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Abstract: Since the introduction of a series of methods for solving the time-dependent Schrödinger
equation (TDSE) in the 80s of the last centry, such as the Fourier transform, the split operator
(SO), the Chebyshev polynomial propagator, and complex absorbing potential, investigation of
the molecular dynamics within quantum mechanics principle have become popular. In this paper,
the application of the time-dependent wave packet (TDWP) method using high-order SO propagators
in hyperspherical coordinates for solving triatomic reactive scattering was investigated. The fast sine
transform was applied to calculate the derivatives of the wave function of the radial degree of freedom.
These high-order SO propagators are examined in different forms, i.e., TVT (Kinetic–Potential–Kinetic)
and VTV (Potential–Kinetic–Potential) forms with three typical triatomic reactions, H + H2, O + O2 and
F + HD. A little difference has been observed among the performances of high-order SO propagators
in the TVT and VTV representations in the hyperspherical coordinate. For obtaining total reaction
probabilities with 1% error, some of the S class high-order SO propagators, which have symmetric
forms, are more efficient than second order SO for reactions involving long lived intermediate states.
High order SO propagators are very efficient for obtaining total reaction probabilities.

Keywords: APH coordinates; scattering; splitting propagator

1. Introduction

Modern methods to solve the time-dependent Schrödinger equation play an important role
in the description of atomic and molecular processes [1–5]. Especially, the time-dependent wave
packet method for solving reactive scattering processes has become more and more popular due to
its numerical scaling advantages. Usually, the Jacobi coordinate is applied for a reactive scattering
process, since in it, the Schrödinger equation has a simple form. However, the time-dependent wave
packet method using the Jacobi coordinate for a reactive scattering has two primary drawbacks [6]:
First, one set Jacobi coordinate is only optimal to represent one of the arrangements. In order to extract
state-to-state information, one suffers from the coordinate problem [7,8]. As far as the treatment of
products with three free atoms is concerned, the Jacobi coordinates are not optimal choices. In contrast,
the hyperspherical coordinate deals with all arrangement channels simultaneously and equally [6,9,10]
which is capable of treating all the arrangement channels efficiently using only single propagation.
Recently, Zhao et al. developed an efficient interaction-asymptotic region decomposition (IARD)
method, where the adiabatically adjusting, principal axes hyperspherical (APH) coordinate presented
by [9] was applied for the interaction region, but the corresponding Jacobi coordinates were applied for
the asymptotic regions. The IARD method is very efficient for dealing with the state-to-state reactive
scattering process using the time-dependent wave packet method [11].
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In a numerical simulation of the quantum reactive scattering processes by TDWP-method,
the efficiency strongly depends on the two main aspects; (i) the coordinate system and the
corresponding grid representation and (ii) the time propagator to evolve the wave packet. Often, these
two aspects are closely dependent and one needs to carefully design the whole numerical scheme.

Time-dependent methods are very easy to implement and they have many general applications,
i.e., molecular reactive dynamics, prediction of laser atom or molecule interactions, photo-dissociation
processes, ultra-cold reactions, etc. The dynamics on which we perform quantum calculations are very
helpful for our understanding, through which we have accumulated a large amount of knowledge
about micro-mechanisms about chemical reactions, such as the quantum bottleneck state over the
transition state, chemical reaction and the geometric phase phenomenon etc.

The numerical grid methods by using the fast Fourier transform (FFT) and its mapped form,
pioneered by Kosloff and his co-workers, have also proven to be very efficient and convenient for
quantum molecular dynamics studies [12–16]. The other well known method for the solution of the
molecular Schrödinger equation is the discrete variable representation (DVR) method [17–20]. Both of
these two method are very effective and will be applied in the present work.

Many efficient wave packet propagation methods have been proposed in the past years, too.
The most efficient and accurate propagator was the Chebyshev polynomial expansion, proposed by
Tal-Ezer and Kosloff [21]. The second order SO (SSO) method [22,23] is another one of the most popular
propagators. One of the interesting feature of the SSO is that it conserves the norm of the wave packet,
even when a large time step is used. As a result, the propagation is exceedingly stable. The later
introduced Chebyshev real wavepacket (CRWP) [24,25] is also very popular in quantum molecular
dynamics field.

For reactive scattering processes, Sun et al. [26] have found that when wave packet is propagated
on a flat Potential energy surface using Jacobi coordinate, the SSO appeared to be more efficient than
the CRWP propagator, whereas when PES with deep potential is considered, the CRWP will give more
efficient results than the SSO propagator. However, the CRWP requires a large number of iterations
to obtain fully converged scattering informations for deep potentials. Recently, many groups [27–42]
have investigated the application of high-order SOs for solving the Schrödinger equation. Most
recently Sun et al. [43,44] draw significant numerical investigations with the high-order SOs and
presented several typical tri-atomic reactive scattering calculations. The splitting integrator in either
exponential VTV (potential-kinetic-potential splitting) or TVT (kinetic-potential-kinetic splitting) forms
were employed in the Jacobi coordinates. They found that, generally, the high-order SO gives more
efficient results in TVT form as compared to VTV version. The best high-order SOs in the Jacobi
coordinate in most cases are more efficient than the SSO.

The Hamiltonian operators in the APH coordinates are very different from those in the Jacobi
coordinates, thus the performances of the different high-order SOs in the APH coordinate should be
very different. This motivated us to investigate how high-order SO for reactive scattering calculation
works with the APH coordinates. In the literature, there are many different types of hyperspherical
coordinates; for details see [45–48]. The main difference among the APH coordinate and other
hyperspherical coordinates [45–48] lies in the selection of kinematic-angle and orientation of the
body-fixed(BF) axes [9]. In the present work, we would only focus on the APH coordinate. The contents
of the paper are further divided as follows: Section 2 contains a detailed description and derivation of
the theoretical methods for the APH coordinates. Section 3 contains the numerical investigation on
performance of the high-order SOs with three typical H + H2, F + HD and O + O2 reactions. Finally,
Section 4 concludes our present work.
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2. Theory: Coordinates System, Hamiltonian and Split Operators

2.1. Theory: Mass Scaled Jacobi Coordinate and Initial WavePacket

Let A, B and C be system of three atoms with masses mα where α = A, B, C and positions Pα

w.r.t SF-axis. Total mass M, reduced mass µ, and the scaling factor dα for the three atoms are defined
as follow:

M =
C

∑
α=A

mα, (1a)

µ =
mAmBmC

M
, (1b)

dα =
mα

µ

(
1− mα

M

)
, (1c)

With above three relations, we can now define the mass scaled Jacobi (MSJ) coordinates [45,46]

sη = Pη+2 − Pη+1 (2a)

Sη = Pη −
mη+1Pη+1 + mη+2Pη+2

mη+1 + mη+2
(2b)

rη = d−1
α sη (2c)

Rη = dαSη (2d)

where, subscripts η, η + 1 and η + 2 representing cyclic permutation of atoms A, B and C. rη represents
the vector from particle B to C, Rη position vector from center of BC to A. One advantage of the MSJ
coordinates is simple orthogonal transformations among different sets are “kinematic-rotations” given
by angle χη+1,η (

Rη+1

rη+1

)
= U(χη+1,η)

(
Rη

rη

)
(3)

where the transformation matrix U is given by(
Rη+1

rη+1

)
=

(
cos(χη+1,η) sin(χη+1,η)

−sin(χη+1,η) cos(χη+1,η)

)(
Rη

rη

)
(4)

The kinematics angles are negative obtuse angles with following properties.

χη+1,η = −χη+1,η (5a)

χη+1,η = 0 (5b)

tan(χη+1,η) = −
mα

µ
(5c)

cos(χη+1,η) = −
µ

mη+2dηdη+1
(5d)

sin(χη+1,η) = −
mα

µ
(5e)

These equations lead to the identity

χAB + χBC + χCA = 2π (6)
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The MSJ coordinates are simply known as Jacobi coordinates due to extensive use in the literature.
The SF or BF-axis set can be used to describe the positions of the three atoms. The six Jacobi SF
coordinates consist of two orientation angles of each Jacobi vector and magnitude.

The Hamiltonian in the MSJ coordinates for triatomic reactive scattering can be written as

Ĥ = − h̄2

2µ

1
Rη

∂2

∂R2
η

Rη −
h̄2

2µ

1
rη

∂2

∂r2
η

rη +
L̂η

2

2µR2
η

+
Ĵη

2

2µr2
η
+ V, (7)

where L̂ represents orbital angular momentum operator of atom A, Ĵ is the rotational angular
momentum operator of BC, µRα is the reduced mass between the center of mass of A and BC, and the
total angular momentum is given by J = L̂ + Ĵ.

For Wave packet calculations, the initial wave packet (IWP) was constructed using MSJ coordinates
and then transformation of IWP was done in APH coordinates as described by [6]. For aforementioned
problem, the initial wave packet in SF frame (v0, j0, l0) can be simply constructed as a wave function
expanded in the SF MSJ coordinates as under:

ψJM∈
ηv0 j0l0

(t = 0) = ∑
ηv0 j0l0

1
Rηrη

G(Rη)φv0 j0(rη)|JMj0l0 ∈〉, (8)

where |JMj0l0 ∈〉 represents quantum numbers in SF-representation with the parity ∈= (−1)j0+l0 ,
the ro-vibrational eigenfunction of diatom BC is φv0 j0(rη) , and the shape of the initial wave function
along the translational coordinate is Gaussian function G(Rη) and is given by

G(Rη) =

(
2

πσ2

) 1
4

e(−
(Rη−Rc

η )

σ

2
)e(−kcRη). (9)

Using Equation (8) we can easily transform coordinates system from the MSJ to the APH coordinates.

2.2. Hyperspherical Coordinate for Triatomic Reactive Scattering

Consider the kinematics rotation:(
KR
Kr

)
= U(χη)

(
Rη

rη

)
, (10)

where χη continuous variable and its range is [0, 2π]. The χη differ only in origin for different choices
of η and are equivalent for different choices of η.

χη = χi − χηi , (11)

where χηi are Jacobi kinematics angles given in Equation (5a). The kinematic-angle χη is selected to
maximize magnitude of KR, thus, a vector KR will move towards the vector Rη for any atom η which
left other remaining two atom. To obtain maximum value of KR it can be obtained from:

tan(2χη) =
2Rη .rη

Rη
2 − rη

2
, (12)

with χ ε [−π, π].
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Transformations from one system BFη to anothere system BFKR usually consist of rotations βKη

about their common y-axis. This βKη is described by the following relation:

sin(βKη ) =
rη sin(χη) sin(Θη)

KR
(13a)

and

cos(βKη ) =
Rη cos(χη) + rη sin(χη)cos(Θη)

KR
(13b)

here
KR =

√
r2

ηsin(χη)
2.sin(Θη)

2 + (Rη cos(χη) + rη sin(χη)cos(Θη))2 (13c)

The above system of equations are mapping between Jacobi and APH coordinates and will be
used for transformation between these coordinates [9].

In the APH system, the hyperradial ρ represents the radial part, and two angular parts θ, χi are
internal coordinates. The size of the triatomic system is described by hyperradial ρ and shape of the
system is given by hyperangles. The angle θ is a “bending” angle, it varies the triatomic shape i.e.,
from an equilateral triangle θ = 0 to a collinear geometry θ = π/2, and for collinear geometry χi
represents ratio of rη to Rη for every fixed value ρ. These internal coordinates are defined as:

ρ =
√

K2
r + K2

R (14a)

θ =
π

2
− 2 tan−1

(
Kr

KR

)
(14b)

χi is defined in Equation (11). Here ρ ε [0, ∞] and θ ε [0, π
2 ]. The internal coordinates deals with

all arrangement channels equally.
The relation between internal coordinates of the MSJ coordinates in terms of APH coordinates is

given as:

Rη =
ρ√
2

√
(1 + sin θcos 2(χi − χηi)) (15a)

rη =
ρ√
2

√
(1− sin θcos 2(χi − χηi)) (15b)

and

cos Θη =
sin θsin 2(χi − χηi)√

1− sin2 θcos2 2(χi − χηi)
(15c)

and also internal coordinates of APH system in term of the MSJ are as:

ρ =
√

R2
η + r2

η (16a)

tan θ =

√
(R2

η − r2
η)

2 + 4(R2
ηr2

η)

2Rηrηsin Θη
(16b)

and

tan[2(χi − χηi )] =
2Rη .rη

Rη
2 − rη

2
, (16c)
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The Hamiltonian in APH coordinates is defined as:

HAPH = h̄2

2µρ5/2
∂2

∂ρ2 ρ5/2 − h̄2

2µρ2

[
4

sin 2θ
∂
∂θ sin 2θ ∂

∂θ +
1

sin2 θ
∂2

∂2χi

]

+ 15h̄2

8µρ2 +
1

µρ2

[
Aθ+Bθ

2 J +

(
Cθ − Aθ+Bθ

2

)
J2

z

]

+ 1
2µρ2

[
Aθ−Bθ

2 (J2
+ + J2

−) + h̄Dθ(J+ + J−) ∂
∂χi

]
+ V(ρ, θ, χ)

(17)

where V(ρ, θ, χ) is potential energy, J represents the Total Angular Momentum,

J± = Jx ± iJy (18)

are the lowering and raising operators, and

Aθ =
1

1 + sin θ
, Bθ =

1
2 sin2 θ

, Cθ =
1

1− sin θ
, Dθ =

cos θ

sin2 θ
(19)

In calculations, for hyperradial “ρ” sine-DVR, for kinematics angle “χ” Fourier DVR, and finite
basis representation (FBR) of spherical harmonic basis “yjK(θα)” used for angular “θ” coordinate.

To propagate the wavepacket in APH coordinates (ρ, θ, χi), the wavepacket can be expanded:

ΨJM∈(t) = ∑
K

4
ρ5/2 D̄ J∈∗

MK (
~Ωη)ψ

JK∈(ρ, θ, χi, t0), (20)

where D̄ J∈∗
MK (

~Ωη) represents the parity-adapted normalized rotation matrix, which depend only on
Euler angles ~Ωη ,

D̄ J∈∗
MK (

~Ω) =

√
2J + 1

8π2(1 + δK0)

[
D J∗

KM(~Ωη)+ ∈ (−1)(J+K+∈)D J∗
−KM(~Ωη)

]
, (21)

where ∈ = (−1)j+l is the parity of the system, with l is the total orbital angular momentum quantum
number and K is the projection of the total angular momentum J on the BF z axis and D Jε

MK(
~Ωη) is the

Wigner rotation matrix. The wave function ψJK∈(ρ, θ, χi, to) only depends on the internal coordinates
(ρ, θ, χi) and APH Hamiltonian on the K part of the wave-packet is:

HAPHψJK∈(ρ, θ, χi, t0) =

(
− h̄2

2µ
∂2

∂ρ2 +
15h̄2

8µρ2 − h̄2

2µρ2

[
4

sin 2θ
∂
∂θ sin 2θ ∂

∂θ +
1

sin2 θ
∂2

∂2χi

]

+V(ρ, θ, χ) + 1
µρ2

[
Aθ+Bθ

2 h̄J(J + 1) +

(
Cθ − Aθ+Bθ

2

)
h̄2K2

]

+ 1
2µρ2 ∑J

K′=0

〈
D̂ J∈∗

KM

∣∣∣∣∣Aθ−Bθ
2 (J2

+ + J2
−) + h̄Dθ(J+ + J−) ∂

∂χi

∣∣∣∣∣D̂ J∈∗
K′M

〉)
ψJK∈(ρ, θ, χi, t0)

(22)

i.e., the wave function ψJK∈(ρ, θ, χi, t0), can be expanded as:

ψJK∈(ρ, θ, χi, t0) = ∑
n,m,j

Fnmjun(ρ)φm(χ)yjKα
(θ), (23)

here n, m represent basis-labels, u(ρ) represents basis for hyperradius coordinate, φ(χ) basis for

kinematics angles coordinates, and yjKη
=
√

(2j+1)
4π dj

Kη0
is spherical harmonics. reduced Wigner
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rotational matrix [49] with Kη = 0 is dj
Kη0

. Aθ , Bθ , Cθ and Dθ all are given in the Equation (19).
The matrix elements of the Equation (22) can be solved analytically [9]:

Dmat = ν+J,Kν+J,K+1δK′ ,K+2 − ν−J,Kν−J,K−1δK′ ,K−1 + (−1)(J+K+∈)ν−J,Kν−J,K−1δK′ ,2−K (24)

〈D̂ J∈∗
KM |(J2

+ + J2
−)|D̂

J∈∗
K′M〉 = h̄2 Dmat√

(1 + δK,0)(1− δK′ ,0)
(25)

and

〈D̂ J∈∗
KM |(J+ + J−)|D̂ J∈∗

K′M〉 =
ν+J,KδK′ ,K+1 − ν−J,KδK′ ,K−1 + (−1)(J+K+∈)ν−J,KδK′ ,1−K√

(1 + δK,0)(1− δK′ ,0)
(26)

where ν±J,K is given by [9]: ν±J,K =
√
(J ± K + 1)(J ∓ K). The results of these equations are asymmetric

top and Coriolis coupling coefficients, respectively.

2.3. Split Operators

The SSO is very common nowadays in a molecular quantum dynamics calculation,
For completeness, we make a brief introduction about it and its high-order forms.

2.3.1. Second Order Split Operator

The TD form of one-dimensional Schrödinger equation is given by:

ih̄
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t) = (T̂ + V̂)Ψ(~r, t), (27)

where V is potential, which depends only on r. Using SSO, the solution of Equation (27) can be written as

Ψ(~r, t + ∆t) = e−iĤ∆t Ψ(~r, t) = S2(∆t)Ψ(~r, t) + O(∆3
t ) (28)

here
S2(∆t) = eiĤ∆t = e−i ∆tV

2 e−i∆tTe−i ∆tV
2 (29)

or

S2(∆t) = eiĤ∆t = e−i ∆tT
2 e−i∆tVe−i ∆tT

2 (30)

The SSO in Equation (29) is named as the VTV form and in Equation (30) is named as the TVT
form, for facilitating the following discussions.

2.3.2. High Order Split Operator

There are a number of ways to develop the high-order SO as reported by [28–42], but the simplest
and most straight forward way to develop a higher order SO is, product of the lower order integrators
with different time steps as presented by [50–52] as following

S2k+2(∆t) = [S2k(α1∆t)]
n[S2k(α0∆t)]

m[S2k(α1∆t)]
n (31)

here α1 = 1
(2n−2nm2k)

1
(2k+1) and α0 = 1−2nα1

m are (2k + 2)th order split propagators. The efficiency of
integrator in Equation (31) comes at higher cost [53], and only 4th order operator have been studied in
literature. An alternative way to construct the high-order integrator(s) is as

Sn(∆t) = S2(ωk∆t)...S2(ω1∆t)S2(ω0∆t)S2(ω1∆t)...S2(ωk∆t) (32)
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The optimization of the coefficient ωk is quite complicated, but SOs in Equation (32) is generally
more efficient than those in Equation (31). Another way to obtain higher order split integrator is:

Sn(∆t) = e−iαk+1Ve−iβkTe−iαkVe−iβk−1T ...e−iα2Ve−iβ1Te−iα1V (33)

Using this procedure, upto 8th order splitting operator propagtors have been investigated [53–56]. Due
to the flexibility of parameters in Equation (33), efficient results can be obtained by using Equation (33).

In our work, to facilitate the following discussion, the high-order SOs in Equations (32) and (33)
are termed as A and S-Class/series, respectively, following the work of Sun et al. [43]. And all of the
high-order SO propagators are denoted with the same names as given in the work of Sun et al. [43,44].
Numerical error function ∆s

t is defined for comparing the efficiency of high-order SOs, where ∆s
t is

called effective time step or normalized time step as given by [43], and it is equal to time step (∆t)
per stage:

∆s
t =

∆t

Ns
(34)

where Ns indicates the number of the stages. The computational effort for each stage is the same as
that for the SSO, thus clearly relates to numerical efficiency of high-order SO.

2.4. Split Operator in the APH Coordinate

For describing a reactive scattering in the APH coordinates using the wave-packet method,
we follow our previous formalism [10,11]. The initial wavepacket was first construct in the MSJ
coordinates as

ψJM∈
ηv0 j0l0

(t = 0) = ∑
ηv0 j0l0

1
Rηrη

G(Rη)φv0 j0(rη)|JMj0l0 ∈〉, (35)

and then was transformed into the APH coordinates, where |JMj0l0 ∈〉 represents quantum numbers
in SF-representation with the parity ∈= (−1)j0+l0 , the ro-vibrational eigenfunction of diatom BC is
φv0 j0(rη) , and the shape of the initial wave function along the translational coordinate is Gaussian
function G(Rη) and is given by Equation (9).

Wave packet propagation involves the implementation of sine transform on hyperradius in order
to calculate the kinetic energy operators effect on the wavepacket. The interaction of an angular kinetic
energy operator on wavepacket can be evaluated in the FBR using associated Legendre polynomials,
and for evalution of potential energy, the DVR technique was applied [20,26].

Split operator in TVT form in APH coordinate are written as

Ψ(ρ, θ, χi, t + ∆t) = S(∆t)Ψ(ρ, θ, χi, t)

≡ e−iT∆t/2h̄e−ih̄V∆t/2h̄e−iT∆t/2h̄Ψ(ρ, θ, χi, t) (36)

or the VTV form as

Ψ(ρ, θ, χi, t + ∆t) = S(∆t)Ψ(ρ, θ, χi, t)

≡ e−iV∆t/2h̄e−ih̄T∆t/2h̄e−iV∆t/2h̄Ψ(ρ, θ, χi, t) (37)

where
e−iT∆t/2h̄ = ST

2 (∆t) ≈ e−iTχ∆t/2h̄e−iTθ ∆t/2h̄e−iTρ∆t h̄e−iTθ∆t/2h̄e−iTχ∆t/2h̄ (38)

Tχ = h̄2

2µρ2

[
1

sin2 θ
∂2

∂2χi

]
+ 1

µρ2

[
Aθ+Bθ

2 J +

(
Cθ − Aθ+Bθ

2

)
J2

z

]

+ 1
2µρ2

[
Aθ−Bθ

2 (J2
+ + J2

−) + h̄Dθ(J+ + J−) ∂
∂χi

]
,

(39)
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Tθ =
h̄2

2µρ2

[
4

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ

]
, (40)

Tρ =
h̄2

2µ

∂2

∂ρ2 +
15h̄2

8µρ2 . (41)

Higher order SO can be easily implemented by combining series of SSO in both VTV and TVT form.
The important point is to carefully design local time step as discussed by [43] for the higher order SO.
Due to the energy transformation, time step have upper limit for higher order SOs, which is defined

by (Emax − Emin) <
2π

∆t
, where (Emax − Emin) is the maximal energy distribution of wavepacket.

Finally, we use an absorption potential of the following form [43] to avoid the wave function
reaching towards the grid boundary along the ρ degree of freedom:

D(R) = i∆tC
( ρ− ρa

ρb − ρa

)
, ρa 6 ρ 6 ρb = ρend, (42)

ρa is the starting point of the absorbing potential region so ρa 6 ρ 6 ρb and C defines the strength
of the absorbing potential.

3. Results and Discussion

The numerical error was estimated from the total reaction probabilities, which was calculated by
the flux formalism method as

P(E) =
1
µ

Im[〈ΨJK∈
f (E)

∣∣ ∂

∂ρ

∣∣ΨJK∈
f ′ (E)〉], (43)

where ΨJK∈(E) is given by

ΨJK∈(E) =
1

a(E)

∫
e(iEt)ΨJK∈(t)dt, (44)

where a(E) is determined by the initial wavepacket [8,26]. The error was defined as

σ =
1
M

M

∑
k=1
|P(E)− P0(E)|/P0(E), (45)

where M is the number of the collision energies Ek and P0(Ek) was the converged results calculated
with very small time step. For different reactions the value of M and range of energy are given in
Table 1.

The Hamiltonian representation in APH coordinates is more complex than in Jacobi coordinates,
hence, it requires smart execution of the SO to achieve efficiency and accuracy. In the Jacobi coordinate,
the two radial kinetic energy operators can commute with each other, but in the APH coordinates,
none of the kinetic energy operator can freely commute with others, which makes its efficient
implementation quite difficult. To apply the high-order splitting operator in the APH coordinates for
reactive scattering processes, the arrangement of the kinetic energy operators for high-order SO in
both the TVT and VTV form is very important. In our strategy, the following forms are used to keep
the symmetry and to avoid unnecessary calculations as in Equation (38): Tχ at outer most position, Tθ

at central position and then Tρ at inner most position. Using this arrangement for the kinetic operators,
the high-order SO in both the TVT and VTV form are implemented in the following calculations.
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Table 1. Reactions, Number of Collision Energies M and Range of energy. Collision energies are evenly
distributed in the given range.

Reactions M Range of Energies

H + H2 700 [0.3, 1.0]
O + O2 701 [0.02, 0.16]
F + HD 341 [0.01, 0.035]

In order to demonstrate the efficiency of the high-order SOs in either the TVT or the VTV form for a
reactive scattering process, H + H2, O + O2, and F + HD reactions are considered. The aforementioned
chemical reactions possess variant dynamic characteristics. H + H2 reaction is the easiest direct
chemical reaction, while, with lasting resonance states and a deep potential well about 1.1 eV the
O + O2 chemical reaction is most complex. However, F + HD is direct but have a Fashbach resonances
which makes it interesting. Therefore, these reactions gives a comprehensive view for understanding
the performance of the high-order SO propagator for triatomic reactions in the APH coordinate.

We plotted total reaction probabilities of the O + O2 reaction and F + HD reaction, in Figure 1,
calculated using high-order SOs with very small time steps and with time steps which are capable of
giving results with errors of about 1%. We could see that in principle, the difference between them is
very small and hard to discern by eye. It is also seen that there are many peaks in the probabilities for
the O + O2 reaction, which implies that there are many long lived resonance intermediate states in the
potential well. There is only one peak in the probabilities for the F + HD reaction, which is the ground
Feshbach resonance state in the adiabatic potential energy curve D· · ·HF (v′ = 3). This state resides in
the van der Waals well in the product channel. The total reaction probabilities of H + H2 reaction can
be found in many studies and we do not plot them here.
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Figure 1. The Total reaction probabilities for the O + O2 (upper) and F+HD (bottom) reactions for J = 0,
calculated using high-order SOs using very small time step (Convergent) and using the time steps
which are capable of giving results with errors of about 1%.

3.1. H + H2 Reaction

The adiabatic BKMP2 PES [57] is employed for this reaction in our calculations to examine the
performance of the high-order SOs in the APH coordinate.

In Figure 2, the numerical convergences of high-order split propagators in the APH coordinate
in the TVT form (A and S class) are presented. It is seen that most of the operators are less efficient
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than the SSO for the whole error range, except for the S class (4S5b, 4S7) operators for results of high
accuracy with small time steps. We note that the propagator named as 4S5 indicates that it is a 4th
order S class propagator with four stages. Sometimes, there are more than one such propagators
reported in the literature, then we further add a, b and c ... to discern.

The high-order SOs with effective time steps that are smaller than 4 or 5 a.u converge in a way of
the SSO, which may suggest that the error mainly comes from the splitting of the kinetic operators.
As expected, the SSO remains to be the best choice for this reaction due to the smoothness of the
potential, which is similar to the conclusion in the Jacobi coordinate [43,44]. Comparison of the
effective time step of the most efficient TVT form propagators in the APH coordinates and the Jacobi
coordinates [43,44] at error of 1% are given in Table 2. It is interesting to see that the high-order SOs
in the APH coordinate in the TVT form for this reaction are more efficient than those in the Jacobi
coordinate.

Similarly, in Figure 3, the results obtained using a high-order SO in the VTV form are presented.
The performance of the high-order SOs in the VTV form is very similar to those in the TVT form,
except for lower accuracy. There is little difference between the performance of the SSO in the TVT and
the VTV form. Thus again, similar to that in the Jacobi coordinate, the SSO is the best choice among all
of the SOs in the VTV form for this simple reaction.
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Figure 2. log10(error) vs. log10(effective time step) of different high-order SOs in the TVT form for the
H + H2 reaction with total angular momentum J = 0. In Panel (A) results of 4th order SO using A-class
in TVT form with efficiency less than SSO propagator; panel (B) show the results obtained by using 4th
order SO of S-class and only 4S5b converges in a high order way ; Panel (C) represent the results of
other high order split operator obtained with A and S-class and only 6S7 converges in a 2nd order way
but less efficient.

Table 2. Comparison of the most efficient propagators in the TVT form in the Jacobi and the
APH coordinates.

Jacobi APH Jacobi APH

Reactions A Class/Time Step (a.u) A Class/Time Step (a.u) S Class/Time Step (a.u) S Class/Time Step (a.u)

H + H2 4A4b/5.0, 4A6b/3.3 4A4b/11.9, 4A6b/13.1, 6A6/14.91 4S5b/4.5 4S5a/12.1, 4S5b/8.7
O + O2 - 4A4b/5.25 - 4S9/16.41
F + HD 4A6a/9.0 4A6a/4.08 4S7, 4S9/5.1 4S5b/5.99
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Figure 3. log10(error) vs. log10(effective time step) of different high-order SOs in the VTV form for the
H + H2 reaction with total angular momentum J = 0. In Panel (A) results of 4th order SO of A-class
with efficiency less than SSO propagator these results are consistent with TVT form; panel (B) show the
results obtained by using 4th order SO of S-class and again 4S5b converges in a high order way but less
efficient than SSO; Panel (C) represent the results of other high order split operator with A and S-class
and results are similar to those given in TVT form.

3.2. O + O2 Reaction

For the O + O2 calculations, the SSB PES [58] was applied. In Figure 4, the numerical convergences
of high-order split propagators in the APH coordinate in the VTV form of both A and S class are plotted.
The results in panel (A) demonstrate that the 4th-order A class propagators are not efficient for the O + O2

reaction and their efficiency is lower than the SSO, even for results of high accuracy. They all converge in
a way of the SSO, which suggests that the splitting is not so successful for these operators.

In comparison with these 4th-order A class propagators, the 4th-order S class propagators in
VTV-form are very efficient and are able to give good results with large effective time steps, as shown
in panel (B) of Figure 4. Among them, in order to obtain results with error about 1%, the 4S5b, 4S7, 4S9
and 4S11 are optimal choices to perform quantum calculations with effective time step ∆t = 15.6 a.u,
∆t = 16.6 a.u, ∆t = 16.55 a.u and ∆t = 16.96 a.u respectively. In contrast, the A class operators were
proved to be most suitable choice to perform quantum calculations in the Jacobi coordinates for this
reaction [43].

Panels (C) and (D) of Figure 4 presents the numerical convergence of 6th- and 8th-order
propagators. Again, we see that the S class SOs are very efficient. Among them, the most efficient
6th-order method is the 6S7 and the most efficient 8th-order is the 8S19. With effective time step
∆t = 11.3 a.u and 15.7 a.u, they would be able to give reaction probabilities with error less than 1%. We
would like to note that, since in the current calculations for the O + O2 reaction only collision energy
in a very small range is considered, which allows huge total time step, the 8S19 propagator becomes
effective. When collision energy in a large range is considered, the total time step becomes smaller
and the 8S19 may not be the best choice anymore. From the discussion above, we see that the S class
propagators in the VTV form in the APH coordinates are the optimal choices and are much more
efficient than those of A class.
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Figure 4. log10(error) vs. log10(effective time step) of different high-order SOs in the VTV form for the
O + O2 reaction with total angular momentum J = 0. In panel (A) results obtained using 4th order SO
of A-class are given with most of these are less efficient than SSO; Panel (B) show the results of 4th
order SO of S-class and they all converges in their higher order way and all are more efficient than
SSO; Panel (C) show the results using 6th order SO of A and S-class, only 6S7 converges in higer order
way and 2× times efficient than SSO; Panel (D) represent the results of 8th order SO of A and S-class,
all S-class operators converges in their higher order way and more efficient than any other SO used
in calculation.

The numerical convergence of high-order SO in the TVT form is given in Figure 5. By comparing
the results in panel (A) of Figure 5 and Figure 4, it can be seen that the 4th-order A class SOs in the
TVT form exhibits a better convergence than those in the VTV form. Anyway, they are still not more
efficient than the SSO.

The results in panel (B) of Figure 5 demonstrate that all the examined S class 4th-order propagators
in the TVT form are more efficient than the SSO, except the 4S5a, whose efficiency is a little less than
the SSO. The best one of them is 4S9, which with effective time step ∆t = 16.41 a.u can give results
with error less than 1%.

In panels (C) and (D) of Figure 5, the numerical results of the 6th- and 8th-order SO in the TVT
form are given. It is seen that the 6S7 is the most efficient one among the 6th-order SOs and the 8S19
is the best one among the 8th-order SOs. With effective time step ∆t = 9.1 a.u, the 6S7 is able to give
probabilities with error less than 1%. In Tables 2 and 3 optimal propagators with the effective time
step for giving error of 1% are listed for this reaction, both in the TVT and VTV form, along with the
corresponding results in the Jacobi coordinates. It can be concluded that the S class propagators in
the VTV form for O + O2 reaction in the APH coordinates are very efficient, which is of comparable
performance of the best A class SO in the Jacobi coordinate.
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Figure 5. log10(error) vs. log10(effective time step) of different high-order SOs in the TVT form for the
O + O2 reaction with total angular momentum J = 0. In panel (A) results of 4th order SO of A-class are
given, similar to VTV form most are these operators less efficient than SSO; Panel (B) show the results
of 4th order SO of S-class and again they all converges in their higher order way and all are almost
3× time more efficient than SSO except 4S5a; Panel (C) show the results using 6th order SO of A and
S-class, again similiar to VTV form only 6S7 converges in higer order way ; Panel (D) show the results
of 8th order SO of A and S-class, except A-class operator, all S-class operators converges in their higher
order way and more efficient than SSO.

Table 3. Comparison of the most efficient propagators in the VTV form in the Jacobi and the
APH coordinates.

Jacobi APH Jacobi APH

Reactions A Class/Time Step (a.u) A Class/Time Step (a.u) S Class/Time Step (a.u) S Class/Time Step (a.u)

O + O2 4A6a/20.0 4A4b/5.05 - 4S11/16.96
F + HD 6A8/10.0 4A6a/3.41 4S7/4.5 4S5b/5.94

3.3. F + HD→ HF + D Reaction

The FXZ PES [59,60] describing the F + HD reaction was used in our following calculations.
Figure 6 presents the numerical convergence of high-order SO in the TVT of both A and S class.
The results in panel (A) indicate that the examined 4th-order A class SO are less efficient than the SSO,
and converges in a second order way. However, the results in panel (B) of Figure 6 indicate that all S
class operator in TVT form shows faster convergence as a function of the effective time step. Among
them, the 4S5b is the best one. With effective time step as 5.99 a.u, it is able to give reaction probabilities
with errors of less than 1%. Comparison of the effective time steps of the best high-order SO in the TVT
form for giving error less than 1% in the APH-coordinates and the Jacobi coordinates are presented in
Table 2.
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Figure 6. log10(error) vs. log10(effective time step) of different high-order SOs in the TVT form for
the F + HD reaction with total angular momentum J = 0. Panel (A) represents results for the A class
operators, while panel (B) shows results for the S class operators.

Figure 7 gives the numerical convergence for high-order A and S class SOs in the VTV form. It can
be seen that these A class operators are inefficient, and their efficiency is only comparable with the
SSO for very small time step per stage. They are not as good as the A class operators in the TVT form
as shown in panel (A) of Figure 6.

As seen from panel (B) of Figure 7, all examined high-order S class operators in the VTV form
are clearly more efficient. The 4S5b is the best one, and with effective time step ∆s

t = 5.94 a.u, it can
give reaction probabilities with errors less than 1% . Comparison of the effective time steps of the best
high-order SO in the VTV form for giving error less than 1% in the APH coordinates and the Jacobi
coordinates are presented in Table 3.
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Figure 7. log10(error) vs. log10(effective time step) of different high-order SOs in the VTV form for
the F + HD reaction with total angular momentum J = 0. Panel (A) represents results for the A class
operators, while panel (B) shows results for the S class operators.
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The 6th-order SOs only works with small time step, and similar behaviour is observed with
8th-order SOs. Numerical convergence are given in Figures 6 and 7.

From the discourse above, we can conclude that the S class high-order SOs in the TVT form are a
little more efficient than those in the VTV form, whereas for the A class propagators, the high-order
SOs in both TVT and VTV forms have similar numerical convergence behaviours in APH coordinates
for the F + HD reaction. The most important observation is that most of the examined high-order SOs
for the F + HD reaction exhibit high-order numerical convergence, which is quite unusual. This fact
may suggest that most high-order SOs are more efficient than the SSO for calculating the results with
high accuracy for the F + HD reaction. This might result from the fact that the Feshbach resonance
resides in the product channel, which is the most important region for the reaction. However, for
the other two reactions, the most important region for the reaction should be the interaction region.
Thus, the error comes from the kinetic operators splitting and being quite different from that in the
O + O2 reaction.

4. Conclusions

In this study, the performance of a series of high-order SOs for a triatomic reactive scattering
process in the APH coordinate is examined. Since the kinetic energy operator in the APH coordinate is
more complicated than the kinetic energy operator in the Jacobi coordinate, and the high-order SOs
are derived using the one-dimensional model, it is not clear (a priori) if the high-order SOs are still
effective. The numerical investigation suggests that the S class high-order SOs are very effective in
the APH coordinate for reactions involving resonance, such as O + O2 and F + HD reaction. This is
different from that in the Jacobi coordinate, where the most effective high-order SOs are the ones of A
class. At the same time, we notice that in the APH coordinate, the performance of the high-order SOs
in the TVT and VTV form are almost the same. However, in the Jacobi coordinate, the operators in
the TVT form are a little better. For the simple direct reaction H + H2, the most efficient propagator is
proved to be the 2nd-order SO. This is consistent with the results given in the Jacobi coordinate.

In this work, an interesting thing is noticed for the F + HD reaction. Usually, the convergence rate
of higher order SOs is of 2nd order at small time steps due to the complicated kinetic operators of
the Hamiltonian in the APH coordinate, where their splitting only has a second order convergence.
However, irrespective of the time step range, the high-order convergence of the SOs of the F + HD
reaction is kept. This suggests that for obtaining results of high accuracy for this reaction, most of the
high-order SOs are more efficient than the 2nd order SO.

Currently, there is focused interest on studying ultra-cold reactions. We can expect that the high
accuracy property of high-order SOs is attractive and high-order SOs would gain more attention,
where high precision results are required.
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