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Simple Summary: After calving, the milk production of dairy cows increases rapidly, but the
nutrient intake cannot meet the demand for milk production, forming a negative energy balance.
Dairy cows in a negative energy balance have an increased risk of developing clinical or subclinical
ketosis. The ketosis in dairy cows has a negative impact on milk production, dry matter intake,
health, immunity, and reproductive performance. Propylene glycol can be used as an important
gluconeogenesis in ruminants and can effectively inhibit the formation of ketones. Supplementary
propylene glycol to dairy cows during perinatal is an effective method to alleviate the negative energy
balance. This review summarizes the reasons and consequences of negative energy balance as well as
the mechanism and effects of propylene glycol in inhibiting a negative energy balance in dairy cows.
In addition, the feeding levels and methods of using propylene glycol to alleviate negative energy
balance are also discussed.

Abstract: With the improvement in the intense genetic selection of dairy cows, advanced management
strategies, and improved feed quality and disease control, milk production level has been greatly
improved. However, the negative energy balance (NEB) is increasingly serious at the postpartum
stage because the intake of nutrients cannot meet the demand of quickly improved milk production.
The NEB leads to a large amount of body fat mobilization and consequently the elevated production
of ketones, which causes metabolic diseases such as ketosis and fatty liver. The high milk production
of dairy cows in early lactation aggravates NEB. The metabolic diseases lead to metabolic disorders,
a decrease in reproductive performance, and lactation performance decline, seriously affecting the
health and production of cows. Propylene glycol (PG) can alleviate NEB through gluconeogenesis
and inhibit the synthesis of ketone bodies. In addition, PG improves milk yield, reproduction, and
immune performance by improving plasma glucose and liver function in ketosis cows, and reduces
milk fat percentage. However, a large dose of PG (above 500 g/d) has toxic and side effects in cows.
The feeding method used was an oral drench. The combination of PG with some other additives
can improve the effects in preventing ketosis. Overall, the present review summarizes the recent
research progress in the impacts of NEB in dairy cows and the properties of PG in alleviating NEB
and reducing the risk of ketosis.
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1. Introduction

The transition period from late pregnancy to early lactation is well known as the critical time for
the production of cows [1]. During this period, the higher energy demand for milk production coupled
with the reduction in dry matter intake (DMI) around calving means that a large number of dairy
cows are in a state of negative energy balance (NEB). To support the energy requirement, the body fat
and protein of dairy cows are mobilized for hepatic gluconeogenesis, which leads to the increase of
non-esterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), and ammonia in plasma [2]. Invariably,
the dairy cows with high-producing ability have the risk of subclinical ketosis (SCK, hyperketonemia
without clinical signs) or clinical ketosis (CK, hyperketonemia with clinical signs). Cows with ketosis
have a greater risk of several diseases including displaced abomasum, infections of the reproductive
tract, mastitis, cystic ovarian disease, leg problems, and diseases of the digit and foot [3]. Due to the
rapid increase in energy demand for milk after calving, the NEB usually has an adverse impact on
health and thus decreases animal welfare, production, and profitability [4].

Earlier treatment of ketosis is important to reduce future economic losses in modern high-yield
dairy farms. The goal of ketosis treatment is to stimulate gluconeogenesis, increase plasma glucose,
and decrease lipolysis [5]. Propionate is the major precursor for gluconeogenesis. However, the limited
feed intake during early lactation restricts ruminal propionate supply to the liver, raising the requirement
for alternative gluconeogenic precursors [6]. Propylene glycol (PG) is a precursor of ruminal propionate
that can be rapidly absorbed from the rumen for gluconeogenesis in the liver [7]. It has long been
used as a treatment against ketosis [8]. Experimental studies have shown that an oral drench of PG
can be effective in increasing glucose and decreasing BHBA and NEFA in plasma [9]. Therefore, this
paper reviews the effects of NEB in dairy cows, and the research progress about the properties of PG in
alleviating NEB and reducing the risk of ketosis during postpartum in dairy cows.

2. The Formation of NEB in Dairy Cows

During the transition period, dairy cows experience a dramatically increased demand for nutrients
for the growing fetus and the initiation of lactation [9]. In the postpartum period, the nutrient
requirements for milk yield, milk fat, milk protein, and milk lactose increase rapidly and exceed the
supplies from DMI [10]. In addition, the diet of dairy cows after calving changes sharply from being
mainly forage-based to concentrate-rich [11]. The sudden energy requirement for milk production
and the DMI lags behind, inducing the negative nutrient balance, especially the NEB. The NEB
symptoms appear in postpartum, but the dynamic changes of the physiological and metabolic status
are verified from the prepartum period [12]. Responding to the NEB, the cow physiologically triggers
the lipomobilization of body fat reserves, thereby amounts of NEFA are released into the blood
circulation [12]. The NEFA are used as a fuel source by muscle, incorporated into milk fat, and taken up
by the liver in proportion to their supply [13]. However, the excessive mobilization of body fat reserves
leads to the accumulation of triglycerides in the liver or conversion to ketone bodies (i.e., BHBA,
acetone, and acetoacetate) and leads to the onset of ketosis, which has adverse effects on the health,
milk productivity, and reproduction in dairy cows. It is well known that dairy cows already go into
a period of NEB a few days before calving and that the NEB extends to a few weeks after calving,
with the nadir of NEB during the first week of lactation [14]. The feed intake increases slowly at
the beginning of lactation [15] and the NEB switches to a positive range after approximately 45 d of
lactation [16]. Other diseases such as rumen distention, abomasum displacement, metritis, mastitis,
and so on also lead to insufficient nutrient supply and trigger secondary ketosis in the early lactation
period. Therefore, methods of decreasing the release of NEFA from adipose tissue are important to
alleviate the NEB of dairy cows in early lactation.
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3. The Effects of NEB in Dairy Cows

3.1. Increasing the Incidence of Metabolic Diseases

During the transition period, in order to meet the energy requirement for improved milk
production, the rate of lipolysis excesses the lipogenesis, which results in the increasing serum NEFA
of dairy cows. When the NEFA could not be completely oxidized to carbon dioxide, it will partly
be oxidized to ketone bodies or be stored in the liver as triglycerides [9]. During the period of high
metabolic demands, the increased hepatic oxidation of NEFA induces satiety, decreases feed intake,
and increases fat mobilization [17]. The blood BHBA level of above 1.2 mmol/L or 1.4 mmol/L is
related to impaired health and performance, and is a common and costly metabolic disease, which is
called hyperketonemia [18]. The high concentrations of NEFA and BHBA have negative effects on
the health and productivity of dairy cows. Therefore, the physiological conditions associated with
insufficient energy supply predispose dairy cows to metabolic and microbial diseases such as milk
fever, endometritis, ketosis, displaced abomasum, and retained placenta [11].

The epidemiology of ketosis in dairy cows in early lactation increases the risk of displaced
abomasum. Each 0.1 mmol/L increases in BHBA at the first SCK-positive test increased the risk of
developing a displaced abomasum by a factor of 1.1 [95% confidence interval (CI) = 1.0 to 1.2] and
increased the risk of removal from the herd by a factor of 1.4 (95% CI = 1.1 to 1.8) [19]. Raboisson et al. [20]
summarized the association between SCK and displaced abomasum in 38 models from 10 publications
and found that the risk (95% CI) of left displaced abomasum in cows with SCK were 3.55 (2.60–4.25).
Fatty liver is also a metabolic disorder of dairy cows relating to NEB in early lactation. Fatty liver
develops when the hepatic uptake of lipids exceeds the oxidation and secretion of lipids by the
liver and thereby causes accumulation of triacylglycerol (TAG) in the liver [21]. The severe fatty
liver causes metabolic dysfunction, which will reduce the hepatic metabolism, defense function, and
insulin sensitivity [12]. The results of Fiore et al. [22] showed that fatty liver already developed before
parturition, and increased from moderate to severe in 10 days after calving and then progressively
disappeared. Therefore, methods of preventing hepatic lipidosis should be applied during this period.

3.2. Decreasing the Milk Productivity Performance of Dairy Cows

McArt et al. [19] concluded that each 0.1 mmol/L increase in BHBA at the first SCK-positive test
was associated with a decrease in milk production by 0.5 kg/d for the first 30 days in milk (DIM).
The cows with CK were lower in milk production and milk protein content, but milk fat content was
higher than healthy cows [23]. A high percentage of fat and a low percentage of protein in the milk were
associated with significant increases in the risk of SCK [24]. The mean fat to protein percentage ratio
(FPR) and the frequency of FPR > 1.5 were higher in ketosis cows than healthy cows [25]. Therefore,
the FPR of milk in early lactation is negatively correlated with energy balance and has been used as an
indication of ketosis. The optimal FPR values are 1.05 to 1.18, while FPR values higher than 1.3 or 1.5
suggest a severe NEB and SCK [26]. In the cows with ketosis, the plasma NEFA from fat mobilization
provided the precursor for milk fat synthesis in the mammary gland. The results [23] of in vivo and
in vitro data indicated that NEFA could induce cell death-inducing DNA fragmentation factor-α-like
effector A (CIDEA) expression in bovine mammary epithelial cells, leading to upregulation of de
novo fatty acid synthesis enzymes (fatty acid synthase and acetyl-CoA carboxylase 1) and milk lipid
secretion proteins (butyrophilin and xanthine dehydrogenase), thereby contributing to an increase in
milk fat content in CK cows. The decrease in milk protein percentage might be related to the increased
amino acid requirements for gluconeogenesis in ketosis cows, and the spared would be limited for
protein synthesis in mammary gland.

3.3. Decreasing the Reproductive Performance

The reproductive performance of cows is one of the most important factors affecting the economic
benefits of dairy production. The duration and severity of dairy cows’ NEB in early postpartum are
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also related to reproductive performance. Extensive mobilization of fat has detrimental effects on
liver function due to the accumulation of TAG, impairing the detoxification of ammonia into urea [27].
The NEB of dairy cows in early lactation will also increase the mobilization of protein, which will
increase the metabolic residues of ammonia and urea. Ammonia is believed to play a role in starting
before ovulation, whereas urea mainly interferes negatively after fertilization [28]. The first ovulation
of a dairy cow is retarded by decreasing the luteinizing hormone (LH) pulsatility because of the low
blood glucose [29].

The calving-to-first-service interval was 8 d longer and the calving-to-conception interval was 16
to 22 d longer in cows with SCK than in healthy cows [20]. Rutherford et al. [30] established that the
SCK cows prolonged calving to the first estrus, calving to first insemination and calving to pregnancy
intervals, and the first insemination was 4.3 times less likely to be successful compared to non-SCK
cows. The high BHBA values, before, after, or before and after artificial insemination were reported
associated with a six to 14% reduction in the pregnancy per artificial insemination compared with cows
with low BHBA values [31]. Najm et al. [32] also showed the activity of healthy cows exceeded the
ketosis cows by an average of 52.6% in 4–70 DIM and the mean motion activity on the day of estrus
was also higher in healthy cows. The activity level of the cow will also affect the effective monitoring of
estrus, which may be a factor decreasing the reproductive performance, especially detecting estrus by
automated surveillance systems. The uterine inflammation could also be exacerbated by the elevated
circulating concentration of BHBA or NEFA in early postpartum [33], which would delay uterine
involution and successful conception. Therefore, severe NEB will reduce the reproductive performance
of cows by delaying uterine recovery, prolonging calving to the first estrus, and reducing estrus activity
and successful conception rate.

3.4. Inducing Immunosuppression

During the period from late pregnancy to early lactation, the NEB of dairy cows increases the risk
of metabolic and infectious diseases. The metabolic status of early-lactating cows is known to affect the
immune response to pathogens and impose immune challenges [34]. In this period, the NEB decreases
the efficiency in pathogen clearance and increases the magnitude and duration of inflammation [35].
As a consequence, cows are more susceptible to several economically important disease such as metritis
and mastitis [36]. In ketosis cows, the inflammation biomarkers of serum amyloid A, haptoglobin,
and lipopolysaccharide binding protein are increased when compared with healthy counterparts [37].
The increase in circulating NEFA impairs peripheral blood mononuclear cells and polymorphonuclear
leukocytes function, along with a weakening of those cells’ phagocytosis capacity and a decrease
in their ability to fight bacteria [38]. The inflammatory state in early lactation may disrupt normal
nutrient partitioning and decrease the productivity of dairy cows [39].

Greater concentrations of both NEFA and BHBA have been associated with impaired immune
functions and mastitis in dairy cows [40]. Glucose is considered as the preferred substrate for the
immune system [41], and the activation of an immune response requires energy [42]. Serum glucose
levels in cows with severe NEB are significantly reduced during early lactation, affecting the energy
supply of the immune system. The increase in lipid infiltration in the liver also decreases the immune
response. Additionally, cows with ketosis (blood BHBA > 3 mmol/L) have higher serum concentrations
of proinflammatory cytokines interleukin (IL) 18, tumor necrosis factor (TNF)-α, and IL1B, and lower
concentration of anti-inflammatory cytokine IL-10 [43]. The somatic cell count (SCC) in milk is closely
related to the immune status of dairy cows. Van Straten et al. [44] concluded that the odds of an event
of SCC > 250,000 cells/mL or SCC > 400,000 cells/mL were 44% and 33% greater for cows with ketosis
when compared with cows without, respectively. In the results of Abuajamieh et al. [37] ketosis cows
had increased circulating markers (serum amyloid A, haptoglobin, and lipopolysaccharide binding
protein) of inflammation pre- and post-calving and before the clinical signs of ketosis. The higher
prepartum NEFA increases the risk for metritis [45]. The infection and inflammation noticeably redirect
resources toward the immune system and away from the utilization and synthesis of economically
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relevant products [41]. Therefore, severe NEB will lead to fatty liver and high serum NEFA in cows,
which also contributes to immunosuppression and increases the risk of infections in the postpartum
period. Inflammation postpartum upregulated immune gene expression and mitochondrial uncoupling
further increase energy requirements, which exacerbates severe NEB status in cows [11].

4. The Anti-Ketogenic Properties of PG and the Mechanism of Inhibiting NEB

During early lactation, glucose synthesis should be increased to accommodate mammary
demands [46]. To avoid the occurrence of dairy cow ketosis, it is important to provide extra
gluconeogenesis for dairy cows. In 1954, PG was observed to be an effective treatment of ketosis in
dairy cows [8]. PG supplementation appears to increase milk yield with a slight decrease in milk fat
and an increase in milk lactose percentage [47]. Propylene glycol (1, 2-propanediol; C3H8O2) is a sweet,
hygroscopic, viscous liquid that has a gluconeogenic property and is routinely used because of its
therapeutic effects on cows suffering from ketosis, based on the premise that it rapidly increases blood
glucose [48]. As gluconeogenic precursors, it has been proven that PG is more effective at increasing
plasma glucose concentration than glycerol, since 300 mL PG is at least as effective as 600 mL of
glycerol [49]. Plasma concentrations of glucose and insulin are known to increase in response to dietary
PG [50,51]. Propionate is the main product of PG fermentation, which can be rapidly metabolized
with short lag time [52]. This is beneficial for cows to alleviate the NEB and anti-ketogenic. After oral
administration, the majority of PG escapes from the rumen wall or gastrointestinal tract and is converted
to glucose by the liver [53]. However, the other mechanism of the effects of PG involves the successive
production of propionate together with propanal and with the latter being converted to propanol in the
rumen, which in turn is converted to propionate and thereafter glucose in the liver [54]. The main effect
of PG is to increase the glucogenic status, and as a consequence, the concentration of plasma BHBA is
reduced and the cows have decreased risk of developing ketosis [55]. PG is metabolized to lactate,
acetate, and pyruvate in the liver. Lactate enters gluconeogenesis via pyruvate, which can be converted
to oxaloacetate. The concentration of oxaloacetate is the key metabolite in determining if the acetyl-CoA
enters the tricarboxylic acid (TCA)-cycle or ketogenesis [7]. When the oxaloacetate is insufficient for
citrate synthase to combine with acetyl-CoA, the excessive acetyl-CoA is then partitioned toward
ketone synthesis [37]. The anti-ketogenic properties of PG are partly due to increasing the oxidation of
acetyl-CoA into the TCA-cycle and the supply of gluconeogenic glucose [7]. The detailed anti-ketogenic
pathways of PG are shown in Figure 1.

In addition, insulin resistance is an adaptation to the very high glucose requirements for lactation,
thereby conserving glucose for lactation by limiting its use by insulin-sensitive tissues (muscle, adipose
tissue etc.) [56]. The insulin resistance can hence be attributed to a decrease in insulin responsiveness
and a decrease in insulin sensitivity [57]. The greater extent of insulin resistance in peripartal dairy
cows can contribute to excessive adipose tissue lipolysis and thus greater metabolic disease risk [58].
Chalmeh et al. [59] confirmed that the supplementary feeding with PG reduced the insulin resistance
in dairy cows during the transition period by the intravenous glucose tolerance test. The decrease
in insulin resistance will inhibit lipolysis and decrease the metabolic disease risk in periparturient
dairy cattle. Some researchers have found a negative effect of NEFA in the insulin sensitivity of dairy
cattle [57]. Therefore, the effect of PG in decreasing the insulin resistance may be related to the property
of PG as a main precursor of glucose and decreasing circulating NEFA.

The energy value of PG is 5.66 Mcal/kg, and according to the assumed PG metabolizable energy
utilization efficiency for lactation (80%) of Miyoshi et al. [50], the net energy for lactation (NEL) of PG
was calculated to be 4.53 Mcal/kg. Due to the higher NEL of PG, it can supply more energy intake than
other concentrates for dairy cows in early lactation and reduce the incidence of ketosis.

Therefore, the effects of PG on alleviating NEB in dairy cows are mainly by improving the
precursor for hepatic gluconeogenesis and increasing the oxidation of acetyl-CoA into the TCA-cycle.
The high energy content of PG can increase the energy density of the diet for dairy cows. The fatty
liver and ketone bodies of dairy cows will be inhibited with the increase in liver glucose synthesis.
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Figure 1. The anti-ketogenic pathways of propylene glycol (PG) in dairy cows [7]. The blue lines are to
describe the gluconeogenic pathways of increasing the glucose to preventing ketosis. The red lines
are the ways of increasing the oxidation of acetyl-CoA (coenzyme A) in the tricarboxylic acid cycle
(TCA-cycle) and the supply of glucose by increasing the production of oxaloacetate, which will prevent
acetyl-CoA convert to ketone bodies (β-hydroxybutyrate, acetone, and acetoacetate). PG can also
reduce the triacylglycerol (TG) accumulation in liver.

5. Effects of PG on Alleviating NEB in Dairy Cows

5.1. The Effects of PG on DMI and Rumen Fermentation

The DMI at the postparturient stage has an essential effect on the NEB metabolism status of
cows. The DMI of cows with CK is lower than healthy cows [23]. PG is considered unpalatable and
usually reduces feed intake if not mixed thoroughly with other feed components or drenched [7].
Moallem et al. [60] reported the daily average DMI and NEL intake from calving until 100 DIM was
higher for cows supplemented with 500 g/d PG per cow until 21 DIM than the control group. The
rumen fill score and body condition score (BCS) are also direct tools to evaluate the feed intake and
energy balance status. The PG treatment improved the rumen fill score and lowed BCS loss in the
dairy cows, which were diagnosed with ketosis in the results of Jeong et al. [61]. The increasing DMI
and rumen fill scores are beneficial for decreasing the adverse impact of NEB.

The results of Kristensen and Raun [54] showed that infusion of PG did not affect ruminal pH
or the total concentration of ruminal volatile fatty acids (VFA), but decreased the molar proportion
of ruminal acetate and increased ruminal concentrations of PG, propanol, and propanal as well as
the molar proportion of propionate. Chung et al. [62] also found the PG administration appeared to
shift ruminal VFA patterns by producing more glucogenic VFA such as propionate and valerate at the
expense of lipogenic VFA such as acetate. The increase of propionate and valerate can provide carbon
sources for glucose biosynthesis, which is beneficial for dairy cows to alleviate NEB in early lactation.
Acetate is the major source for milk fat synthesis in dairy cows [63]. Therefore, the decrease in acetate
concentration may explain the decreased milk fat with PG supplementation.

5.2. The Effect of PG on Metabolic Index

It is widely accepted that PG has a glucogenic effect. The glucogenic status of the cows have effects
on the liver metabolism of NEFA and, thereby, the regulation of ketogenesis [55]. The effects of PG
treatment on SCK or CK have been explained by reduced adipose tissue mobilization, which leads to the
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decrease of NEFA in the liver and the reduction in the formation of ketone bodies [7]. As Sun et al. [12]
reported, the dynamic changes of the physiological and metabolic status were from the prepartum
period, so feeding of PG from prepartim is also a good method to alleviate NEB of dairy cows in
postpartum. Juchem et al. [64] pointed out that prepartum PG administration increased concentrations
of glucose and insulin, and decreased BHBA and NEFA in plasma. It has been validated that the dairy
cows suffered deficiency of energy before calving, so the nutritional strategies should be implemented
at the start of the prepartum period [12]. The supplement of PG to dairy cows before calving is effective
in inhibiting the occurrence of cow ketosis. Therefore, prepartum PG administration has a glucogenic
effect for dairy cows in postpartum.

Supplement PG to dairy cows in early lactation is also an important way to avoid energy metabolic
diseases. The study of Butler et al. [48] found that drenching 500 mL PG to the dairy cow diet had
significant beneficial effect on energy balance and increased plasma insulin and glucose, while the
plasma NEFA was decreased. Kristensen and Raun [54] confirmed that when cows were dosed with
PG, the plasma concentrations of PG, ethanol, propanol, propanal, glucose, L-lactate, propionate,
and insulin were increased. Therefore, PG regulates the metabolism of cows by increasing the supply of

L-lactate and propionate to gluconeogenesis and reducing insulin resistance. Insulin is a key hormone
in the regulation of lipolysis in adipocytes. The increase of insulin is also useful for alleviating NEB for
dairy cows. Bjerre-Harpøth et al. [55] observed 4-week postpartum PG allocation enhanced glucogenic
status, which decreased plasma concentration of BHBA and increased plasma concentration of glucose,
but had limited effect on adipose tissue mobilization. Although the metabolic changes in Simmental
cows in the periparturient period were not as significant as in the case of Holstein-Friesian cows, the
application of PG also resulted in higher milk yield, BCS, and serum glucose content [65]. Therefore,
PG can enhance glucogenic status, and decrease the plasma NEFA and BHBA concentrations.

Displaced abomasum, fatty liver, and ketosis are common nutritional metabolic diseases of cows
in the postpartum period. PG, as a glucogenic precursor of ruminants, plays an important role in
inhibiting metabolic diseases caused by NEB in dairy cows. The results of McArt et al. [66] showed
the cows with SCK were 1.6 times more likely to develop displaced abomasum and 2.1 times more
likely to be dead or sold than SCK cows treated with PG within the first 30 DIM. The reasons for PG
administration decreasing displaced abomasum and the ratio to be removed from the herd are that PG
contributes to prevent ketosis and improve milk production. The results of Rukkwamsuk et al. [14]
indicated dairy cows drenched with PG from seven days prepartum to seven days postpartum could
reduce the risk of fatty liver. This is in accordance with PG decreasing the NEFA in plasma, which will
subsequently reduce the TAG accumulation in the liver. Fatty liver is a major metabolic disease of dairy
cows in early lactation. The main indicators of hepatic lesions and alterations of its function are the
enzymes aspartate transaminase (AST), gamma-glutamyl transferase (GGT), and the blood metabolites
glucose, cholesterol, and albumin [67]. The study of Hussein et al. [68] found that PG supplementation
has the ability to reduce the enzyme activities of AST and GGT and improve serum glucose, but had
no effect on the serum concentrations of total cholesterol and albumin. The PG treatment can thus
reduce liver lesions. Stokes and Goff [69] reported offering PG at calving had the effects of lowering
the health disorder risk (retained placenta, ketosis, hypocalcemia, displaced abomasum, and metritis
etc.) in dairy cows. Feeding PG to SCK cows can effectively prevent the formation of ketone bodies,
which will prevent SCK cows developing into CK cows. McArt et al. [70] showed that 300 mL/d of
PG treated cows were 1.50 times more likely to resolve their SCK (1.2 ≤ BHBA < 3.0 mM/L) and 0.54
times less likely to develop CK (BHBA ≥ 3.0 mM/L) than the control cows. The reduction in plasma
NEFA and increase in plasma glucose are related to the anti-ketogenic property of PG. The use of PG
is likely to produce more propionate as the main precursor of glucose; therefore, it can reduce the
NEB and insulin resistance [59]. Therefore, the PG supplement to dairy cows can decrease nutritional
metabolic diseases in early lactation. The cows drenched with PG could improve the molar proportion
of ruminal propionate and hepatic gluconeogenesis, which results in an elevation in serum glucose
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and a decrease in serum NEFA and BHBA. Drenching of PG during the transition period is therefore
beneficial for dairy cows to alleviate NEB in the postpartum period.

5.3. The Effects of PG on Milk Production

In the study of Lomander et al. [9], cows supplemented with 300 g of liquid PG daily in the first 21
DIM trended to yield more milk (0.94 kg, 95% CI = −0.03–1.91) compared with control cows during the
first 90 DIM, but no difference was found in energy-corrected milk. In the trial of Østergaard et al. [71]
based on milk spectra analyses, the results of the treatment with PG (500 mL for 5 d) showed only
few benefits in early lactation for physiologically imbalanced cows. The study of Juchem et al. [64]
showed that prepartum PG administration had no effect on milk production during the first nine-weeks
postpartum. Butler et al. [48] observed that when multiparous Holstein cows received 500 mL oral
drench PG from d 10 before expected parturition to d 25 postpartum could increase milk lactose
and tended to reduce milk fat content, but there was no difference in milk yield and milk protein
percentage. McArt et al. [70] concluded that an oral dose of PG improved milk yield during early
lactation in cows with SCK. Stokes and Goff [69] determined that the cows received PG within 4 h of
calving and again 24 h post-calving had 3.1 kg/d greater milk production. Therefore, it is conducive
to the improvement of postpartum milk performance when cows received PG after calving as soon
as possible. PG can provide enough energy to support the increase of milk yield, especially to SCK
cows. However, some reports showed there was no difference in milk yield. This may be because the
dosages used of PG reduced the feed intake or it was used in the cows without ketosis. The reduced
milk fat content affected by PG could be due to the decrease of plasma NEFA and the lower acetate in
the rumen [62]. PG had no effect in milk protein possibly because there was no shortage of amino acids
for milk protein synthesis. Glucose is necessary for dairy cows to synthesize milk lactose. When PG
can supply enough energy and be converted to enough glucose, milk lactose will increase. Therefore,
PG tends to increase milk yield and milk lactose, reduce the milk fat of ketosis cows, but has little effect
on milk protein.

5.4. The Effects of PG on Reproductive Performance

The insufficient energy intake can result in poor reproductive performance such as prolonging
postpartum anestrus, decreasing progesterone production by the corpus luteum, and reducing rates of
conception [50]. As PG can alleviate the NEB, it therefore also effectively prevents the degradation of
reproductive performance.

The results of Gamarra et al. [56] indicated that short-term dietary PG supplementation
affected circulating concentrations of metabolites and metabolic hormones, increased progesterone
concentrations, and the number of small follicles. The embryo losses were related to the reduced
progesterone and the increase in progesterone stimulates and sustains endometrial functions essential
for embryonic survival, implantation, and growth [72]. The increase in the number of small follicles
is beneficial for early estrus and conception. McArt et al. [66] confirmed that oral administration of
PG to SCK cows were 1.3 times more likely to conceive at first insemination than untreated cows.
Insulin is necessary for maximal steroidogenesis in both follicular and luteal cells. Miyoshi et al. [50]
suggested 500 mL/d of PG administration to NEB dairy cows was able to improve ovarian function
in early lactation, which is due to PG induced insulin spike. PG can improve plasma glucose and
stimulate insulin secretion. Thus, the increased plasma insulin in PG treated cows has effects on
follicular development and LH secretion, leading to earlier ovulation [50]. However, the results
of Castañeda-Gutiérrez et al. [73] showed that there was no difference in days to first ovulation in
multiparous cows after daily topdressing with PG from last 21 d before expected calving to 21 DIM.
Butler et al. [48] observed drenching of PG had no effect on the number of cows with follicles ovulating,
undergoing atresia, or becoming cystic, but the day of maximum follicle diameter was earlier for PG
treatment. PG treatment advanced the day of maximum follicle diameter, indicating that it promotes
follicular growth and is conducive to early estrus.
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From the above reports, it can be found that the results for the PG treatment are inconsistent.
This may be due to some studies not determining the ketosis status of dairy cows or feeding the
PG in diet instead of oral drench. The transient elevations in insulin and glucose, decreases in
NEFA, and modest improvement in energy balance are insufficient to adequately stimulate the
hypothalamic–pituitary–ovarian axis [48], especially to the dairy cows that do not have a ketosis
status. However, to those cows with ketosis, PG can improve plasma glucose and decrease NEFA and
therefore effectively improve reproductive performance.

5.5. The Effects of PG on Immune Performance

During the peripartum period, dairy cows experience the state of ketosis and fatty liver,
which reduces the liver function coupled with increased inflammation and oxidative stress [74].
The cows drenched with PG have a remarkable reduction in TAG accumulation in the liver [14].
There are few direct studies of PG treatment on cow immunity in early lactation. However, metritis
and milk SCC can indirectly reflect the immune status of cows. The cows that received PG at calving
had significantly lower incidence of metritis [69]. Formigoni et al. [75] observed the mean linear SCC
in the first 13 weeks of lactation period was reduced by PG administration (300 g/d from 10 d prior to
expected calving until parturition and 300 g/d on days 0, 3, 6, 9, 12 d postpartum). PG is beneficial
to increase the serum glucose concentration of postpartum cows and effectively inhibit the risk of
fatty liver through gluconeogenesis. Therefore, feeding PG to high-ketone cows can improve the liver
function by reducing the accumulation of liver fat, thus improving the immune function of cows.

6. The Toxicity and Side Effects of PG

Although PG can prevent ketosis, large doses (>500 g/d) have toxic and side effects on dairy
cows due to the toxic compounds of PG during metabolism processes [12]. The clinical signs of PG
in toxic doses include depression, ataxia, and excessive salivation as well as abnormal, malodorous,
and foul breath and feces in dairy cows [76]. Farmers and veterinarians in Denmark found that some
cows expressed the toxicity and side effects of PG [7]. PG toxicity causes oxygen saturation of arterial
blood hemoglobin and the oxygen pressure in arterial blood decreases, along with the appearance
of dyspnea and ruminal atony upon intake of concentrate containing PG [77]. The sulfur-containing
gases produced during PG fermentation in rumen contribute to the toxic effects in rumen when high
doses are administered for therapeutic purposes [76]. Hydrogen sulfide is an important signaling
substance in hypoxic vasoconstriction, which can explain the link between PG application to the rumen
and the dyspnea [77]. The toxicity and side effects of PG limit the maximum dosage in dairy cows to
reduce the risk of ketosis. However, the side effects of PG are related to individual cow susceptibility,
so it is important to consider the signs of toxicity in the administering of PG, especially at dosages
above 500 g per day [7].

7. The Feeding Level and Method of PG

The cows drenched with PG could improve the molar proportion of ruminal propionate and
hepatic gluconeogenesis, which results in an elevation of serum glucose and decrease in serum NEFA
and BHBA. Therefore, the drenching of PG during the transition period is beneficial for the dairy
cows to alleviate NEB postpartum. However, the feeding level and method may affect the effects of
PG administration.

Gordon et al. [5] pointed out that feeding 300 g of PG daily to ketonic animals should be considered
as the base of ketosis treatment. Due to the toxicity and side effects of PG, the maximum feeding level
of PG is 500 g per day. The different parity cows have different milk production abilities, so the risk of
ketosis is different, which will also affect the PG application strategy. The first lactation heifers had
a 47% reduction in the risk of excessive NEB compared to the older cows because of the lower milk
yields and lighter bodyweights [78]. Therefore, the use of PG to alleviate NEB should be primarily
applied to multiple parity dairy cows.
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PG usually exists in liquid form, which is not convenient for feeding in routine by oral drenching
to dairy cows. Chung et al. [79] verified feeding PG as a dry product (65% PG and 35% silicon dioxide
as the carrier) in total mixed rations (TMR) also reduced plasma BHBA concentration. However,
the same amount of PG as a top dress (500 g/d of cookie meal (dried bakery by-product) mixed with
dry PG) was more efficient than incorporating it into TMR. The administration method seems to be
of importance for the metabolic response of PG in cows because the response of allocating PG as
an oral drench or in a separately fed concentrate, is better than mixing into TMR [55]. When PG is
added to TMR, the chronic delivery of PG alters the environment in the rumen and inhibits more
propionate production, which would decrease the feed intake, increase fat mobilization, and perpetuate
the problem of ketosis [5]. Thus, PG is best administered as an oral drench. Meanwhile, feeding PG
(mixed with other carriers) in dry product is beneficial to decreasing labor.

Identifying the minimum effective durations for the treatment of ketosis is important for giving
PG orally. Gordon et al. [80] observed that extended PG treatment from 3 d to 5 d increased milk
production by 3.4 kg/d among the dairy cows that had low blood glucose (<2.2 mmol/L) and 1.7 times
more likely to cure with blood BHBA > 2.4 mmol/L, but had no significant effect on milk production in
blood glucose ≥ 2.2 mmol/L and cure risk with blood BHBA between 1.2 to 2.4 mmol/L. The additional
treatment times to the lower blood BHBA concentration cows might have had little benefit with the
stress of increasing labor. McArt et al. [81] confirmed that testing cows 2 days per week from 3 to 9
DIM and treating all positive cows with 300 mL of oral PG for 5 d were the most cost-effective strategy
for herds with hyperketonemia incidences between 15% and 50%. For those above 50%, treating all
fresh cows with 5 d of PG was the most cost-effective strategy. Therefore, the incidence and degree of
hyperketonemia also influence the PG administration durations for treatment. As 75% of cows that
developed SCK could be tested as positive within 1 week postpartum (with a peak at 5 DIM) [19],
the test of ketones, and treatment of PG should be mainly done in this period. The economic benefit is
also a factor influencing the application of PG in preventing ketosis in dairy cows. EI-Kasrawy et al. [82]
found that continuous drenching of PG with 300 mL/d for long durations during the transition of
dairy cows had a higher net return (1908.52 US$/cow) than drenching for a short duration in 400 mL/d
(1171.34 US$/cow) and the control group (1440.21 US$/cow). The economic benefit is affected by the
improved production and reproduction performance and the decreased treatment cost of diseases
and incidence of early removal from herd. In general, 300 g of PG daily is the basic treatment and
the maximum level is 500 g per day. The best feeding method of PG was administered as an oral
drench from within one week postpartum and primarily applied to the multiple parities. However, the
durations for the treatment of PG for ketosis need to consider the degree of hyperketonemia.

8. The Research of Combination Therapy

PG plays an important role in the treatment of ketosis in cows. With 5 d of PG therapy, the rate
of cure from hyperketonemia was improved. However, approximately 40% of cows still remained
hyperketonemia [66]. The feeding level of PG is restricted due to its potentially toxic effects [8].
Therefore, the use of PG alone still has a poor effect on the treatment of ketosis in some cows.
So, the combination of PG with other additives may have a better effect in inhibiting ketosis in dairy
cows. There has been a lot of research in this field, but different additives have different effects.
The addition of dexamethasone [18] and glycerol [49] to PG showed no additional benefits and the
fat appeared to blunt the metabolic response to PG administration of cows [13]. The combination of
butaphosphan-cyanocobalamin [80], glucocorticoids [83], L-carnitine-methionine [61], and glucose [84]
with PG to the cows of hyperketonemia are beneficial in improving the chances of the resolution of
ketosis compared to PG only.

9. Conclusions

The NEB in early lactation reduces cow productivity and reproductive performance, and induces
immunosuppression, increasing the chance of dairy cows being eliminated. As a precursor of
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gluconeogenesis, the addition of PG can provide energy and glucose for cows, thus preventing
metabolic diseases such as ketosis and fatty liver as well as increasing milk yield and reducing milk fat
percentage. PG can also increase the reproductive performance and immune function of cows due to
glucose enhancement. However, due to the toxicity and side effects, PG is used in doses within 500 g/d
per cow and offered in oral drench. To improve the effects in preventing ketosis, PG is better used with
other additives.
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