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Neurogenesis impairment is associated with the chronic phase of the epilepsy in humans

and also observed in animal models. Recent studies with animal models have shown

that physical exercise is capable of improving neurogenesis in adult subjects, alleviating

cognitive impairment and depression. Here, we show that there is a reduction in the

generation of newborn granule cells in the dentate gyrus of adult rats subjected to a

chronic model of epilepsy during the postnatal period of brain development. We also

show that the physical exercise was capable to restore the number of newborn granule

cells in this animals to the level observed in the control group. Notably, a larger number

of newborn granule cells exhibiting morphological characteristics indicative of correct

targeting into the hippocampal circuitry and the absence of basal dendrite projections

was also observed in the epileptic animals subjected to physical exercise compared to

the epileptic animals. The results described here could represent a positive interference

of the physical exercise on the neurogenesis process in subjects with chronic epilepsy.

The results may also help to reinterpret the benefits of the physical exercise in alleviating

symptoms of depression and cognitive dysfunction.
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INTRODUCTION

Temporal lobe epilepsy (TLE) is a neurological disorder characterized by the occurrence of
spontaneous and recurrent seizures (Fisher et al., 2005; Duncan et al., 2006). Epilepsy has been
associated with cognitive dysfunction and depression (Hattiangady and Shetty, 2008). Among the
epilepsy-related alterations in brain function are the loss of hippocampal functional inhibition, the
reorganization of hippocampal circuitry and neurodegeneration (Hattiangady and Shetty, 2008,
2010). In the last years, abnormal neurogenesis in the dentate gyrus has been one of the main topics
of focus in TLE investigations (Parent et al., 1997, 2006; Scharfman et al., 2000, 2002, 2003; Parent
and Lowenstein, 2002; Hattiangady et al., 2004; Kuruba et al., 2009; Hattiangady and Shetty, 2010).
In animal models of epileptogenesis, the first moments after status epilepticus (SE) (latent phase) are
characterized by increased cellular proliferation and pronounced aberrant neurogenesis. However,
the chronic phase of the disease is marked by a substantial reduction in neurogenesis (Hattiangady
et al., 2004; Walter et al., 2007; Kuruba et al., 2009).
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In addition to the decrease in neurogenesis in the dentate
gyrus, the ectopic migration of granule cells (aberrant
neurogenesis) has also been observed in brain slices from
epileptic patients (Parent et al., 2006) as well as in experimental
models of chronic epilepsy (Parent et al., 1997; Scharfman et al.,
2000; Dashtipour et al., 2003; Bonde et al., 2006; Jessberger et al.,
2007a,b; Walter et al., 2007). It has been proposed that these
ectopic granule cells act as “hub cells,” receiving a disproportional
amount of excitatory input compared with normotopic granule
cells and being able to generate intrinsic bursts, trigger seizures
and, therefore, play a significant role in epileptogenesis
(Scharfman and Pierce, 2012; Hester and Danzer, 2013). An
additional abnormality described in experimental models of
epilepsy is the occurrence of granule cells with basal dendrites
with aberrant projections into the hilus. This phenomenon and
the ectopic granule cells have been considered enough to increase
excitability due to the formation of recurrent circuits connecting
the mossy fibers and the normotopic granule cells of the dentate
gyrus (Ribak et al., 2000; Austin and Buckmaster, 2004; Shapiro
and Ribak, 2006; Hattiangady and Shetty, 2008; Thind et al.,
2008).

In mammals, the subgranular zone of the dentate gyrus
is one of the two brain areas where neurogenesis is present
throughout life (Gage, 2000; Alvarez-Buylla and Lim, 2004;
Duan et al., 2008; Zhao et al., 2008; Ma et al., 2009;
Ming and Song, 2011). Evidence has shown that physical
exercise can induce hippocampal neurogenesis by increasing the
release of neurotrophins, particularly brain-derived neurotrophic
factor (BDNF) (Cotman and Berchtold, 2002; Vaynman et al.,
2004; Vaynman and Gomez-Pinilla, 2005; Olson et al., 2006).
Therefore, physical exercise has been proposed as potential
non-invasive complementary therapy promoting health and
nervous tissue repair in distinct neurological/neurodegenerative
syndromes (Cotman and Berchtold, 2002; Russo-Neustadt et al.,
2004; Cotman et al., 2007; van Praag, 2008; Arida et al.,
2013; Intlekofer and Cotman, 2013). In the present work, we
investigated the effect of physical exercise on the number,
location, andmorphology of newborn neurons within the dentate
gyrus in adult rats subjected to SE during the postnatal period
of brain development. Notably, physical exercise was able to
restore the generation of newborn neurons to the level observed
in the control group. Despite the continued existence of ectopic
newborn neurons, an increase on the number of newly generated
granule cells exhibiting morphological characteristics indicating
normal migration and integration into the hippocampal circuitry
were observed in the epileptic rats subjected to the physical
exercise.

MATERIALS AND METHODS

Animals
All procedures involving animals were approved by the
Institutional Animal Care and Use Committee guidelines from
the Federal University of São João del-Rei, and all efforts were
made to minimize animal suffering and to reduce the number
of animals used. Water and food were freely available, and
room humidity (21 ± 2◦C) and temperature (50 ± 10%) were

controlled and the animals were housed in a 12:12 h light-dark
cycle.

Status Epilepticus Induction and
Epileptogenesis
According to Cavalheiro et al. (1987), the maturity of the brain
cholinergic neurons is required so that the status epilepticus
can trigger the epileptogenic process, which will lead to the
development of chronic TLE. Therefore, to attain functionally
mature cholinergic neurons (Cavalheiro et al., 1987), 28-day-
old male Wistar rats (N = 50) were injected with pilocarpine
chloride (320 mg/kg, i.p.) to induce SE. Prior to the pilocarpine
injection, rats were injected with methylscopolamine (1 mg/kg,
i.p.) to preclude peripheral damage. After 120min of SE, rats were
given an injection of diazepam (10mg/kg, i.p.) to mitigate seizure
activity. The rats that survived SE (N = 16) weremonitored 24 h a
day by a motion detection system and infrared night illumination
from day 45 to postnatal day 59, with all the animals having
at least two spontaneous seizures (with a minimum interval of
24 h between seizures) since the last day of monitoring. The
following groups of rats were formed after 30 days of SE: SE—
rats solely subjected to SE (N = 8); SE/EX—rats subjected to SE
with subsequent physical exercise (N = 8) and C—control rats
(N = 8).

Training Procedure
Animals in all groups were familiarized with treadmill running
and the trainability test using the scale proposed by Dishman
et al. (1988). Literature data indicate that 3 days of exercise are
able to increase the level of neurotrophins and cell proliferation
in the hippocampus (Gómez-Pinilla et al., 1997; van der Borght
et al., 2009) and 7 days of running on the treadmill are able to
increase the number of youngDCX+ neurons (Brown et al., 2003;
Steiner et al., 2004; Uda et al., 2006; van der Borght et al., 2009).
The expression of doublecortin (DCX) occurs in a transient state
of neuronal development that lasts for approximately 2 weeks
(Kim et al., 2002). In the present study, we chose to use a
protocol of physical exercises where the initial phase of increase
in both proliferation and generation of newborn neurons were
stabilized. Thus, at the end of the physical exercise protocol, the
neurons belonging to the proliferation of the first days of physical
exercise would already be adults and no longer expressing DCX,
however, due to the continuing physical exercise, other newborn
neurons will be taking place and the DCX expressing level would
be stabilized at an increased but constant level. Then, after
the familiarization process, the rats in the SE/EX group were
subjected to 28 sessions of treadmill running over the course
of 4 weeks (1 session/day). A warm-up consisting of running
at a speed of 8 m/min for 5 min preceded all exercise sessions.
The speed and duration of each session were 10 m/min and
10 min, increasing in increments of 2 m/min and 5 min per
week to a maximum of 16 m/min and 25 min in the last week.
The rats in the other two groups were subjected to all the
processes associated with transport to the exercise room and
the corresponding manipulation, but were not subjected to the
physical exercise session.
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FIGURE 1 | 3D reconstruction process for counting newborn neurons. The example shown refers to a Control group. The reconstruction was performed with

15 confocal z-stacks, 0.8 µm increments, pinhole adjusted to 1 Airy unit, with a 63× oil-immersion objective. The projections on the X, Y, and Z planes allow

determining the non-overlapping positioning of two cells from two different confocal optical sections, avoiding a misidentification of morphology type. Three different

cell projections (1, 2, and 3) are shown on the right side demonstrating how cells can be seen for identification and counting.

Immunohistochemistry
At 90 days of age, the rats were anesthetized with an overdose
of ketamine-xylazine (100–10 mg/kg, respectively) followed by
transcardial perfusion with 0.1 M phosphate-buffered saline
(PBS; pH 7.4) followed by a 2% paraformaldehyde (PFA) fixative
solution. The brains were dissected, post-fixed in PFA for 24 h,
washed, and stored in PBS at 4◦C until sectioning. Brains
were sectioned coronally at a thickness of 40 µm with a
vibrating microtome (Leica Microsystems, Wetzlar, Germany).
The histological sections were preincubated for 90min at room
temperature in blocking solution (10% BSA and 0.1% Triton
X-100). Overnight incubation in the primary antibody solution
containing 2% BSA was subsequently performed. An anti-DCX
antibody (rabbit polyclonal, 1:1,000; Abcam, Cambridge, USA)
was used to stain developing immature neurons.

Confocal Microscopy and Histological
Analyses
To assess the number, morphology and location of newborn
granule cells, confocal optical sections (COS) of the entire DCX-
labeled dentate gyrus were used to count the DCX+ neurons.
Imaging was performed using a Zeiss LSM710 confocal system
set up on an Observer-Z1 inverted microscope with a 20×
objective (numerical aperture 0.50). All images were captured

with identical confocal settings for each animal (excitation
wavelength, 488 nm; the same power settings; emission range
collected, 493–586 nm). From the captured images (frames) a
reconstruction of the entire area of the dentate gyrus was made,
creating the image of 6,000 × 4,000 pixels (24 megapixels).
This image is a COS. Three COS per histological section and
6 histological section per rat were used in the quantification,
resulting a total of 18 COS per rat. From each hippocampus 3
sections were taken, one 600 µm apart from each other. Three
COS images were captured per histological section. The first
COS was captured centered at 7 µm, the next at 19 µm and the
third at 31µm. According to Wojtowicz and Kee (2006), when
counting of DCX+ cells, due to the small number of cells, usually
80–100 cells per section, a fewer sections per hippocampus
are sufficient. The histological sections were obtained in the
coronal plane, from rostral to caudal, from the middle portion
of the hippocampus, from AP: −2.6 to −4.6 mm, having the
bregma suture as reference, using the Paxinos andWatson (2007)
stereotaxic Rat Brain Atlas. Once the middle portion of the
hippocampus was determined, the intermediate slice was chosen,
identifying the one whose anatomical structures were the closest
to those presented in the Atlas at AP: −3.6 mm. The other two
were chosen by taking the nearest slice of AP = −3.0 mm and
the nearest slice of AP = −4.2 mm. The DCX+ neurons of the
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FIGURE 2 | Procedure used in the identification of the newborn

neurons. (A) Confocal Optical Section (COS) image of the whole DG in high

resolution (24 megapixels) composed with several pictures captured using the

20× objective. The high-resolution of the COS is enough to identify the

morphology of the DCX+ neurons and also to count (red square). (B) The

COS image is used to monitor the regions (white square, bottom left) that will

be captured with 63× objective in different z-stacks, 0.8 increments. (C) The

summation of these stacks gives the image used to identify the morphology

type of the newborn neuron (bottom right).

COS were manually identified, classified and counted using a
program developed in Matlab platform. When necessary, using
the ZEN 2010b software (Zeiss, Jena, Thuringia, Germany), the
morphology and location of the stained neurons were determined
using a three-dimensional reconstruction using 15 confocal z-
stacks, 0.8 µm increments, pinhole adjusted to 1 Airy unit, with
a 63× oil-immersion objective (Figures 1, 2). All cells DCX+
are marked with the “position” function of the ZEN 2010b
(Zeiss, Jena, Thuringia, Germany). This function saves the (x,y,z)
coordinates. When it is not clear the pertinence of the cell to
the optical section, like in the situation of lost caps, or when it
is not clear the morphology of the cell, with these coordinates
the Software is able to reconstruct the 3D image (63x objective)
centered in the corresponding coordinates.

Statistical Analysis
We compared control rats with epileptic rats and with epileptic
rats subjected to physical exercise. The average number of
the different types of DCX+ neurons investigated per COS
(n/cos) was the variables analyzed. We used the Shapiro-Wilk
normality test to verify the normality of the data. Quantitative
variables are reported as mean ± standard deviation (SD) and

were compared using One-way analysis of variance (ANOVA)
tests and Tukey’s multiple comparison tests when the variable
analyzed was compared between more than two groups. When
the comparison involved only two groups, it was used Student’s
t-test. A P < 0.05 was considered as significant.

RESULTS

The number, location, and morphology of the newborn neurons
in the dentate gyrus were assessed in each animal with DCX
immunohistochemistry (Brown et al., 2003; Couillard-Despres
et al., 2005; Wojtowicz and Kee, 2006). Samples were first
analyzed for the presence of cells that showed fluorescent
labeling for DCX and these were named DCX+ neurons. As
shown in Figure 4A, the SE group exhibited fewer DCX+
neurons than the rats in the C and SE/EX groups. The average
number of DCX+ neurons per COS in the chronic pilocarpine-
treated epileptic rats subjected to physical exercise was not
significantly different from the number observed in the C group
(DCX+ C: 65.51 ± 3.94 n/cos, SE: 43.94 ± 5.21 n/cos, SE/EX:
61.85± 8.40 n/cos).

Next, DCX+ neurons were investigated for targeting and
classified into two groups. DCX+ neurons with the cell
body regularly located in the granule layer were classified
as normotopic newborn neurons (nDCX+). DCX+ neurons
ectopically located in the hilus were classified as abnormal
newborn neurons ectopically located in the hilus (ehDCX+). In
Figure 3, the migration targeting of the newborn neurons on
the C, SE and SE/EX groups are shown. Comparing the groups
for the location of the newborn neurons, the average number
of nDCX+ (n/cos) was different in the three groups (higher
in the group C, followed by SE/EX and lower in the group
SE) (nDCX+ C: 65.51 ± 3.94 n/cos, SE: 35.85 ± 5.429 n/cos,
SE/EX: 55.35± 8.35 n/cos; Figure 4B). There was no statistically
significant difference between the groups SE e SE/EX for the
variable ehDCX+ (ehDCX+ SE: 8.10 ± 2.35 n/cos, SE/EX: 6.50
± 2.28 n/cos; Figure 4B).

In the next step, the nDCX+ neurons were analyzed for the
occurrence of deep basal dendrite in the hilus. nDCX+ neurons
with no basal dendritic projecting into the dentate hilus were
classified as normotopic regular newborn neurons (nrDCX+).
nDCX+ neurons located in the granule layer, but with basal
dendrites projecting to the hilus were classified as normotopically
located newborn neurons with basal dendrites projecting into
the dentate hilus (nbdDCX+). Figure 3B shows a neuron with a
basal dendrite. The three-dimensional reconstruction images in
Figure 3 were formed from 15 confocal image stacks through the
z-depth, allowing identification of the basal dendrites in newborn
neurons stained with DCX. There was no statistically significant
difference between the SE and SE / EX groups in the variable
nbdDCX+ (nbdDCX+ SE: 8.61± 1.64 n/cos, SE/EX: 9.42± 1.93
n/cos). The average number of nrDCX+ neurons per COS in
the SE/EX rats was significantly lower than the number in rats
from the C group and greater than the number in the SE rats
(Figure 4C; nrDCX+ C: 65.51± 3.94 n/cos, SE: 27.24 ± 5.32
n/cos, SE/EX: 47.38± 9.62 n/cos).
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FIGURE 3 | Morphology of the DCX+ neurons showed in two different views: summation of several confocal optical sections allowing to view the

complete morphology of the newborn neuronal (left) and 3D reconstruction where the confocal optical sections were rendered and the spatial

morphology of the newborn neuronal can be inspected from different visions (right). (A) DCX+ neuron with regular localization and morphology: cell body in

the dentate gyrus granule/subgranule layer and apical dendrite toward the ML/perforant path, typical of the C group (nrDCX+). (B) DCX+ normotopic neuron with

basal dendrites reaching deep into the hilus (nbdDCX+). This morphology was observed in the SE and SE/EX groups. (C) DCX+ ectopic neurons (ehDCX+) localized

in the hilus and with aberrant dendrites (open arrows). This characteristic was observed in the SE and SE/EX groups. (D) nrDCX+ neurons (filled arrowheads) and

ehDCX+ neurons (open arrowheads) in the same image, a common characteristic observed in the SE/EX group (ML, molecular layer; GL, granule layer; SGZ,

subgranule zone; bar, 10 µm).
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In order to compare the data reported in the literature
on abnormal neurons in animal models of chronic epilepsy
(Jessberger et al., 2007b; Walter et al., 2007), the ehDCX+
neurons and the nbdDCX+ neurons were grouped into a single
group termed as abnormal DCX+ neurons. Almost half of
the DCX+ neurons in the SE rats presented abnormalities in
localization and/or presence of basal dendrites, 16.70 ± 3.25
abnormal n/cos out of 43.94 ± 5.21 total DCX+ n/cos. In the
SE/EX group, 15.92 ± 3.54 abnormal n/cos out 61.85 ± 8.40
of total n/cos of the DCX+ neurons exhibited abnormalities.
However, the number of abnormal DCX+ neurons per COS was
not significantly different between the SE and SE/EX groups.

DISCUSSION

Recent findings have converged on the hypothesis that the
abnormal integration of adult-generated newborn dentate
granule cells has effect on the development of TLE (Parent and
Lowenstein, 2002; Hester and Danzer, 2013; Althaus et al., 2015).
It has also been demonstrated that physical exercise promotes
adult hippocampal neurogenesis (Cotman and Berchtold, 2002;
Fabel et al., 2003; Lee et al., 2013; Nokia et al., 2016). Although
decreased neurogenesis is not causally associated with epilepsy
and is, in fact, an effect of the disease, it is reasonable to suspect
that the beneficial effects of physical exercise on the comorbidities
associated with epilepsy (Roth et al., 1994; Gobbo and O’mara,
2005; Arida et al., 2012; Gomes et al., 2014) might be due to
changes in the neurogenesis processes (Hattiangady and Shetty,
2008). To test this prediction and evaluate the neuronal changes,
we determined the number, location and morphology of the
newborn neurons in the dentate gyrus by comparing anti-DCX
staining in pilocarpine-treated epileptic rats subjected and not
subjected to physical exercise and also control rats.

The present study revealed a significant reduction in the
generation of newborn granular cells in epileptic rats compared
to control rats. Despite the nonconventional counting protocol
used, where the density of DCX+ neurons per section were
evaluated, and not an estimate of the total number of DCX+
neurons in the hippocampus as usually is performed using
stereological sampling, the measure was able to quantify
significant changes that were consistently shown in the slices
of all animals investigated. The results are in agreement with
previous demonstrations of reduced hippocampal neurogenesis
in the chronic phase of the disease (Hattiangady et al., 2004;
Walter et al., 2007). The disease-induced changes in micro-
environment, such as reduced levels of neurotrophic factors
(FGF-2, IGF-1, and BDNF), observed in chronic epileptic
hippocampi, and the non-neuronal fate-choice decision of newly
born cells, are being implicated as the main cause of the
reduced neurogenesis (Shetty et al., 2003; Hattiangady et al.,
2004; Hattiangady and Shetty, 2008, 2010). The reduction in the
generation of newborn granule cells observed in the epileptic
group was not observed in the epileptic group subjected to
physical exercise. Therefore, besides the cellular proliferation as
described in Gomes et al. (2014), the present findings suggest
that physical exercise could be able to affect the neuronal

FIGURE 4 | Statistical comparison of the DCX+ stained neurons in the

DG for the groups C, SE, and SE/EX groups. (A) The average number of

DCX+ stained neurons per confocal optical section is lower in the SE group.

(B) The average number of normotopic DCX+ stained neurons is lower in the

SE group. There was no statistically significant difference of the average

number of ectopic hilar DCX+ stained neurons per confocal optical section

between the groups SE and SE/EX. (C) The average number of normotopic

regular DCX+ stained neurons per confocal optical section is lower in the

group SE. The average number of normotopic neuron with basal dendrites

reaching deep into the hilus DCX+ stained neurons was not different

comparing SE and SE/EX groups. *p < 0.05 a One-way ANOVA and Tukey’s

Post-hoc for DCX+, nDCX+, nrDCX+. *p < 0.05 a Student’s t-test for

ehDCX+, nbdDCX+. Data are expressed in mean ± SD.

differentiation of newly born cells in the chronically epileptic
hippocampus. The main effect may be a positive contribution
to the neurogenesis, counteracting the neurodegeneration
associated with epilepsy.

Despite the absence of changes in the number of abnormal
newborn neurons observed, the present data show that physical
exercise is able to promote an increase in the number of regular
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newborn neurons. Many studies had reported the beneficial
effects of physical exercise in decreasing the frequency and
severity of seizures (Denio et al., 1989; Eriksen et al., 1994;
Arida et al., 1998, 1999, 2003, 2007; McAuley et al., 2001; Gomes
et al., 2014). According to Walter et al. (2007), newborn granule
neurons may be more vulnerable to environmental disturbances
than mature neighboring neurons. Therefore, the initial SE insult
as well as the occurrence of spontaneous seizures may affect
the migration and maturation processes, leading to both the
occurrence of hilar ectopic neurons as well as hilar basal dendrites
on the normotopic neurons (Jessberger et al., 2007a,b; Walter
et al., 2007). Indeed, taking into account the expected recursive
interplay of the effects, the occurrence of fewer seizures may
result in fewer abnormalities in the newborn neurons induced by
physical exercise.

The positive effects of physical exercise on mood disorders
in subjects with epilepsy may be reinterpreted with the
present findings. Disruption of the neurogenesis induced by
antidepressant drugs blocks the behavioral improvements due
to these drugs (Malberg et al., 2000; Manji et al., 2001; Nestler
et al., 2002; Santarelli et al., 2003; Drew and Hen, 2007; Sahay
and Hen, 2007; David et al., 2009). Once antidepressant drugs
induce normal neurogenesis, the beneficial effects of physical
exercises in epilepsy, particularly in reducing depression (Roth
et al., 1994; Arida et al., 2012; de Lima et al., 2013), may be
reinterpreted taking into account the increase in the number of
newborn neurons revealed in our data.

Another comorbidity of epilepsy that is positively affected by
physical exercise is cognitive impairment (Gobbo and O’mara,
2005; Gomes et al., 2014). Our data may also contribute to the
understanding of this effect. According to Cho et al. (2015),
the cognitive dysfunction resulting from pilocarpine induced-
SE is associated with the neurogenesis of ectopic neurons.
This association was also observed in other models of epilepsy
(Jessberger et al., 2007a; Scharfman and Pierce, 2012) and
the interpretation is that the ectopic neurons may contribute

to sustaining epileptiform activity (Parent, 2007), thus they
may be more crucial to functional alteration following SE
than neurogenesis in a brain not injured. Evidences have been
collected sustaining the role of the newborn neurons in the
DG of the hippocampus improving or maintaining learning and
memory functions (van Praag et al., 1999; Shors et al., 2002; van
Praag et al., 2002; Drapeau et al., 2003; Cao et al., 2006; Uda
et al., 2006). Therefore, although our findings show that physical
exercise does not reduce the number of ectopic newborn neurons,
the increase in the number of normotopic regular newborn
neurons could counteract the effect of the ectopic neurons, which
may contribute for reducing cognitive impairment. Further
investigations must be conducted to support this hypothesis. Our
findings motivate the design of new investigations focused on the
survival and functionality of newborn neurons, paving the way
to unravel the mechanisms responsible for the beneficial effects
of physical exercise on epilepsy comorbidities.
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