is the transform matrix
from h-frame to n-frame, Ch

m is the transform matrix from m-frame to h-frame. Using the
chain rule of DCM production, Cn

h can be expressed as:

Cn
h = Cn

b Cb
h = Cn

b Cφx Cφy (37)

where:

Cφx =

 1 0 0
0 cos(φx) sin(φx)
0 − sin(φx) cos(φx)

, Cφy =

 cos(φy) 0 − sin(φy)
0 1 0

sin(φy) 0 cos(φy)

.

Ch
m is related to φz with the following relationship:
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tan(φz) =
(Ch

m)12

(Ch
m)22

. (38)

Equations (36)–(38) present the calibration method of yaw installation angle error.
However, it cannot be calculated if the foot is stationary. So it’s required to make MIMU
rotate to realize the calculation of φz. This paper proposes a motion path of self-calibration
for the yaw installation angle error, which is shown as follows.

It is assumed that the initial attitude vector is
[

0 0 ϕ0
]T . When the person is

walking along a straight line, the rotation angle vector from m-frame to n-frame is denoted
as φ1 ≈

[
θ1 γ1 ϕ1

]T which represents the actual attitudes of the foot, and the rotation

angle vector from h-frame to n-frame is denoted as φ2 ≈
[

θ2 γ2 ϕ2
]T which can be

obtained from: MRV(φ2) = Cn
b Cφx Cφy . Since the person is walking along a straight line,

the change of yaw angle can be regarded as a small angle. It’s reasonable to make an
approximation that θ1 ≈ θ2, and γ1 ≈ γ2 . Then, φ1 can be expressed as:

φ1 ≈
[

θ2 γ2 ϕ0
]T . (39)

Therefore, Equation (36) can be rewritten as:

Ch
m ≈

{
[MRV(φ1)]

TCn
b Cφx Cφy

}T
. (40)

Figure 5 presents the attitudes before and after compensating for the installation angle
errors. It shows that the attitudes are corrected after compensating for the installation
angle errors. The proposed calibration method of installation angle errors improves the
recognition and characteristic of gait successfully.

(a) (b) (c)
Figure 5. Attitudes before and after compensating for the installation angle errors. (a) Yaw angle,
(b) Pitch angle, (c) Roll angle.

Figure 6 presents the horizontal attitudes in a complete gait cycle. It’s indicated that
the horizontal attitudes show different characteristics in different stages significantly. This
paper proposes a zero-velocity detection method based on the rate of attitude change,
which is shown as follows.

Figure 6. Horizontal attitudes in one gait cycle.
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A fixed length sliding window is used, and the increments of pitch angle and roll
angle of MIMU in [tk, tk+N ] are denoted as:{

∆θi = θi+1 − θi (i = k, k + 1, ..., k + N)
∆γi = γi+1 − γi (i = k, k + 1, ..., k + N)

(41)

where N is the fixed length of sliding window.
If ∆θi and ∆γi are less than the thresholds, it is indicated that the zero-velocity is

detected. The judgment can be expressed as follows:

C1 =

{
1 ∀ti ∈ [tk, tk+N ], |∆θi| < Gθ

0 others
, (42)

C2 =

{
1 ∀ti ∈ [tk, tk+N ], |∆γi| < Gγ

0 others
(43)

where Gθ and Gγ are the thresholds.
If C1&C2 = 1, the zero-velocity is detected.
Figure 7 presents the results of zero-velocity detection under different gaits. The

zero value of the purple line means that the foot is stationary at that moment, while the
non-zero value of the purple line means that the foot is non-stationary at that moment. It
shows that the zero-velocity is detected effectively by utilizing the proposed zero-velocity
detection method.

(a) (b) (c)
Figure 7. The results of zero-velocity detection. (a) Walking on flat ground, (b) Going upstairs,
(c) Going downstairs.

4.3. Kalman Filter Design

Equation (29) shows that the velocity error model is nonlinear. Therefore, an Ex-
tended Kalman Filter (EKF) is utilized to estimate the parameter of gyro-accelerometer
asynchronous time in this paper. The integrated framework block diagram of PNS is shown
in Figure 8.

The state vector for Kalman filter is:

X =
[

φT (δvn)T (δpn)T (εb)
T

(∇b)
T

τ

]T
(44)

where (δpn)T =
[

δL δλ δh
]T is the position error vector, (εb)T =

[
εb

x εb
y εb

z

]T
is

the bias error vector of gyros, and (∇b)T =
[
∇b

x ∇b
y ∇b

z

]T
is the bias error vector of

accelerometers. (εb)
T

, (∇b)
T

and τ have the following relationship:
ε̇b = 0

∇̇b
= 0

τ̇ = 0
. (45)
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Figure 8. The integrated framework block diagram.

The state transition equation can be expressed as:

Ẋ = f (X) + GW (46)

where f (X) is nonlinear vector function, G is process noise coupling matrixr, W is process
noise vector.

The measurement equation can be written as:

Z = HX + V (47)

where V is measurement noise vector, Z and H are measurement vector and measurement
matrix respectively.

In this paper, the height estimation method proposed by Gu et al. is utilized to estimate
accurate height measurements for EKF [22]. Therefore, Z and H can be expressed as:

Z =

[
ṽn − 0
h̃ − hbuilding

]
, (48)

H =

[
03×3 I3×3 03×2 03×1 03×7
01×3 01×3 03×2 1 01×7

]
(49)

where hbuilding is the height measurement calculated by the height estimation method.
Discretizing Equations (46) and (47), the state transition equation and measurement

equation can be rewritten as:{
Xk = f (Xk−1) + Γk−1W k−1
Zk = HkXk + V k

(50)

where W k−1 and V k are zero-mean Gaussian white noise vector sequences, both of which
are not correlated. The feedback compensation of EKF can be expressed as:

Cn
b=[I3×3 + (φ×)]C̃n

b
vn = ṽn − δvn

h = h̃− δh
. (51)

5. Experiments and Analysis

The experiment was conducted in a building in Jimei District, Xiamen. As shown
in Figure 9, to collect the data, the MIMU was fixed on the instep of the right foot. Then
the experimenter walked on a designed trajectory that contains different gaits, including
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walking on flat ground, going upstairs, and going downstairs. While the experimenter
was walking indoor, the MIMU sent the gyro outputs and accelerometer outputs to the
Bluetooth receiver connected to a PC through the Bluetooth transmitter. In this experiment,
a self-designed MIMU which contains three gyros and three accelerometers with large
ranges is used. The performance of the MIMU is shown in Table 3.

Figure 9. Data acquisition conditions.

Table 3. Performance of MIMU.

Performance Gyros Accelerometers

In-run stability 10◦/h 40 ug
Random walk 0.4◦/

√
h 0.06 m/s /

√
h

Full range ±2000◦/h ±40 g

The experimental environment is shown in Figure 10. The height of the floors is
4 m, and a start point and three standard points are set up in advance according to the
engineering drawing of the building. Their relative coordinates in the building can be
expressed as follows:

P0(0, 0, 0): the start point on the first floor; P1(0, 0, 8): standard point 1 on the third
floor; P2(0, 0, 12): standard point 2 on the fourth floor; P3(0, 0, 8):standard point 3 on the
third floor coincided with standard point 1.

The designed trajectory can be summarized as follows: The experimenter went up to
the third floor from P0, and took a walk around the hall counterclockwise to reach P1. Then
the experimenter went up to the fourth floor, and took a walk around the hall clockwise to
reach P2. Finally, the experimenter went down to the third floor, and took a walk around
the hall counterclockwise to reach P3. The total travelled distance is about 300 m.

(a) (b)
Figure 10. Experimental environment. (a) Outdoor environment, (b) Indoor environment.

After data collection is completed, the gyro sampling signals and accelerometer sam-
pling signals are compared offline. The estimation of gyro-accelerometer asynchronous
time is about 10 ms. A method named interpolation is utilized to compensate for the errors
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caused by gyro-accelerometer asynchronous time then. The error curves are drawn in
Figure 11, by comparing the compensated velocity (position) with the uncompensated
velocity (position). Figure 11 shows that the characteristics of velocity errors and posi-
tion errors caused by gyro-accelerometer asynchronous time meet the results described in
Tables 1 and 2. It further proves the correctness of the above analyses.

(a) (b)

Figure 11. Velocity errors and position errors caused by gyro-accelerometer asynchronous time in
the experiment. (a) Velocity errors, (b) Position errors.

Reference [32] presents the ZUPT algorithm and the height constraint algorithm, both
of which show excellent performance in PNS. To evaluate the performance of the proposed
calibration method, four methods are designed in this paper. Method 1 utilizes the ZUPT
algorithm with gyro-accelerometer asynchronous ignored. Method 3 utilizes the ZUPT
algorithm and the height constraint algorithm with gyro-accelerometer asynchronous
ignored. Method 2 and method 4 are designed to verify the effectiveness and feasibility of
the proposed calibration method by comparing the positioning accuracy with method 1
and method 3. The designed methods are shown in Table 4 in detail.

Table 4. Experimental methods.

Method Detail

Method 1 ZUPT with gyro-accelerometer asynchronous time ignored
Method 2 ZUPT with gyro-accelerometer asynchronous time considered
Method 3 ZUPT/height constraint with gyro-accelerometer asynchronous time ignored
Method 4 ZUPT/height constraint with gyro-accelerometer asynchronous time considered

Figure 12 presents the estimations of gyro-accelerometer asynchronous time with method 2
and method 4. Since method 1 and method 3 do not consider the gyro-accelerometer asyn-
chronous time, the information about method 1 or method 3 is not presented in Figure 12.
It shows that the estimation of gyro-accelerometer asynchronous time with method 2 is
about 8.92 ms, and the estimation of gyro-accelerometer asynchronous time with method 4
is about 8.31 ms. These results are very close to the offline calculated estimation. Moreover,
Figure 12 also shows that the curves are convergent after about 60 s due to the complex
movement of MIMU driven by foot, indicating that the gyro-accelerometer asynchronous
time can be inspired in a relatively short time.

Figure 13 presents the calculated trajectories with method 1 and method 2, and
Figure 14 presents the calculated trajectories with method 3 and method 4. Figure 13a
shows that the height error with method 1 is positive while the height error with method 2
is negative. Further analysis shows that the height error with method 2 is affected by the
low precision of MEMS inertial devices and the computational errors of inertial navigation
algorithm, while the height error with method 1 is also affected by the gyro-accelerometer
asynchronous time. Therefore, the height errors with method 1 and method 2 are opposite.
Figure 13b shows that the calculated trajectory with method 2 is more consistent with
the real trajectory than the calculated trajectory with method 1. In addition, as shown in
Figure 14, compared with the calculated trajectories with method 1 and method 2, method 3



Sensors 2022, 22, 209 18 of 22

and method 4 have a higher positioning accuracy. The height constraint algorithm makes it
possible to confirm exactly which floor the experimenter is on.

Figure 12. Gyro-accelerometer asynchronous time estimation.

(a) (b)
Figure 13. The trajectories with method 1 and method 2. (a) 3D trajectory, (b) 2D trajectory.

(a) (b)
Figure 14. The trajectories with method 3 and method 4. (a) 3D trajectory, (b) 2D trajectory.

In order to further verify the effectiveness of the proposed calibration method, the
positioning errors are compared. Figure 15 presents the position curves by four methods
respectively. Figure 16 presents the position errors by four methods at three standard points.
The details of the position errors are shown in Tables 5–7. The experimental results show
that the horizontal position errors with method 1 are 0.52 m, 1.41 m and 2.51 m, accounting
for 0.50%, 0.70% and 0.84% of the total travelled distance respectively, and the horizontal
position errors with method 2 are 0.42 m, 1.19 m and 2.11 m, accounting for 0.40%, 0.59% and
0.70% of the total travelled distance respectively. Compared with method 1, the horizontal
positioning accuracy with method 2 increases by 23.81%, 18.49% and 18.96% respectively.
The horizontal position errors with method 3 are 0.32 m, 1.10 m and 1.88 m, accounting
for 0.31%, 0.54% and 0.64% of the total travelled distance respectively, and the horizontal
position errors with method 4 are 0.23 m, 0.92 m and 1.58 m, accounting for 0.22%, 0.46% and
0.53% of the total travelled distance respectively. Compared with method 3, The horizontal
positioning accuracy with method 4 increases by 39.13%, 19.57% and 18.99% respectively.
Therefore, the results prove that the horizontal positioning accuracy is improved after
compensating for the errors caused by gyro-accelerometer asynchronous time. Further
analysis shows that the velocity errors are only corrected at the stance phase by using the
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ZUPT algorithm. Since the zero-velocity interval accounts for a small part of a complete gait
cycle, the velocity errors and position errors will be accumulated continuously. Although
the horizontal velocity errors caused by gyro-accelerometer asynchronous time will cancel
each other out partly on a closed-loop trajectory, the complex movement of foot will still
lead to the drift of velocity. Therefore, the horizontal positioning accuracy can be improved
by compensating for the errors caused by gyro-accelerometer asynchronous time.

Besides, compared with method 1, the vertical positioning accuracy with method 2
increases by 0.27 m, 1.12 m and 1.26 m respectively at P0, P1 and P2, indicating that the
proposed calibration method can effectively compensate for the height error caused by
gyro-accelerometer asynchronous time when using the ZUPT algorithm. However, the
improvement of vertical positioning accuracy with method 4 is limited, due to the effective
correction of height when using the height constraint algorithm.

(a) (b) (c)
Figure 15. The calculated positions by different methods. (a) North, (b) East, (c) Height.

(a) (b) (c)
Figure 16. The position errors at three standard points. (a) Standard point 1, (b) Standard point 2,
(c) Standard point 3.

Table 5. Comparison of position errors by different methods (P1).

Errors Method 1 Method 2 Method 3 Method 4

North position error (m) 0.38 0.35 0.17 0.18
East position error (m) 0.36 0.23 0.27 0.15

Horizontal position error (m) 0.52 0.42 0.32 0.23
Error percentage (%D) 0.50 0.40 0.31 0.22

Height error (m) 1.03 0.76 0.08 0.06

Table 6. Comparison of position errors by different methods (P2).

Errors Method 1 Method 2 Method 3 Method 4

North position error (m) 0.93 0.75 0.44 0.36
East position error (m) 1.06 0.92 1.01 0.85

Horizontal position error (m) 1.41 1.19 1.10 0.92
Error percentage (%D) 0.70 0.59 0.54 0.46

Height error (m) 2.48 1.36 0.20 0.18
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Table 7. Comparison of position errors by different methods (P3).

Errors Method 1 Method 2 Method 3 Method 4

North position error (m) 1.70 1.38 0.89 0.66
East position error (m) 1.84 1.60 1.66 1.43

Horizontal position error (m) 2.51 2.11 1.88 1.58
Error percentage (%D) 0.84 0.70 0.64 0.53

Height error (m) 3.37 2.11 0.22 0.23

6. Discussion and Conclusions

The experimental results show that the gyro-accelerometer asynchronous time can be
estimated in a short time due to the high-dynamic environments. The proposed calibration
method performs well in estimating the parameter of gyro-accelerometer asynchronous
time. The positioning accuracy can be improved effectively after compensating for the
errors caused by gyro-accelerometer asynchronous time. Since the position errors caused
by gyro-accelerometer asynchronous time will be accumulated over time, the proposed
calibration method contributes to improving the stability of PNS in a long time.

In the foot-mounted pedestrian navigation system with MIMU or mobile phone as the
main carrier, the difference of phase-frequency characteristics between gyros and accelerom-
eters will lead to the asynchronization of sampling time, resulting in the accumulation of
velocity errors and position errors. To solve this problem, in this paper, an error model
of gyro-accelerometer asynchronous time is built. The effect of gyro-accelerometer asyn-
chronous time on pedestrian navigation and the main characteristics of velocity errors
under different motions are analyzed. A filtering model is designed to calibrate the gyro-
accelerometer asynchronous time via a Kalman filter. To avoid the missing detection and
false detection, a zero-velocity detection method based on the rate of attitude change is
proposed. The results of the 300 m-long experiment show that the gyro-accelerometer
asynchronous time is estimated effectively and the positioning accuracy is improved
after compensating for the errors caused by gyro-accelerometer asynchronous time. Fur-
thermore, the gyro-accelerometer asynchronous time is caused by hardware, while the
proposed method reduces the negative effect of gyro-accelerometer asynchronous time by
software. Therefore, for the MIMUs with gyro-accelerometer asynchronous time, the pro-
posed method makes it possible to apply them in PNS, which reduces the cost of pedestrian
navigation and improves the reliability of MIMUs or mobile phones in PNS. Therefore, it
can be concluded that the proposed calibration method works well in the foot-mounted
pedestrian navigation system, and the study of gyro-accelerometer asynchronous time
provides a new way to improve the positioning accuracy of pedestrian navigation in an
indoor GNSS-denied environment.
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